aboutsummaryrefslogtreecommitdiff
path: root/blas/level2_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'blas/level2_impl.h')
-rw-r--r--blas/level2_impl.h457
1 files changed, 457 insertions, 0 deletions
diff --git a/blas/level2_impl.h b/blas/level2_impl.h
new file mode 100644
index 000000000..7099cf96d
--- /dev/null
+++ b/blas/level2_impl.h
@@ -0,0 +1,457 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "common.h"
+
+int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *incb, RealScalar *pbeta, RealScalar *pc, int *incc)
+{
+ typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int , Scalar *, int, Scalar);
+ static functype func[4];
+
+ static bool init = false;
+ if(!init)
+ {
+ for(int k=0; k<4; ++k)
+ func[k] = 0;
+
+ func[NOTR] = (internal::general_matrix_vector_product<int,Scalar,ColMajor,false,Scalar,false>::run);
+ func[TR ] = (internal::general_matrix_vector_product<int,Scalar,RowMajor,false,Scalar,false>::run);
+ func[ADJ ] = (internal::general_matrix_vector_product<int,Scalar,RowMajor,Conj, Scalar,false>::run);
+
+ init = true;
+ }
+
+ Scalar* a = reinterpret_cast<Scalar*>(pa);
+ Scalar* b = reinterpret_cast<Scalar*>(pb);
+ Scalar* c = reinterpret_cast<Scalar*>(pc);
+ Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
+ Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
+
+ // check arguments
+ int info = 0;
+ if(OP(*opa)==INVALID) info = 1;
+ else if(*m<0) info = 2;
+ else if(*n<0) info = 3;
+ else if(*lda<std::max(1,*m)) info = 6;
+ else if(*incb==0) info = 8;
+ else if(*incc==0) info = 11;
+ if(info)
+ return xerbla_(SCALAR_SUFFIX_UP"GEMV ",&info,6);
+
+ if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
+ return 0;
+
+ int actual_m = *m;
+ int actual_n = *n;
+ if(OP(*opa)!=NOTR)
+ std::swap(actual_m,actual_n);
+
+ Scalar* actual_b = get_compact_vector(b,actual_n,*incb);
+ Scalar* actual_c = get_compact_vector(c,actual_m,*incc);
+
+ if(beta!=Scalar(1))
+ {
+ if(beta==Scalar(0)) vector(actual_c, actual_m).setZero();
+ else vector(actual_c, actual_m) *= beta;
+ }
+
+ int code = OP(*opa);
+ func[code](actual_m, actual_n, a, *lda, actual_b, 1, actual_c, 1, alpha);
+
+ if(actual_b!=b) delete[] actual_b;
+ if(actual_c!=c) delete[] copy_back(actual_c,c,actual_m,*incc);
+
+ return 1;
+}
+
+int EIGEN_BLAS_FUNC(trsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb)
+{
+ typedef void (*functype)(int, const Scalar *, int, Scalar *);
+ static functype func[16];
+
+ static bool init = false;
+ if(!init)
+ {
+ for(int k=0; k<16; ++k)
+ func[k] = 0;
+
+ func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,ColMajor>::run);
+ func[TR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,RowMajor>::run);
+ func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, Conj, RowMajor>::run);
+
+ func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,ColMajor>::run);
+ func[TR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,RowMajor>::run);
+ func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, Conj, RowMajor>::run);
+
+ func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run);
+ func[TR | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run);
+ func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run);
+
+ func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run);
+ func[TR | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run);
+ func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run);
+
+ init = true;
+ }
+
+ Scalar* a = reinterpret_cast<Scalar*>(pa);
+ Scalar* b = reinterpret_cast<Scalar*>(pb);
+
+ int info = 0;
+ if(UPLO(*uplo)==INVALID) info = 1;
+ else if(OP(*opa)==INVALID) info = 2;
+ else if(DIAG(*diag)==INVALID) info = 3;
+ else if(*n<0) info = 4;
+ else if(*lda<std::max(1,*n)) info = 6;
+ else if(*incb==0) info = 8;
+ if(info)
+ return xerbla_(SCALAR_SUFFIX_UP"TRSV ",&info,6);
+
+ Scalar* actual_b = get_compact_vector(b,*n,*incb);
+
+ int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
+ func[code](*n, a, *lda, actual_b);
+
+ if(actual_b!=b) delete[] copy_back(actual_b,b,*n,*incb);
+
+ return 0;
+}
+
+
+
+int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb)
+{
+ typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
+ static functype func[16];
+
+ static bool init = false;
+ if(!init)
+ {
+ for(int k=0; k<16; ++k)
+ func[k] = 0;
+
+ func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,ColMajor>::run);
+ func[TR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,RowMajor>::run);
+ func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0, Scalar,Conj, Scalar,false,RowMajor>::run);
+
+ func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,ColMajor>::run);
+ func[TR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,RowMajor>::run);
+ func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0, Scalar,Conj, Scalar,false,RowMajor>::run);
+
+ func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run);
+ func[TR | (UP << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run);
+ func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run);
