aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/SVD
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/SVD')
-rw-r--r--Eigen/src/SVD/BDCSVD.h279
-rw-r--r--Eigen/src/SVD/JacobiSVD.h36
-rw-r--r--Eigen/src/SVD/JacobiSVD_LAPACKE.h5
-rw-r--r--Eigen/src/SVD/SVDBase.h107
-rw-r--r--Eigen/src/SVD/UpperBidiagonalization.h6
5 files changed, 320 insertions, 113 deletions
diff --git a/Eigen/src/SVD/BDCSVD.h b/Eigen/src/SVD/BDCSVD.h
index d7a4271cb..17f8e4436 100644
--- a/Eigen/src/SVD/BDCSVD.h
+++ b/Eigen/src/SVD/BDCSVD.h
@@ -11,7 +11,7 @@
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
// Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-// Copyright (C) 2014-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2014-2017 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -22,6 +22,11 @@
// #define EIGEN_BDCSVD_DEBUG_VERBOSE
// #define EIGEN_BDCSVD_SANITY_CHECKS
+#ifdef EIGEN_BDCSVD_SANITY_CHECKS
+#undef eigen_internal_assert
+#define eigen_internal_assert(X) assert(X);
+#endif
+
namespace Eigen {
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
@@ -34,6 +39,7 @@ namespace internal {
template<typename _MatrixType>
struct traits<BDCSVD<_MatrixType> >
+ : traits<_MatrixType>
{
typedef _MatrixType MatrixType;
};
@@ -57,7 +63,7 @@ struct traits<BDCSVD<_MatrixType> >
* recommended and can several order of magnitude faster.
*
* \warning this algorithm is unlikely to provide accurate result when compiled with unsafe math optimizations.
- * For instance, this concerns Intel's compiler (ICC), which perfroms such optimization by default unless
+ * For instance, this concerns Intel's compiler (ICC), which performs such optimization by default unless
* you compile with the \c -fp-model \c precise option. Likewise, the \c -ffast-math option of GCC or clang will
* significantly degrade the accuracy.
*
@@ -105,7 +111,7 @@ public:
* The default constructor is useful in cases in which the user intends to
* perform decompositions via BDCSVD::compute(const MatrixType&).
*/
- BDCSVD() : m_algoswap(16), m_numIters(0)
+ BDCSVD() : m_algoswap(16), m_isTranspose(false), m_compU(false), m_compV(false), m_numIters(0)
{}
@@ -202,6 +208,7 @@ protected:
using Base::m_computeThinV;
using Base::m_matrixU;
using Base::m_matrixV;
+ using Base::m_info;
using Base::m_isInitialized;
using Base::m_nonzeroSingularValues;
@@ -212,7 +219,7 @@ public:
// Method to allocate and initialize matrix and attributes
template<typename MatrixType>
-void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
+void BDCSVD<MatrixType>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions)
{
m_isTranspose = (cols > rows);
@@ -250,16 +257,25 @@ BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsign
{
// FIXME this line involves temporaries
JacobiSVD<MatrixType> jsvd(matrix,computationOptions);
- if(computeU()) m_matrixU = jsvd.matrixU();
- if(computeV()) m_matrixV = jsvd.matrixV();
- m_singularValues = jsvd.singularValues();
- m_nonzeroSingularValues = jsvd.nonzeroSingularValues();
m_isInitialized = true;
+ m_info = jsvd.info();
+ if (m_info == Success || m_info == NoConvergence) {
+ if(computeU()) m_matrixU = jsvd.matrixU();
+ if(computeV()) m_matrixV = jsvd.matrixV();
+ m_singularValues = jsvd.singularValues();
+ m_nonzeroSingularValues = jsvd.nonzeroSingularValues();
+ }
return *this;
}
//**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows
- RealScalar scale = matrix.cwiseAbs().maxCoeff();
+ RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>();
+ if (!(numext::isfinite)(scale)) {
+ m_isInitialized = true;
+ m_info = InvalidInput;
+ return *this;
+ }
+
if(scale==Literal(0)) scale = Literal(1);
MatrixX copy;
if (m_isTranspose) copy = matrix.adjoint()/scale;
@@ -276,7 +292,11 @@ BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsign
m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
m_computed.template bottomRows<1>().setZero();
divide(0, m_diagSize - 1, 0, 0, 0);
-
+ if (m_info != Success && m_info != NoConvergence) {
+ m_isInitialized = true;
+ return *this;
+ }
+
//**** step 3 - Copy singular values and vectors
for (int i=0; i<m_diagSize; i++)
{
@@ -388,7 +408,7 @@ void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, co
//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
template<typename MatrixType>
-void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift)
+void BDCSVD<MatrixType>::divide(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
{
// requires rows = cols + 1;
using std::pow;
@@ -408,6 +428,8 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
{
// FIXME this line involves temporaries
JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0));
+ m_info = b.info();
+ if (m_info != Success && m_info != NoConvergence) return;
if (m_compU)
m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
else
@@ -427,7 +449,9 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
// and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the
// right submatrix before the left one.
divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
+ if (m_info != Success && m_info != NoConvergence) return;
divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
+ if (m_info != Success && m_info != NoConvergence) return;
if (m_compU)
{
@@ -568,7 +592,7 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
// handling of round-off errors, be consistent in ordering
// For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf
template <typename MatrixType>
-void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
+void BDCSVD<MatrixType>::computeSVDofM(Eigen::Index firstCol, Eigen::Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
{
const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
using std::abs;
@@ -591,7 +615,7 @@ void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, Vec
// but others are interleaved and we must ignore them at this stage.
// To this end, let's compute a permutation skipping them:
Index actual_n = n;
- while(actual_n>1 && diag(actual_n-1)==Literal(0)) --actual_n;
+ while(actual_n>1 && diag(actual_n-1)==Literal(0)) {--actual_n; eigen_internal_assert(col0(actual_n)==Literal(0)); }
Index m = 0; // size of the deflated problem
for(Index k=0;k<actual_n;++k)
if(abs(col0(k))>considerZero)
@@ -618,13 +642,11 @@ void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, Vec
std::cout << " shift: " << shifts.transpose() << "\n";
{
- Index actual_n = n;
- while(actual_n>1 && abs(col0(actual_n-1))<considerZero) --actual_n;
std::cout << "\n\n mus: " << mus.head(actual_n).transpose() << "\n\n";
std::cout << " check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n";
+ assert((((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n) >= 0).all());
std::cout << " check2 (>0) : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n";
- std::cout << " check3 (>0) : " << ((diag.segment(1,actual_n-1)-singVals.head(actual_n-1).array()) / singVals.head(actual_n-1).array()).transpose() << "\n\n\n";
- std::cout << " check4 (>0) : " << ((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).transpose() << "\n\n\n";
+ assert((((singVals.array()-diag) / singVals.array()).head(actual_n) >= 0).all());
}
#endif
@@ -652,13 +674,13 @@ void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, Vec
#endif
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
- assert(U.allFinite());
- assert(V.allFinite());
- assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 1e-14 * n);
- assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 1e-14 * n);
assert(m_naiveU.allFinite());
assert(m_naiveV.allFinite());
assert(m_computed.allFinite());
+ assert(U.allFinite());
+ assert(V.allFinite());
+// assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 100*NumTraits<RealScalar>::epsilon() * n);
+// assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 100*NumTraits<RealScalar>::epsilon() * n);
#endif
// Because of deflation, the singular values might not be completely sorted.
@@ -673,6 +695,15 @@ void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, Vec
if(m_compV) V.col(i).swap(V.col(i+1));
}
}
+
+#ifdef EIGEN_BDCSVD_SANITY_CHECKS
+ {
+ bool singular_values_sorted = (((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).array() >= 0).all();
+ if(!singular_values_sorted)
+ std::cout << "Singular values are not sorted: " << singVals.segment(1,actual_n).transpose() << "\n";
+ assert(singular_values_sorted);
+ }
+#endif
// Reverse order so that singular values in increased order
// Because of deflation, the zeros singular-values are already at the end
@@ -696,7 +727,9 @@ typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar
for(Index i=0; i<m; ++i)
{
Index j = perm(i);
- res += numext::abs2(col0(j)) / ((diagShifted(j) - mu) * (diag(j) + shift + mu));
+ // The following expression could be rewritten to involve only a single division,
+ // but this would make the expression more sensitive to overflow.
+ res += (col0(j) / (diagShifted(j) - mu)) * (col0(j) / (diag(j) + shift + mu));
}
return res;
@@ -708,9 +741,12 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
{
using std::abs;
using std::swap;
+ using std::sqrt;
Index n = col0.size();
Index actual_n = n;
+ // Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above
+ // because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value.
while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n;
for (Index k = 0; k < n; ++k)
@@ -732,7 +768,9 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
right = (diag(actual_n-1) + col0.matrix().norm());
else
{
- // Skip deflated singular values
+ // Skip deflated singular values,
+ // recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside.
