aboutsummaryrefslogtreecommitdiff
path: root/test/basicstuff.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'test/basicstuff.cpp')
-rw-r--r--test/basicstuff.cpp215
1 files changed, 215 insertions, 0 deletions
diff --git a/test/basicstuff.cpp b/test/basicstuff.cpp
new file mode 100644
index 000000000..48db531c1
--- /dev/null
+++ b/test/basicstuff.cpp
@@ -0,0 +1,215 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#define EIGEN_NO_STATIC_ASSERT
+
+#include "main.h"
+
+template<typename MatrixType> void basicStuff(const MatrixType& m)
+{
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
+
+ Index rows = m.rows();
+ Index cols = m.cols();
+
+ // this test relies a lot on Random.h, and there's not much more that we can do
+ // to test it, hence I consider that we will have tested Random.h
+ MatrixType m1 = MatrixType::Random(rows, cols),
+ m2 = MatrixType::Random(rows, cols),
+ m3(rows, cols),
+ mzero = MatrixType::Zero(rows, cols),
+ square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
+ VectorType v1 = VectorType::Random(rows),
+ vzero = VectorType::Zero(rows);
+ SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows);
+
+ Scalar x = 0;
+ while(x == Scalar(0)) x = internal::random<Scalar>();
+
+ Index r = internal::random<Index>(0, rows-1),
+ c = internal::random<Index>(0, cols-1);
+
+ m1.coeffRef(r,c) = x;
+ VERIFY_IS_APPROX(x, m1.coeff(r,c));
+ m1(r,c) = x;
+ VERIFY_IS_APPROX(x, m1(r,c));
+ v1.coeffRef(r) = x;
+ VERIFY_IS_APPROX(x, v1.coeff(r));
+ v1(r) = x;
+ VERIFY_IS_APPROX(x, v1(r));
+ v1[r] = x;
+ VERIFY_IS_APPROX(x, v1[r]);
+
+ VERIFY_IS_APPROX( v1, v1);
+ VERIFY_IS_NOT_APPROX( v1, 2*v1);
+ VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1);
+ if(!NumTraits<Scalar>::IsInteger)
+ VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.norm());
+ VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1);
+ VERIFY_IS_APPROX( vzero, v1-v1);
+ VERIFY_IS_APPROX( m1, m1);
+ VERIFY_IS_NOT_APPROX( m1, 2*m1);
+ VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1);
+ VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1);
+ VERIFY_IS_APPROX( mzero, m1-m1);
+
+ // always test operator() on each read-only expression class,
+ // in order to check const-qualifiers.
+ // indeed, if an expression class (here Zero) is meant to be read-only,
+ // hence has no _write() method, the corresponding MatrixBase method (here zero())
+ // should return a const-qualified object so that it is the const-qualified
+ // operator() that gets called, which in turn calls _read().
+ VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
+
+ // now test copying a row-vector into a (column-)vector and conversely.
+ square.col(r) = square.row(r).eval();
+ Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
+ Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
+ rv = square.row(r);
+ cv = square.col(r);
+
+ VERIFY_IS_APPROX(rv, cv.transpose());
+
+ if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
+ {
+ VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
+ }
+
+ if(cols!=1 && rows!=1)
+ {
+ VERIFY_RAISES_ASSERT(m1[0]);
+ VERIFY_RAISES_ASSERT((m1+m1)[0]);
+ }
+
+ VERIFY_IS_APPROX(m3 = m1,m1);
+ MatrixType m4;
+ VERIFY_IS_APPROX(m4 = m1,m1);
+
+ m3.real() = m1.real();
+ VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
+ VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
+
+ // check == / != operators
+ VERIFY(m1==m1);
+ VERIFY(m1!=m2);
+ VERIFY(!(m1==m2));
+ VERIFY(!(m1!=m1));
+ m1 = m2;
+ VERIFY(m1==m2);
+ VERIFY(!(m1!=m2));
+
+ // check automatic transposition
+ sm2.setZero();
+ for(typename MatrixType::Index i=0;i<rows;++i)
+ sm2.col(i) = sm1.row(i);
+ VERIFY_IS_APPROX(sm2,sm1.transpose());
+
+ sm2.setZero();
+ for(typename MatrixType::Index i=0;i<rows;++i)
+ sm2.col(i).noalias() = sm1.row(i);
+ VERIFY_IS_APPROX(sm2,sm1.transpose());
+
+ sm2.setZero();
+ for(typename MatrixType::Index i=0;i<rows;++i)
+ sm2.col(i).noalias() += sm1.row(i);
+ VERIFY_IS_APPROX(sm2,sm1.transpose());
+
+ sm2.setZero();
+ for(typename MatrixType::Index i=0;i<rows;++i)
+ sm2.col(i).noalias() -= sm1.row(i);
+ VERIFY_IS_APPROX(sm2,-sm1.transpose());
+}
+
+template<typename MatrixType> void basicStuffComplex(const MatrixType& m)
+{
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
+
+ Index rows = m.rows();
+ Index cols = m.cols();
+
+ Scalar s1 = internal::random<Scalar>(),
+ s2 = internal::random<Scalar>();
+
+ VERIFY(internal::real(s1)==internal::real_ref(s1));
+ VERIFY(internal::imag(s1)==internal::imag_ref(s1));
+ internal::real_ref(s1) = internal::real(s2);
+ internal::imag_ref(s1) = internal::imag(s2);
+ VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
+ // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.
+
+ RealMatrixType rm1 = RealMatrixType::Random(rows,cols),
+ rm2 = RealMatrixType::Random(rows,cols);
+ MatrixType cm(rows,cols);
+ cm.real() = rm1;
+ cm.imag() = rm2;
+ VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
+ VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
+ rm1.setZero();
+ rm2.setZero();
+ rm1 = cm.real();
+ rm2 = cm.imag();
+ VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
+ VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
+ cm.real().setZero();
+ VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
+ VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
+}
+
+#ifdef EIGEN_TEST_PART_2
+void casting()
+{
+ Matrix4f m = Matrix4f::Random(), m2;
+ Matrix4d n = m.cast<double>();
+ VERIFY(m.isApprox(n.cast<float>()));
+ m2 = m.cast<float>(); // check the specialization when NewType == Type
+ VERIFY(m.isApprox(m2));
+}
+#endif
+
+template <typename Scalar>
+void fixedSizeMatrixConstruction()
+{
+ const Scalar raw[3] = {1,2,3};
+ Matrix<Scalar,3,1> m(raw);
+ Array<Scalar,3,1> a(raw);
+ VERIFY(m(0) == 1);
+ VERIFY(m(1) == 2);
+ VERIFY(m(2) == 3);
+ VERIFY(a(0) == 1);
+ VERIFY(a(1) == 2);
+ VERIFY(a(2) == 3);
+}
+
+void test_basicstuff()
+{
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
+ CALL_SUBTEST_2( basicStuff(Matrix4d()) );
+ CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
+ CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+
+ CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ }
+
+ CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>());
+ CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
+ CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
+
+ CALL_SUBTEST_2(casting());
+}