+
+ func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run);
+ func[TR | (LO << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run);
+ func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run);
+
+ init = true;
+ }
+
+ Scalar* a = reinterpret_cast<Scalar*>(pa);
+ Scalar* b = reinterpret_cast<Scalar*>(pb);
+
+ int info = 0;
+ if(UPLO(*uplo)==INVALID) info = 1;
+ else if(OP(*opa)==INVALID) info = 2;
+ else if(DIAG(*diag)==INVALID) info = 3;
+ else if(*n<0) info = 4;
+ else if(*lda<std::max(1,*n)) info = 6;
+ else if(*incb==0) info = 8;
+ if(info)
+ return xerbla_(SCALAR_SUFFIX_UP"TRMV ",&info,6);
+
+ if(*n==0)
+ return 1;
+
+ Scalar* actual_b = get_compact_vector(b,*n,*incb);
+ Matrix<Scalar,Dynamic,1> res(*n);
+ res.setZero();
+
+ int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
+ if(code>=16 || func[code]==0)
+ return 0;
+
+ func[code](*n, *n, a, *lda, actual_b, 1, res.data(), 1, Scalar(1));
+
+ copy_back(res.data(),b,*n,*incb);
+ if(actual_b!=b) delete[] actual_b;
+
+ return 0;
+}
+
+/** GBMV performs one of the matrix-vector operations
+ *
+ * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
+ *
+ * where alpha and beta are scalars, x and y are vectors and A is an
+ * m by n band matrix, with kl sub-diagonals and ku super-diagonals.
+ */
+int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *palpha, RealScalar *pa, int *lda,
+ RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
+{
+ Scalar* a = reinterpret_cast<Scalar*>(pa);
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+ Scalar* y = reinterpret_cast<Scalar*>(py);
+ Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
+ Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
+ int coeff_rows = *kl+*ku+1;
+
+ int info = 0;
+ if(OP(*trans)==INVALID) info = 1;
+ else if(*m<0) info = 2;
+ else if(*n<0) info = 3;
+ else if(*kl<0) info = 4;
+ else if(*ku<0) info = 5;
+ else if(*lda<coeff_rows) info = 8;
+ else if(*incx==0) info = 10;
+ else if(*incy==0) info = 13;
+ if(info)
+ return xerbla_(SCALAR_SUFFIX_UP"GBMV ",&info,6);
+
+ if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
+ return 0;
+
+ int actual_m = *m;
+ int actual_n = *n;
+ if(OP(*trans)!=NOTR)
+ std::swap(actual_m,actual_n);
+
+ Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
+ Scalar* actual_y = get_compact_vector(y,actual_m,*incy);
+
+ if(beta!=Scalar(1))
+ {
+ if(beta==Scalar(0)) vector(actual_y, actual_m).setZero();
+ else vector(actual_y, actual_m) *= beta;
+ }
+
+ MatrixType mat_coeffs(a,coeff_rows,*n,*lda);
+
+ int nb = std::min(*n,(*m)+(*ku));
+ for(int j=0; j<nb; ++j)
+ {
+ int start = std::max(0,j - *ku);
+ int end = std::min((*m)-1,j + *kl);
+ int len = end - start + 1;
+ int offset = (*ku) - j + start;
+ if(OP(*trans)==NOTR)
+ vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len);
+ else if(OP(*trans)==TR)
+ actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value();
+ else
+ actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * vector(actual_x+start,len) ).value();
+ }
+
+ if(actual_x!=x) delete[] actual_x;
+ if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy);
+
+ return 0;
+}
+
+#if 0
+/** TBMV performs one of the matrix-vector operations
+ *
+ * x := A*x, or x := A'*x,
+ *
+ * where x is an n element vector and A is an n by n unit, or non-unit,
+ * upper or lower triangular band matrix, with ( k + 1 ) diagonals.
+ */
+int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *opa, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx)
+{
+ Scalar* a = reinterpret_cast<Scalar*>(pa);
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+ int coeff_rows = *k + 1;
+
+ int info = 0;
+ if(UPLO(*uplo)==INVALID) info = 1;
+ else if(OP(*opa)==INVALID) info = 2;
+ else if(DIAG(*diag)==INVALID) info = 3;
+ else if(*n<0) info = 4;
+ else if(*k<0) info = 5;
+ else if(*lda<coeff_rows) info = 7;
+ else if(*incx==0) info = 9;
+ if(info)
+ return xerbla_(SCALAR_SUFFIX_UP"TBMV ",&info,6);
+
+ if(*n==0)
+ return 0;
+
+ int actual_n = *n;
+
+ Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
+
+ MatrixType mat_coeffs(a,coeff_rows,*n,*lda);
+
+ int ku = UPLO(*uplo)==UPPER ? *k : 0;
+ int kl = UPLO(*uplo)==LOWER ? *k : 0;
+
+ for(int j=0; j<*n; ++j)
+ {
+ int start = std::max(0,j - ku);
+ int end = std::min((*m)-1,j + kl);
+ int len = end - start + 1;
+ int offset = (ku) - j + start;
+
+ if(OP(*trans)==NOTR)
+ vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len);
+ else if(OP(*trans)==TR)
+ actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value();
+ else
+ actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * vector(actual_x+start,len) ).value();
+ }
+
+ if(actual_x!=x) delete[] actual_x;
+ if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy);
+
+ return 0;
+}
+#endif
+
+/** DTBSV solves one of the systems of equations
+ *
+ * A*x = b, or A'*x = b,
+ *
+ * where b and x are n element vectors and A is an n by n unit, or
+ * non-unit, upper or lower triangular band matrix, with ( k + 1 )
+ * diagonals.