+ // This should be equivalent to using perm[]
Index l = k+1;
while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l<actual_n); }
right = diag(l);
@@ -742,25 +780,43 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
RealScalar mid = left + (right-left) / Literal(2);
RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0));
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << right-left << "\n";
- std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, diag-left, left) << " " << secularEq(mid-right, col0, diag, perm, diag-right, right) << "\n";
- std::cout << " = " << secularEq(0.1*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.2*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.3*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.4*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.49*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.5*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.51*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.6*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.7*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.8*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.9*(left+right), col0, diag, perm, diag, 0) << "\n";
+ std::cout << "right-left = " << right-left << "\n";
+// std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, ArrayXr(diag-left), left)
+// << " " << secularEq(mid-right, col0, diag, perm, ArrayXr(diag-right), right) << "\n";
+ std::cout << " = " << secularEq(left+RealScalar(0.000001)*(right-left), col0, diag, perm, diag, 0)
+ << " " << secularEq(left+RealScalar(0.1) *(right-left), col0, diag, perm, diag, 0)
+ << " " << secularEq(left+RealScalar(0.2) *(right-left), col0, diag, perm, diag, 0)
+ << " " << secularEq(left+RealScalar(0.3) *(right-left), col0, diag, perm, diag, 0)
+ << " " << secularEq(left+RealScalar(0.4) *(right-left), col0, diag, perm, diag, 0)
+ << " " << secularEq(left+RealScalar(0.49) *(right-left), col0, diag, perm, diag, 0)
+ << " " << secularEq(left+RealScalar(0.5) *(right-left), col0, diag, perm, diag, 0)
+ << " " << secularEq(left+RealScalar(0.51) *(right-left), col0, diag, perm, diag, 0)
+ << " " << secularEq(left+RealScalar(0.6) *(right-left), col0, diag, perm, diag, 0)
+ << " " << secularEq(left+RealScalar(0.7) *(right-left), col0, diag, perm, diag, 0)
+ << " " << secularEq(left+RealScalar(0.8) *(right-left), col0, diag, perm, diag, 0)
+ << " " << secularEq(left+RealScalar(0.9) *(right-left), col0, diag, perm, diag, 0)
+ << " " << secularEq(left+RealScalar(0.999999)*(right-left), col0, diag, perm, diag, 0) << "\n";
#endif
RealScalar shift = (k == actual_n-1 || fMid > Literal(0)) ? left : right;
// measure everything relative to shift
Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n);
diagShifted = diag - shift;
+
+ if(k!=actual_n-1)
+ {
+ // check that after the shift, f(mid) is still negative:
+ RealScalar midShifted = (right - left) / RealScalar(2);
+ if(shift==right)
+ midShifted = -midShifted;
+ RealScalar fMidShifted = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
+ if(fMidShifted>0)
+ {
+ // fMid was erroneous, fix it:
+ shift = fMidShifted > Literal(0) ? left : right;
+ diagShifted = diag - shift;
+ }
+ }
// initial guess
RealScalar muPrev, muCur;
@@ -797,13 +853,16 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
// And find mu such that f(mu)==0:
RealScalar muZero = -a/b;
RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift);
+
+#ifdef EIGEN_BDCSVD_SANITY_CHECKS
+ assert((numext::isfinite)(fZero));
+#endif
muPrev = muCur;
fPrev = fCur;
muCur = muZero;
fCur = fZero;
-
if (shift == left && (muCur < Literal(0) || muCur > right - left)) useBisection = true;
if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true;
if (abs(fCur)>abs(fPrev)) useBisection = true;
@@ -818,54 +877,100 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
RealScalar leftShifted, rightShifted;
if (shift == left)
{
- leftShifted = (std::numeric_limits<RealScalar>::min)();
+ // to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)),
+ // the factor 2 is to be more conservative
+ leftShifted = numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
+
+ // check that we did it right:
+ eigen_internal_assert( (numext::isfinite)( (col0(k)/leftShifted)*(col0(k)/(diag(k)+shift+leftShifted)) ) );
// I don't understand why the case k==0 would be special there:
- // if (k == 0) rightShifted = right - left; else
- rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.6)); // theoretically we can take 0.5, but let's be safe
+ // if (k == 0) rightShifted = right - left; else
+ rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.51)); // theoretically we can take 0.5, but let's be safe
}
else
{
- leftShifted = -(right - left) * RealScalar(0.6);
- rightShifted = -(std::numeric_limits<RealScalar>::min)();
+ leftShifted = -(right - left) * RealScalar(0.51);
