aboutsummaryrefslogtreecommitdiff
path: root/blas/level1_cplx_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'blas/level1_cplx_impl.h')
-rw-r--r--blas/level1_cplx_impl.h127
1 files changed, 127 insertions, 0 deletions
diff --git a/blas/level1_cplx_impl.h b/blas/level1_cplx_impl.h
new file mode 100644
index 000000000..8d6b92829
--- /dev/null
+++ b/blas/level1_cplx_impl.h
@@ -0,0 +1,127 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "common.h"
+
+struct scalar_norm1_op {
+ typedef RealScalar result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op)
+ inline RealScalar operator() (const Scalar& a) const { return internal::norm1(a); }
+};
+namespace Eigen {
+ namespace internal {
+ template<> struct functor_traits<scalar_norm1_op >
+ {
+ enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
+ };
+ }
+}
+
+// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
+// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
+RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx)
+{
+// std::cerr << "__asum " << *n << " " << *incx << "\n";
+ Complex* x = reinterpret_cast<Complex*>(px);
+
+ if(*n<=0) return 0;
+
+ if(*incx==1) return vector(x,*n).unaryExpr<scalar_norm1_op>().sum();
+ else return vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
+}
+
+// computes a dot product of a conjugated vector with another vector.
+int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
+{
+// std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
+
+ if(*n<=0) return 0;
+
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+ Scalar* y = reinterpret_cast<Scalar*>(py);
+ Scalar* res = reinterpret_cast<Scalar*>(pres);
+
+ if(*incx==1 && *incy==1) *res = (vector(x,*n).dot(vector(y,*n)));
+ else if(*incx>0 && *incy>0) *res = (vector(x,*n,*incx).dot(vector(y,*n,*incy)));
+ else if(*incx<0 && *incy>0) *res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,*incy)));
+ else if(*incx>0 && *incy<0) *res = (vector(x,*n,*incx).dot(vector(y,*n,-*incy).reverse()));
+ else if(*incx<0 && *incy<0) *res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,-*incy).reverse()));
+ return 0;
+}
+
+// computes a vector-vector dot product without complex conjugation.
+int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
+{
+// std::cerr << "_dotu " << *n << " " << *incx << " " << *incy << "\n";
+
+ if(*n<=0) return 0;
+
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+ Scalar* y = reinterpret_cast<Scalar*>(py);
+ Scalar* res = reinterpret_cast<Scalar*>(pres);
+
+ if(*incx==1 && *incy==1) *res = (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
+ else if(*incx>0 && *incy>0) *res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
+ else if(*incx<0 && *incy>0) *res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum();
+ else if(*incx>0 && *incy<0) *res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
+ else if(*incx<0 && *incy<0) *res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
+ return 0;
+}
+
+RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx)
+{
+// std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
+ if(*n<=0) return 0;
+
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+
+ if(*incx==1)
+ return vector(x,*n).stableNorm();
+
+ return vector(x,*n,*incx).stableNorm();
+}
+
+int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),rot_)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
+{
+ if(*n<=0) return 0;
+
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+ Scalar* y = reinterpret_cast<Scalar*>(py);
+ RealScalar c = *pc;
+ RealScalar s = *ps;
+
+ StridedVectorType vx(vector(x,*n,std::abs(*incx)));
+ StridedVectorType vy(vector(y,*n,std::abs(*incy)));
+
+ Reverse<StridedVectorType> rvx(vx);
+ Reverse<StridedVectorType> rvy(vy);
+
+ // TODO implement mixed real-scalar rotations
+ if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
+ else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
+ else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c,s));
+
+ return 0;
+}
+
+int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
+{
+ if(*n<=0) return 0;
+
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+ RealScalar alpha = *palpha;
+
+// std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
+
+ if(*incx==1) vector(x,*n) *= alpha;
+ else vector(x,*n,std::abs(*incx)) *= alpha;
+
+ return 0;
+}
+