aboutsummaryrefslogtreecommitdiff
path: root/test/eigen2/eigen2_geometry_with_eigen2_prefix.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'test/eigen2/eigen2_geometry_with_eigen2_prefix.cpp')
-rw-r--r--test/eigen2/eigen2_geometry_with_eigen2_prefix.cpp435
1 files changed, 0 insertions, 435 deletions
diff --git a/test/eigen2/eigen2_geometry_with_eigen2_prefix.cpp b/test/eigen2/eigen2_geometry_with_eigen2_prefix.cpp
deleted file mode 100644
index 12d4a71c3..000000000
--- a/test/eigen2/eigen2_geometry_with_eigen2_prefix.cpp
+++ /dev/null
@@ -1,435 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra. Eigen itself is part of the KDE project.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#define EIGEN2_SUPPORT_STAGE15_RESOLVE_API_CONFLICTS_WARN
-
-#include "main.h"
-#include <Eigen/Geometry>
-#include <Eigen/LU>
-#include <Eigen/SVD>
-
-template<typename Scalar> void geometry(void)
-{
- /* this test covers the following files:
- Cross.h Quaternion.h, Transform.cpp
- */
-
- typedef Matrix<Scalar,2,2> Matrix2;
- typedef Matrix<Scalar,3,3> Matrix3;
- typedef Matrix<Scalar,4,4> Matrix4;
- typedef Matrix<Scalar,2,1> Vector2;
- typedef Matrix<Scalar,3,1> Vector3;
- typedef Matrix<Scalar,4,1> Vector4;
- typedef eigen2_Quaternion<Scalar> Quaternionx;
- typedef eigen2_AngleAxis<Scalar> AngleAxisx;
- typedef eigen2_Transform<Scalar,2> Transform2;
- typedef eigen2_Transform<Scalar,3> Transform3;
- typedef eigen2_Scaling<Scalar,2> Scaling2;
- typedef eigen2_Scaling<Scalar,3> Scaling3;
- typedef eigen2_Translation<Scalar,2> Translation2;
- typedef eigen2_Translation<Scalar,3> Translation3;
-
- Scalar largeEps = test_precision<Scalar>();
- if (ei_is_same_type<Scalar,float>::ret)
- largeEps = 1e-2f;
-
- Vector3 v0 = Vector3::Random(),
- v1 = Vector3::Random(),
- v2 = Vector3::Random();
- Vector2 u0 = Vector2::Random();
- Matrix3 matrot1;
-
- Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
-
- // cross product
- VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).eigen2_dot(v1), Scalar(1));
- Matrix3 m;
- m << v0.normalized(),
- (v0.cross(v1)).normalized(),
- (v0.cross(v1).cross(v0)).normalized();
- VERIFY(m.isUnitary());
-
- // Quaternion: Identity(), setIdentity();
- Quaternionx q1, q2;
- q2.setIdentity();
- VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
- q1.coeffs().setRandom();
- VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
-
- // unitOrthogonal
- VERIFY_IS_MUCH_SMALLER_THAN(u0.unitOrthogonal().eigen2_dot(u0), Scalar(1));
- VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().eigen2_dot(v0), Scalar(1));
- VERIFY_IS_APPROX(u0.unitOrthogonal().norm(), Scalar(1));
- VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1));
-
-
- VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0);
- VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0);
- VERIFY_IS_APPROX(ei_cos(a)*v0.squaredNorm(), v0.eigen2_dot(AngleAxisx(a, v0.unitOrthogonal()) * v0));
- m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint();
- VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized()));
- VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m);
-
- q1 = AngleAxisx(a, v0.normalized());
- q2 = AngleAxisx(a, v1.normalized());
-
- // angular distance
- Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle());
- if (refangle>Scalar(M_PI))
- refangle = Scalar(2)*Scalar(M_PI) - refangle;
-
- if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
- {
- VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps));
- }
-
- // rotation matrix conversion
- VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
- VERIFY_IS_APPROX(q1 * q2 * v2,
- q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
-
- VERIFY( (q2*q1).isApprox(q1*q2, largeEps) || !(q2 * q1 * v2).isApprox(
- q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
-
- q2 = q1.toRotationMatrix();
- VERIFY_IS_APPROX(q1*v1,q2*v1);
-
- matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX())
- * AngleAxisx(Scalar(0.2), Vector3::UnitY())
- * AngleAxisx(Scalar(0.3), Vector3::UnitZ());
- VERIFY_IS_APPROX(matrot1 * v1,
- AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix()
- * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix()
- * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1)));
-
- // angle-axis conversion
- AngleAxisx aa = q1;
- VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
- VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
-
- // from two vector creation
- VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
- VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
-
- // inverse and conjugate
- VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
- VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
-
- // AngleAxis
- VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(),
- Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix());
-
- AngleAxisx aa1;
- m = q1.toRotationMatrix();
- aa1 = m;
- VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(),
- Quaternionx(m).toRotationMatrix());
-
- // Transform
- // TODO complete the tests !