+ if(k+1<n)
+ rightShifted = -numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), abs(col0(k+1)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
+ else
+ rightShifted = -(std::numeric_limits<RealScalar>::min)();
}
-
+
RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift);
+ eigen_internal_assert(fLeft<Literal(0));
-#if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_DEBUG_VERBOSE
+#if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_SANITY_CHECKS
RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift);
#endif
+#ifdef EIGEN_BDCSVD_SANITY_CHECKS
+ if(!(numext::isfinite)(fLeft))
+ std::cout << "f(" << leftShifted << ") =" << fLeft << " ; " << left << " " << shift << " " << right << "\n";
+ assert((numext::isfinite)(fLeft));
+
+ if(!(numext::isfinite)(fRight))
+ std::cout << "f(" << rightShifted << ") =" << fRight << " ; " << left << " " << shift << " " << right << "\n";
+ // assert((numext::isfinite)(fRight));
+#endif
+
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
if(!(fLeft * fRight<0))
{
- std::cout << "fLeft: " << leftShifted << " - " << diagShifted.head(10).transpose() << "\n ; " << bool(left==shift) << " " << (left-shift) << "\n";
- std::cout << k << " : " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; " << left << " - " << right << " -> " << leftShifted << " " << rightShifted << " shift=" << shift << "\n";
+ std::cout << "f(leftShifted) using leftShifted=" << leftShifted << " ; diagShifted(1:10):" << diagShifted.head(10).transpose() << "\n ; "
+ << "left==shift=" << bool(left==shift) << " ; left-shift = " << (left-shift) << "\n";
+ std::cout << "k=" << k << ", " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; "
+ << "[" << left << " .. " << right << "] -> [" << leftShifted << " " << rightShifted << "], shift=" << shift
+ << " , f(right)=" << secularEq(0, col0, diag, perm, diagShifted, shift)
+ << " == " << secularEq(right, col0, diag, perm, diag, 0) << " == " << fRight << "\n";
}
#endif
eigen_internal_assert(fLeft * fRight < Literal(0));
-
- while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted)))
+
+ if(fLeft<Literal(0))
{
- RealScalar midShifted = (leftShifted + rightShifted) / Literal(2);
- fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
- if (fLeft * fMid < Literal(0))
+ while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted)))
{
- rightShifted = midShifted;
- }
- else
- {
- leftShifted = midShifted;
- fLeft = fMid;
+ RealScalar midShifted = (leftShifted + rightShifted) / Literal(2);
+ fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
+ eigen_internal_assert((numext::isfinite)(fMid));
+
+ if (fLeft * fMid < Literal(0))
+ {
+ rightShifted = midShifted;
+ }
+ else
+ {
+ leftShifted = midShifted;
+ fLeft = fMid;
+ }
}
+ muCur = (leftShifted + rightShifted) / Literal(2);
+ }
+ else
+ {
+ // We have a problem as shifting on the left or right give either a positive or negative value
+ // at the middle of [left,right]...
+ // Instead fo abbording or entering an infinite loop,
+ // let's just use the middle as the estimated zero-crossing:
+ muCur = (right - left) * RealScalar(0.5);
+ if(shift == right)
+ muCur = -muCur;
}
-
- muCur = (leftShifted + rightShifted) / Literal(2);
}
singVals[k] = shift + muCur;
shifts[k] = shift;
mus[k] = muCur;
+#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
+ if(k+1<n)
+ std::cout << "found " << singVals[k] << " == " << shift << " + " << muCur << " from " << diag(k) << " .. " << diag(k+1) << "\n";
+#endif
+#ifdef EIGEN_BDCSVD_SANITY_CHECKS
+ assert(k==0 || singVals[k]>=singVals[k-1]);
+ assert(singVals[k]>=diag(k));
+#endif
+
// perturb singular value slightly if it equals diagonal entry to avoid division by zero later
// (deflation is supposed to avoid this from happening)
// - this does no seem to be necessary anymore -
@@ -889,7 +994,7 @@ void BDCSVD<MatrixType>::perturbCol0
zhat.setZero();
return;
}
- Index last = perm(m-1);
+ Index lastIdx = perm(m-1);
// The offset permits to skip deflated entries while computing zhat
for (Index k = 0; k < n; ++k)
{
@@ -899,27 +1004,58 @@ void BDCSVD<MatrixType>::perturbCol0
{
// see equation (3.6)
RealScalar dk = diag(k);
- RealScalar prod = (singVals(last) + dk) * (mus(last) + (shifts(last) - dk));
+ RealScalar prod = (singVals(lastIdx) + dk) * (mus(lastIdx) + (shifts(lastIdx) - dk));
+#ifdef EIGEN_BDCSVD_SANITY_CHECKS
+ if(prod<0) {
+ std::cout << "k = " << k << " ; z(k)=" << col0(k) << ", diag(k)=" << dk << "\n";
+ std::cout << "prod = " << "(" << singVals(lastIdx) << " + " << dk << ") * (" << mus(lastIdx) << " + (" << shifts(lastIdx) << " - " << dk << "))" << "\n";
+ std::cout << " = " << singVals(lastIdx) + dk << " * " << mus(lastIdx) + (shifts(lastIdx) - dk) << "\n";
+ }
+ assert(prod>=0);
+#endif
for(Index l = 0; l<m; ++l)
{
Index i = perm(l);
if(i!=k)
{
+#ifdef EIGEN_BDCSVD_SANITY_CHECKS
+ if(i>=k && (l==0 || l-1>=m))