+ *
+ * No test for singularity or near-singularity is included in this
+ * routine. Such tests must be performed before calling this routine.
+ */
+int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *op, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx)
+{
+ typedef void (*functype)(int, int, const Scalar *, int, Scalar *);
+ static functype func[16];
+
+ static bool init = false;
+ if(!init)
+ {
+ for(int k=0; k<16; ++k)
+ func[k] = 0;
+
+ func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0, Scalar,false,Scalar,ColMajor>::run);
+ func[TR | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0, Scalar,false,Scalar,RowMajor>::run);
+ func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0, Scalar,Conj, Scalar,RowMajor>::run);
+
+ func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0, Scalar,false,Scalar,ColMajor>::run);
+ func[TR | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0, Scalar,false,Scalar,RowMajor>::run);
+ func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0, Scalar,Conj, Scalar,RowMajor>::run);
+
+ func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,ColMajor>::run);
+ func[TR | (UP << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,RowMajor>::run);
+ func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run);
+
+ func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,ColMajor>::run);
+ func[TR | (LO << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,RowMajor>::run);
+ func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run);
+
+ init = true;
+ }
+
+ Scalar* a = reinterpret_cast<Scalar*>(pa);
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+ int coeff_rows = *k+1;
+
+ int info = 0;
+ if(UPLO(*uplo)==INVALID) info = 1;
+ else if(OP(*op)==INVALID) info = 2;
+ else if(DIAG(*diag)==INVALID) info = 3;
+ else if(*n<0) info = 4;
+ else if(*k<0) info = 5;
+ else if(*lda<coeff_rows) info = 7;
+ else if(*incx==0) info = 9;
+ if(info)
+ return xerbla_(SCALAR_SUFFIX_UP"TBSV ",&info,6);
+
+ if(*n==0 || (*k==0 && DIAG(*diag)==UNIT))
+ return 0;
+
+ int actual_n = *n;
+
+ Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
+
+ int code = OP(*op) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
+ if(code>=16 || func[code]==0)
+ return 0;
+
+ func[code](*n, *k, a, *lda, actual_x);
+
+ if(actual_x!=x) delete[] copy_back(actual_x,x,actual_n,*incx);
+
+ return 0;
+}
+
+/** DTPMV performs one of the matrix-vector operations
+ *
+ * x := A*x, or x := A'*x,
+ *
+ * where x is an n element vector and A is an n by n unit, or non-unit,
+ * upper or lower triangular matrix, supplied in packed form.
+ */
+// int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
+// {
+// return 1;
+// }
+
+/** DTPSV solves one of the systems of equations
+ *
+ * A*x = b, or A'*x = b,
+ *
+ * where b and x are n element vectors and A is an n by n unit, or
+ * non-unit, upper or lower triangular matrix, supplied in packed form.
+ *
+ * No test for singularity or near-singularity is included in this
+ * routine. Such tests must be performed before calling this routine.
+ */
+// int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
+// {
+// return 1;
+// }
+
+/** DGER performs the rank 1 operation
+ *
+ * A := alpha*x*y' + A,
+ *
+ * where alpha is a scalar, x is an m element vector, y is an n element
+ * vector and A is an m by n matrix.
+ */
+int EIGEN_BLAS_FUNC(ger)(int *m, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *pa, int *lda)
+{
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+ Scalar* y = reinterpret_cast<Scalar*>(py);
+ Scalar* a = reinterpret_cast<Scalar*>(pa);
+ Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
+
+ int info = 0;
+ if(*m<0) info = 1;
+ else if(*n<0) info = 2;
+ else if(*incx==0) info = 5;
+ else if(*incy==0) info = 7;
+ else if(*lda<std::max(1,*m)) info = 9;
+ if(info)
+ return xerbla_(SCALAR_SUFFIX_UP"GER ",&info,6);
+
+ if(alpha==Scalar(0))
+ return 1;
+
+ Scalar* x_cpy = get_compact_vector(x,*m,*incx);
+ Scalar* y_cpy = get_compact_vector(y,*n,*incy);
+
+ // TODO perform direct calls to underlying implementation
+ matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).adjoint();
+
+ if(x_cpy!=x) delete[] x_cpy;
+ if(y_cpy!=y) delete[] y_cpy;
+
+ return 1;
+}
+
+