aboutsummaryrefslogtreecommitdiff
path: root/doc/CustomizingEigen_NullaryExpr.dox
diff options
context:
space:
mode:
Diffstat (limited to 'doc/CustomizingEigen_NullaryExpr.dox')
-rw-r--r--doc/CustomizingEigen_NullaryExpr.dox86
1 files changed, 86 insertions, 0 deletions
diff --git a/doc/CustomizingEigen_NullaryExpr.dox b/doc/CustomizingEigen_NullaryExpr.dox
new file mode 100644
index 000000000..37c8dcd89
--- /dev/null
+++ b/doc/CustomizingEigen_NullaryExpr.dox
@@ -0,0 +1,86 @@
+namespace Eigen {
+
+/** \page TopicCustomizing_NullaryExpr Matrix manipulation via nullary-expressions
+
+
+The main purpose of the class CwiseNullaryOp is to define \em procedural matrices such as constant or random matrices as returned by the Ones(), Zero(), Constant(), Identity() and Random() methods.
+Nevertheless, with some imagination it is possible to accomplish very sophisticated matrix manipulation with minimal efforts such that \ref TopicNewExpressionType "implementing new expression" is rarely needed.
+
+\section NullaryExpr_Circulant Example 1: circulant matrix
+
+To explore these possibilities let us start with the \em circulant example of the \ref TopicNewExpressionType "implementing new expression" topic.
+Let us recall that a circulant matrix is a matrix where each column is the same as the
+column to the left, except that it is cyclically shifted downwards.
+For example, here is a 4-by-4 circulant matrix:
+\f[ \begin{bmatrix}
+ 1 & 8 & 4 & 2 \\
+ 2 & 1 & 8 & 4 \\
+ 4 & 2 & 1 & 8 \\
+ 8 & 4 & 2 & 1
+\end{bmatrix} \f]
+A circulant matrix is uniquely determined by its first column. We wish
+to write a function \c makeCirculant which, given the first column,
+returns an expression representing the circulant matrix.
+
+For this exercise, the return type of \c makeCirculant will be a CwiseNullaryOp that we need to instantiate with:
+1 - a proper \c circulant_functor storing the input vector and implementing the adequate coefficient accessor \c operator(i,j)
+2 - a template instantiation of class Matrix conveying compile-time information such as the scalar type, sizes, and preferred storage layout.
+
+Calling \c ArgType the type of the input vector, we can construct the equivalent squared Matrix type as follows:
+
+\snippet make_circulant2.cpp square
+
+This little helper structure will help us to implement our \c makeCirculant function as follows:
+
+\snippet make_circulant2.cpp makeCirculant
+
+As usual, our function takes as argument a \c MatrixBase (see this \ref TopicFunctionTakingEigenTypes "page" for more details).
+Then, the CwiseNullaryOp object is constructed through the DenseBase::NullaryExpr static method with the adequate runtime sizes.
+
+Then, we need to implement our \c circulant_functor, which is a straightforward exercise:
+
+\snippet make_circulant2.cpp circulant_func
+
+We are now all set to try our new feature:
+
+\snippet make_circulant2.cpp main
+
+
+If all the fragments are combined, the following output is produced,
+showing that the program works as expected:
+
+\include make_circulant2.out
+
+This implementation of \c makeCirculant is much simpler than \ref TopicNewExpressionType "defining a new expression" from scratch.
+
+
+\section NullaryExpr_Indexing Example 2: indexing rows and columns
+
+The goal here is to mimic MatLab's ability to index a matrix through two vectors of indices referencing the rows and columns to be picked respectively, like this:
+
+\snippet nullary_indexing.out main1
+
+To this end, let us first write a nullary-functor storing references to the input matrix and to the two arrays of indices, and implementing the required \c operator()(i,j):
+
+\snippet nullary_indexing.cpp functor
+
+Then, let's create an \c indexing(A,rows,cols) function creating the nullary expression:
+
+\snippet nullary_indexing.cpp function
+
+Finally, here is an example of how this function can be used:
+
+\snippet nullary_indexing.cpp main1
+
+This straightforward implementation is already quite powerful as the row or column index arrays can also be expressions to perform offsetting, modulo, striding, reverse, etc.
+
+\snippet nullary_indexing.cpp main2
+
+and the output is:
+
+\snippet nullary_indexing.out main2
+
+*/
+
+}
+