+ {
+ std::cout << "Error in perturbCol0\n";
+ std::cout << " " << k << "/" << n << " " << l << "/" << m << " " << i << "/" << n << " ; " << col0(k) << " " << diag(k) << " " << "\n";
+ std::cout << " " <<diag(i) << "\n";
+ Index j = (i<k /*|| l==0*/) ? i : perm(l-1);
+ std::cout << " " << "j=" << j << "\n";
+ }
+#endif
Index j = i<k ? i : perm(l-1);
+#ifdef EIGEN_BDCSVD_SANITY_CHECKS
+ if(!(dk!=Literal(0) || diag(i)!=Literal(0)))
+ {
+ std::cout << "k=" << k << ", i=" << i << ", l=" << l << ", perm.size()=" << perm.size() << "\n";
+ }
+ assert(dk!=Literal(0) || diag(i)!=Literal(0));
+#endif
prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk)));
+#ifdef EIGEN_BDCSVD_SANITY_CHECKS
+ assert(prod>=0);
+#endif
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- if(i!=k && std::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 )
+ if(i!=k && numext::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 )
std::cout << " " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk))
<< ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n";
#endif
}
}
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(last) + dk) << " * " << mus(last) + shifts(last) << " - " << dk << "\n";
+ std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(lastIdx) + dk) << " * " << mus(lastIdx) + shifts(lastIdx) << " - " << dk << "\n";
#endif
RealScalar tmp = sqrt(prod);
- zhat(k) = col0(k) > Literal(0) ? tmp : -tmp;
+#ifdef EIGEN_BDCSVD_SANITY_CHECKS
+ assert((numext::isfinite)(tmp));
+#endif
+ zhat(k) = col0(k) > Literal(0) ? RealScalar(tmp) : RealScalar(-tmp);
}
}
}
@@ -972,7 +1108,7 @@ void BDCSVD<MatrixType>::computeSingVecs
// i >= 1, di almost null and zi non null.
// We use a rotation to zero out zi applied to the left of M
template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size)
+void BDCSVD<MatrixType>::deflation43(Eigen::Index firstCol, Eigen::Index shift, Eigen::Index i, Eigen::Index size)
{
using std::abs;
using std::sqrt;
@@ -980,7 +1116,7 @@ void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index
Index start = firstCol + shift;
RealScalar c = m_computed(start, start);
RealScalar s = m_computed(start+i, start);
- RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s));
+ RealScalar r = numext::hypot(c,s);
if (r == Literal(0))
{
m_computed(start+i, start+i) = Literal(0);
@@ -1001,7 +1137,7 @@ void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index
// We apply two rotations to have zj = 0;
// TODO deflation44 is still broken and not properly tested
template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size)
+void BDCSVD<MatrixType>::deflation44(Eigen::Index firstColu , Eigen::Index firstColm, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index i, Eigen::Index j, Eigen::Index size)
{
using std::abs;
using std::sqrt;
@@ -1028,7 +1164,7 @@ void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index fi
}
c/=r;
s/=r;
- m_computed(firstColm + i, firstColm) = r;
+ m_computed(firstColm + i, firstColm) = r;
m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i);
m_computed(firstColm + j, firstColm) = Literal(0);
@@ -1041,7 +1177,7 @@ void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index fi
// acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift)
+void BDCSVD<MatrixType>::deflation(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index k, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
{
using std::sqrt;
using std::abs;
@@ -1102,6 +1238,7 @@ void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index
#endif
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
std::cout << "to be sorted: " << diag.transpose() << "\n\n";
+ std::cout << " : " << col0.transpose() << "\n\n";
#endif
{
// Check for total deflation
@@ -1192,7 +1329,7 @@ void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index
if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag )
{
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "deflation 4.4 with i = " << i << " because " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*diag(i) << "\n";
+ std::cout << "deflation 4.4 with i = " << i << " because " << diag(i) << " - " << diag(i-1) << " == " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*/*diag(i)*/maxDiag << "\n";
#endif
eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted");
deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length);
@@ -1211,7 +1348,6 @@ void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index
#endif
}//end deflation
-#ifndef __CUDACC__
/** \svd_module
*
* \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm
@@ -1224,7 +1360,6 @@ MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
{
return BDCSVD<PlainObject>(*this, computationOptions);
}
-#endif
} // end namespace Eigen
diff --git a/Eigen/src/SVD/JacobiSVD.h b/Eigen/src/SVD/JacobiSVD.h
index 43488b1e0..9d95acdf6 100644
--- a/Eigen/src/SVD/JacobiSVD.h