- a = 0;
- while (ei_abs(a)<Scalar(0.1))
- a = ei_random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI));
- q1 = AngleAxisx(a, v0.normalized());
- Transform3 t0, t1, t2;
- // first test setIdentity() and Identity()
- t0.setIdentity();
- VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
- t0.matrix().setZero();
- t0 = Transform3::Identity();
- VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
-
- t0.linear() = q1.toRotationMatrix();
- t1.setIdentity();
- t1.linear() = q1.toRotationMatrix();
-
- v0 << 50, 2, 1;//= ei_random_matrix<Vector3>().cwiseProduct(Vector3(10,2,0.5));
- t0.scale(v0);
- t1.prescale(v0);
-
- VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x());
- //VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x()));
-
- t0.setIdentity();
- t1.setIdentity();
- v1 << 1, 2, 3;
- t0.linear() = q1.toRotationMatrix();
- t0.pretranslate(v0);
- t0.scale(v1);
- t1.linear() = q1.conjugate().toRotationMatrix();
- t1.prescale(v1.cwise().inverse());
- t1.translate(-v0);
-
- VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision<Scalar>()));
-
- t1.fromPositionOrientationScale(v0, q1, v1);
- VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
- VERIFY_IS_APPROX(t1*v1, t0*v1);
-
- t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix());
- t1.setIdentity(); t1.scale(v0).rotate(q1);
- VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
-
- t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1));
- VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
-
- VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix());
- VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix());
-
- // More transform constructors, operator=, operator*=
-
- Matrix3 mat3 = Matrix3::Random();
- Matrix4 mat4;
- mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose();
- Transform3 tmat3(mat3), tmat4(mat4);
- tmat4.matrix()(3,3) = Scalar(1);
- VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix());
-
- Scalar a3 = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
- Vector3 v3 = Vector3::Random().normalized();
- AngleAxisx aa3(a3, v3);
- Transform3 t3(aa3);
- Transform3 t4;
- t4 = aa3;
- VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
- t4.rotate(AngleAxisx(-a3,v3));
- VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
- t4 *= aa3;
- VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
-
- v3 = Vector3::Random();
- Translation3 tv3(v3);
- Transform3 t5(tv3);
- t4 = tv3;
- VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
- t4.translate(-v3);
- VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
- t4 *= tv3;
- VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
-
- Scaling3 sv3(v3);
- Transform3 t6(sv3);
- t4 = sv3;
- VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
- t4.scale(v3.cwise().inverse());
- VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
- t4 *= sv3;
- VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
-
- // matrix * transform
- VERIFY_IS_APPROX(Transform3(t3.matrix()*t4).matrix(), Transform3(t3*t4).matrix());
-
- // chained Transform product
- VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix());
-
- // check that Transform product doesn't have aliasing problems
- t5 = t4;
- t5 = t5*t5;
- VERIFY_IS_APPROX(t5, t4*t4);
-
- // 2D transformation
- Transform2 t20, t21;
- Vector2 v20 = Vector2::Random();
- Vector2 v21 = Vector2::Random();
- for (int k=0; k<2; ++k)
- if (ei_abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3);
- t21.setIdentity();
- t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
- VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
- t21.pretranslate(v20).scale(v21).matrix());
-
- t21.setIdentity();
- t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
- VERIFY( (t20.fromPositionOrientationScale(v20,a,v21)
- * (t21.prescale(v21.cwise().inverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );
-
- // Transform - new API
- // 3D
- t0.setIdentity();
- t0.rotate(q1).scale(v0).translate(v0);
- // mat * scaling and mat * translation
- t1 = (Matrix3(q1) * Scaling3(v0)) * Translation3(v0);
- VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
- // mat * transformation and scaling * translation
- t1 = Matrix3(q1) * (Scaling3(v0) * Translation3(v0));
- VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
-
- t0.setIdentity();
- t0.prerotate(q1).prescale(v0).pretranslate(v0);
- // translation * scaling and transformation * mat
- t1 = (Translation3(v0) * Scaling3(v0)) * Matrix3(q1);
- VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
- // scaling * mat and translation * mat
- t1 = Translation3(v0) * (Scaling3(v0) * Matrix3(q1));
- VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
-
- t0.setIdentity();
- t0.scale(v0).translate(v0).rotate(q1);
- // translation * mat and scaling * transformation
- t1 = Scaling3(v0) * (Translation3(v0) * Matrix3(q1));
- VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
- // transformation * scaling
- t0.scale(v0);
- t1 = t1 * Scaling3(v0);
- VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
- // transformation * translation
- t0.translate(v0);
- t1 = t1 * Translation3(v0);
- VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