+++ b/Eigen/src/SVD/JacobiSVD.h
@@ -112,12 +112,12 @@ public:
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- TrOptions = RowsAtCompileTime==1 ? (MatrixType::Options & ~(RowMajor))
- : ColsAtCompileTime==1 ? (MatrixType::Options | RowMajor)
- : MatrixType::Options
+ Options = MatrixType::Options
};
- typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, TrOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime>
- TransposeTypeWithSameStorageOrder;
+
+ typedef typename internal::make_proper_matrix_type<
+ Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
+ >::type TransposeTypeWithSameStorageOrder;
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
{
@@ -202,13 +202,12 @@ public:
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- TrOptions = RowsAtCompileTime==1 ? (MatrixType::Options & ~(RowMajor))
- : ColsAtCompileTime==1 ? (MatrixType::Options | RowMajor)
- : MatrixType::Options
+ Options = MatrixType::Options
};
- typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, TrOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime>
- TransposeTypeWithSameStorageOrder;
+ typedef typename internal::make_proper_matrix_type<
+ Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
+ >::type TransposeTypeWithSameStorageOrder;
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
{
@@ -303,8 +302,9 @@ public:
Options = MatrixType::Options
};
- typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
- TransposeTypeWithSameStorageOrder;
+ typedef typename internal::make_proper_matrix_type<
+ Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
+ >::type TransposeTypeWithSameStorageOrder;
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
{
@@ -425,6 +425,7 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
template<typename _MatrixType, int QRPreconditioner>
struct traits<JacobiSVD<_MatrixType,QRPreconditioner> >
+ : traits<_MatrixType>
{
typedef _MatrixType MatrixType;
};
@@ -584,6 +585,7 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
using Base::m_matrixU;
using Base::m_matrixV;
using Base::m_singularValues;
+ using Base::m_info;
using Base::m_isInitialized;
using Base::m_isAllocated;
using Base::m_usePrescribedThreshold;
@@ -610,7 +612,7 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
};
template<typename MatrixType, int QRPreconditioner>
-void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
+void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions)
{
eigen_assert(rows >= 0 && cols >= 0);
@@ -624,6 +626,7 @@ void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, u
m_rows = rows;
m_cols = cols;
+ m_info = Success;
m_isInitialized = false;
m_isAllocated = true;
m_computationOptions = computationOptions;
@@ -673,7 +676,12 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
// Scaling factor to reduce over/under-flows
- RealScalar scale = matrix.cwiseAbs().maxCoeff();
+ RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>();
+ if (!(numext::isfinite)(scale)) {
+ m_isInitialized = true;
+ m_info = InvalidInput;
+ return *this;
+ }
if(scale==RealScalar(0)) scale = RealScalar(1);
/*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
diff --git a/Eigen/src/SVD/JacobiSVD_LAPACKE.h b/Eigen/src/SVD/JacobiSVD_LAPACKE.h
index 50272154f..ff0516f61 100644
--- a/Eigen/src/SVD/JacobiSVD_LAPACKE.h
+++ b/Eigen/src/SVD/JacobiSVD_LAPACKE.h
@@ -61,9 +61,10 @@ JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPiv
u = (LAPACKE_TYPE*)m_matrixU.data(); \
} else { ldu=1; u=&dummy; }\
MatrixType localV; \
- ldvt = (m_computeFullV) ? internal::convert_index<lapack_int>(m_cols) : (m_computeThinV) ? internal::convert_index<lapack_int>(m_diagSize) : 1; \
+ lapack_int vt_rows = (m_computeFullV) ? internal::convert_index<lapack_int>(m_cols) : (m_computeThinV) ? internal::convert_index<lapack_int>(m_diagSize) : 1; \
if (computeV()) { \
- localV.resize(ldvt, m_cols); \
+ localV.resize(vt_rows, m_cols); \
+ ldvt = internal::convert_index<lapack_int>(localV.outerStride()); \
vt = (LAPACKE_TYPE*)localV.data(); \
} else { ldvt=1; vt=&dummy; }\
Matrix<LAPACKE_RTYPE, Dynamic, Dynamic> superb; superb.resize(m_diagSize, 1); \
diff --git a/Eigen/src/SVD/SVDBase.h b/Eigen/src/SVD/SVDBase.h
index cc90a3b75..bc7ab88b4 100644
--- a/Eigen/src/SVD/SVDBase.h
+++ b/Eigen/src/SVD/SVDBase.h
@@ -17,6 +17,18 @@
#define EIGEN_SVDBASE_H
namespace Eigen {
+
+namespace internal {
+template<typename Derived> struct traits<SVDBase<Derived> >
+ : traits<Derived>
+{
+ typedef MatrixXpr XprKind;
+ typedef SolverStorage StorageKind;
+ typedef int StorageIndex;
+ enum { Flags = 0 };
+};
+}
+
/** \ingroup SVD_Module
*
*
@@ -39,20 +51,26 @@ namespace Eigen {
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
+ *
+ * The status of the computation can be retrived using the \a info() method. Unless \a info() returns \a Success, the results should be not
+ * considered well defined.
*
- * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
+ * If the input matrix has inf or nan coefficients, the result of the computation is undefined, and \a info() will return \a InvalidInput, but the computation is guaranteed to
* terminate in finite (and reasonable) time.
* \sa class BDCSVD, class JacobiSVD
*/
-template<typename Derived>
-class SVDBase
+template<typename Derived> class SVDBase
+ : public SolverBase<SVDBase<Derived> >
{
+public:
+
+ template<typename Derived_>
+ friend struct internal::solve_assertion;
-public:
typedef typename internal::traits<Derived>::MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename MatrixType::StorageIndex StorageIndex;
+ typedef typename Eigen::internal::traits<SVDBase>::StorageIndex StorageIndex;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
@@ -82,7 +100,7 @@ public:
*/
const MatrixUType& matrixU() const
{
- eigen_assert(m_isInitialized && "SVD is not initialized.");
+ _check_compute_assertions();
eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
return m_matrixU;
}
@@ -98,7 +116,7 @@ public:
*/
const MatrixVType& matrixV() const
{
- eigen_assert(m_isInitialized && "SVD is not initialized.");
+ _check_compute_assertions();
eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
return m_matrixV;
}
@@ -110,14 +128,14 @@ public:
*/
const SingularValuesType& singularValues() const
{
- eigen_assert(m_isInitialized && "SVD is not initialized.");
+ _check_compute_assertions();
return m_singularValues;
}
/** \returns the number of singular values that are not exactly 0 */
Index nonzeroSingularValues() const
{
- eigen_assert(m_isInitialized && "SVD is not initialized.");
+ _check_compute_assertions();
return m_nonzeroSingularValues;
}
@@ -130,7 +148,7 @@ public:
inline Index rank() const
{
using std::abs;
- eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
+ _check_compute_assertions();
if(m_singularValues.size()==0) return 0;
RealScalar premultiplied_threshold = numext::maxi<RealScalar>(m_singularValues.coeff(0) * threshold(), (std::numeric_limits<RealScalar>::min)());
Index i = m_nonzeroSingularValues-1;
@@ -180,8 +198,10 @@ public:
RealScalar threshold() const
{
eigen_assert(m_isInitialized || m_usePrescribedThreshold);
+ // this temporary is needed to workaround a MSVC issue
+ Index diagSize = (std::max<Index>)(1,m_diagSize);
return m_usePrescribedThreshold ? m_prescribedThreshold
- : (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon();
+ : RealScalar(diagSize)*NumTraits<Scalar>::epsilon();
}
/** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
@@ -192,6 +212,7 @@ public:
inline Index rows() const { return m_rows; }
inline Index cols() const { return m_cols; }
+ #ifdef EIGEN_PARSED_BY_DOXYGEN
/** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
*
* \param b the right-hand-side of the equation to solve.
@@ -203,32 +224,55 @@ public:
*/
template<typename Rhs>
inline const Solve<Derived, Rhs>
- solve(const MatrixBase<Rhs>& b) const
+ solve(const MatrixBase<Rhs>& b) const;
+ #endif
+
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was successful.