- // translation * transformation
- t0.pretranslate(v0);
- t1 = Translation3(v0) * t1;
- VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
-
- // transform * quaternion
- t0.rotate(q1);
- t1 = t1 * q1;
- VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
-
- // translation * quaternion
- t0.translate(v1).rotate(q1);
- t1 = t1 * (Translation3(v1) * q1);
- VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
-
- // scaling * quaternion
- t0.scale(v1).rotate(q1);
- t1 = t1 * (Scaling3(v1) * q1);
- VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
-
- // quaternion * transform
- t0.prerotate(q1);
- t1 = q1 * t1;
- VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
-
- // quaternion * translation
- t0.rotate(q1).translate(v1);
- t1 = t1 * (q1 * Translation3(v1));
- VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
-
- // quaternion * scaling
- t0.rotate(q1).scale(v1);
- t1 = t1 * (q1 * Scaling3(v1));
- VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
-
- // translation * vector
- t0.setIdentity();
- t0.translate(v0);
- VERIFY_IS_APPROX(t0 * v1, Translation3(v0) * v1);
-
- // scaling * vector
- t0.setIdentity();
- t0.scale(v0);
- VERIFY_IS_APPROX(t0 * v1, Scaling3(v0) * v1);
-
- // test transform inversion
- t0.setIdentity();
- t0.translate(v0);
- t0.linear().setRandom();
- VERIFY_IS_APPROX(t0.inverse(Affine), t0.matrix().inverse());
- t0.setIdentity();
- t0.translate(v0).rotate(q1);
- VERIFY_IS_APPROX(t0.inverse(Isometry), t0.matrix().inverse());
-
- // test extract rotation and scaling
- t0.setIdentity();
- t0.translate(v0).rotate(q1).scale(v1);
- VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1);
-
- Matrix3 mat_rotation, mat_scaling;
- t0.setIdentity();
- t0.translate(v0).rotate(q1).scale(v1);
- t0.computeRotationScaling(&mat_rotation, &mat_scaling);
- VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling);
- VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
- VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
- t0.computeScalingRotation(&mat_scaling, &mat_rotation);
- VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation);
- VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
- VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
-
- // test casting
- eigen2_Transform<float,3> t1f = t1.template cast<float>();
- VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1);
- eigen2_Transform<double,3> t1d = t1.template cast<double>();
- VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1);
-
- Translation3 tr1(v0);
- eigen2_Translation<float,3> tr1f = tr1.template cast<float>();
- VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1);
- eigen2_Translation<double,3> tr1d = tr1.template cast<double>();
- VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1);
-
- Scaling3 sc1(v0);
- eigen2_Scaling<float,3> sc1f = sc1.template cast<float>();
- VERIFY_IS_APPROX(sc1f.template cast<Scalar>(),sc1);
- eigen2_Scaling<double,3> sc1d = sc1.template cast<double>();
- VERIFY_IS_APPROX(sc1d.template cast<Scalar>(),sc1);
-
- eigen2_Quaternion<float> q1f = q1.template cast<float>();
- VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
- eigen2_Quaternion<double> q1d = q1.template cast<double>();
- VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
-
- eigen2_AngleAxis<float> aa1f = aa1.template cast<float>();
- VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1);
- eigen2_AngleAxis<double> aa1d = aa1.template cast<double>();
- VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1);
-
- eigen2_Rotation2D<Scalar> r2d1(ei_random<Scalar>());
- eigen2_Rotation2D<float> r2d1f = r2d1.template cast<float>();
- VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1);
- eigen2_Rotation2D<double> r2d1d = r2d1.template cast<double>();
- VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
-
- m = q1;
-// m.col(1) = Vector3(0,ei_random<Scalar>(),ei_random<Scalar>()).normalized();
-// m.col(0) = Vector3(-1,0,0).normalized();
-// m.col(2) = m.col(0).cross(m.col(1));
- #define VERIFY_EULER(I,J,K, X,Y,Z) { \
- Vector3 ea = m.eulerAngles(I,J,K); \
- Matrix3 m1 = Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \
- VERIFY_IS_APPROX(m, m1); \
- VERIFY_IS_APPROX(m, Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \
- }
- VERIFY_EULER(0,1,2, X,Y,Z);
- VERIFY_EULER(0,1,0, X,Y,X);
- VERIFY_EULER(0,2,1, X,Z,Y);
- VERIFY_EULER(0,2,0, X,Z,X);
-
- VERIFY_EULER(1,2,0, Y,Z,X);
- VERIFY_EULER(1,2,1, Y,Z,Y);
- VERIFY_EULER(1,0,2, Y,X,Z);
- VERIFY_EULER(1,0,1, Y,X,Y);
-
- VERIFY_EULER(2,0,1, Z,X,Y);
- VERIFY_EULER(2,0,2, Z,X,Z);
- VERIFY_EULER(2,1,0, Z,Y,X);
- VERIFY_EULER(2,1,2, Z,Y,Z);
-
- // colwise/rowwise cross product
- mat3.setRandom();
- Vector3 vec3 = Vector3::Random();
- Matrix3 mcross;
- int i = ei_random<int>(0,2);
- mcross = mat3.colwise().cross(vec3);
- VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3));
- mcross = mat3.rowwise().cross(vec3);
- VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3));
-
-
-}
-
-void test_eigen2_geometry_with_eigen2_prefix()
-{
- std::cout << "eigen2 support: " << EIGEN2_SUPPORT_STAGE << std::endl;
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( geometry<float>() );
- CALL_SUBTEST_2( geometry<double>() );
- }
-}