+ */
+ EIGEN_DEVICE_FUNC
+ ComputationInfo info() const
{
eigen_assert(m_isInitialized && "SVD is not initialized.");
- eigen_assert(computeU() && computeV() && "SVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
- return Solve<Derived, Rhs>(derived(), b.derived());
+ return m_info;
}
-
+
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename RhsType, typename DstType>
- EIGEN_DEVICE_FUNC
void _solve_impl(const RhsType &rhs, DstType &dst) const;
+
+ template<bool Conjugate, typename RhsType, typename DstType>
+ void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
#endif
protected:
-
+
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
-
+
+ void _check_compute_assertions() const {
+ eigen_assert(m_isInitialized && "SVD is not initialized.");
+ }
+
+ template<bool Transpose_, typename Rhs>
+ void _check_solve_assertion(const Rhs& b) const {
+ EIGEN_ONLY_USED_FOR_DEBUG(b);
+ _check_compute_assertions();
+ eigen_assert(computeU() && computeV() && "SVDBase::solve(): Both unitaries U and V are required to be computed (thin unitaries suffice).");
+ eigen_assert((Transpose_?cols():rows())==b.rows() && "SVDBase::solve(): invalid number of rows of the right hand side matrix b");
+ }
+
// return true if already allocated
bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
MatrixUType m_matrixU;
MatrixVType m_matrixV;
SingularValuesType m_singularValues;
+ ComputationInfo m_info;
bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
bool m_computeFullU, m_computeThinU;
bool m_computeFullV, m_computeThinV;
@@ -241,9 +285,14 @@ protected:
* Default constructor of SVDBase
*/
SVDBase()
- : m_isInitialized(false),
+ : m_info(Success),
+ m_isInitialized(false),
m_isAllocated(false),
m_usePrescribedThreshold(false),
+ m_computeFullU(false),
+ m_computeThinU(false),
+ m_computeFullV(false),
+ m_computeThinV(false),
m_computationOptions(0),
m_rows(-1), m_cols(-1), m_diagSize(0)
{
@@ -258,17 +307,30 @@ template<typename Derived>
template<typename RhsType, typename DstType>
void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
- eigen_assert(rhs.rows() == rows());
-
// A = U S V^*
// So A^{-1} = V S^{-1} U^*
- Matrix<Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
+ Matrix<typename RhsType::Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
Index l_rank = rank();
tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs;
tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
dst = m_matrixV.leftCols(l_rank) * tmp;
}
+
+template<typename Derived>
+template<bool Conjugate, typename RhsType, typename DstType>
+void SVDBase<Derived>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
+{
+ // A = U S V^*
+ // So A^{-*} = U S^{-1} V^*
+ // And A^{-T} = U_conj S^{-1} V^T
+ Matrix<typename RhsType::Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
+ Index l_rank = rank();
+
+ tmp.noalias() = m_matrixV.leftCols(l_rank).transpose().template conjugateIf<Conjugate>() * rhs;
+ tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
+ dst = m_matrixU.template conjugateIf<!Conjugate>().leftCols(l_rank) * tmp;
+}
#endif
template<typename MatrixType>
@@ -286,6 +348,7 @@ bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computat
m_rows = rows;
m_cols = cols;
+ m_info = Success;
m_isInitialized = false;
m_isAllocated = true;
m_computationOptions = computationOptions;
diff --git a/Eigen/src/SVD/UpperBidiagonalization.h b/Eigen/src/SVD/UpperBidiagonalization.h
index 11ac847e1..997defc47 100644
--- a/Eigen/src/SVD/UpperBidiagonalization.h
+++ b/Eigen/src/SVD/UpperBidiagonalization.h
@@ -127,7 +127,7 @@ void upperbidiagonalization_inplace_unblocked(MatrixType& mat,
.makeHouseholderInPlace(mat.coeffRef(k,k+1), upper_diagonal[k]);
// apply householder transform to remaining part of mat on the left
mat.bottomRightCorner(remainingRows-1, remainingCols)
- .applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).transpose(), mat.coeff(k,k+1), tempData);
+ .applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).adjoint(), mat.coeff(k,k+1), tempData);
}
}
@@ -202,7 +202,7 @@ void upperbidiagonalization_blocked_helper(MatrixType& A,
{
SubColumnType y_k( Y.col(k).tail(remainingCols) );
- // let's use the begining of column k of Y as a temporary vector
+ // let's use the beginning of column k of Y as a temporary vector
SubColumnType tmp( Y.col(k).head(k) );
y_k.noalias() = A.block(k,k+1, remainingRows,remainingCols).adjoint() * v_k; // bottleneck
tmp.noalias() = V_k1.adjoint() * v_k;
@@ -231,7 +231,7 @@ void upperbidiagonalization_blocked_helper(MatrixType& A,
{
SubColumnType x_k ( X.col(k).tail(remainingRows-1) );
- // let's use the begining of column k of X as a temporary vectors
+ // let's use the beginning of column k of X as a temporary vectors
// note that tmp0 and tmp1 overlaps
SubColumnType tmp0 ( X.col(k).head(k) ),
tmp1 ( X.col(k).head(k+1) );