aboutsummaryrefslogtreecommitdiff
path: root/test/eigen2/eigen2_sparse_product.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'test/eigen2/eigen2_sparse_product.cpp')
-rw-r--r--test/eigen2/eigen2_sparse_product.cpp115
1 files changed, 115 insertions, 0 deletions
diff --git a/test/eigen2/eigen2_sparse_product.cpp b/test/eigen2/eigen2_sparse_product.cpp
new file mode 100644
index 000000000..d28e76dff
--- /dev/null
+++ b/test/eigen2/eigen2_sparse_product.cpp
@@ -0,0 +1,115 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "sparse.h"
+
+template<typename SparseMatrixType> void sparse_product(const SparseMatrixType& ref)
+{
+ const int rows = ref.rows();
+ const int cols = ref.cols();
+ typedef typename SparseMatrixType::Scalar Scalar;
+ enum { Flags = SparseMatrixType::Flags };
+
+ double density = std::max(8./(rows*cols), 0.01);
+ typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
+ typedef Matrix<Scalar,Dynamic,1> DenseVector;
+
+ // test matrix-matrix product
+ {
+ DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
+ DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows);
+ DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows);
+ DenseMatrix dm4 = DenseMatrix::Zero(rows, rows);
+ SparseMatrixType m2(rows, rows);
+ SparseMatrixType m3(rows, rows);
+ SparseMatrixType m4(rows, rows);
+ initSparse<Scalar>(density, refMat2, m2);
+ initSparse<Scalar>(density, refMat3, m3);
+ initSparse<Scalar>(density, refMat4, m4);
+ VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3);
+ VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
+ VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
+ VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
+
+ // sparse * dense
+ VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
+ VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose());
+ VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3, refMat4=refMat2.transpose()*refMat3);
+ VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
+
+ // dense * sparse
+ VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3);
+ VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
+ VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
+ VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
+
+ VERIFY_IS_APPROX(m3=m3*m3, refMat3=refMat3*refMat3);
+ }
+
+ // test matrix - diagonal product
+ if(false) // it compiles, but the precision is terrible. probably doesn't matter in this branch....
+ {
+ DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
+ DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
+ DiagonalMatrix<DenseVector> d1(DenseVector::Random(rows));
+ SparseMatrixType m2(rows, rows);
+ SparseMatrixType m3(rows, rows);
+ initSparse<Scalar>(density, refM2, m2);
+ initSparse<Scalar>(density, refM3, m3);
+ VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1);
+ VERIFY_IS_APPROX(m3=m2.transpose()*d1, refM3=refM2.transpose()*d1);
+ VERIFY_IS_APPROX(m3=d1*m2, refM3=d1*refM2);
+ VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1 * refM2.transpose());
+ }
+
+ // test self adjoint products
+ {
+ DenseMatrix b = DenseMatrix::Random(rows, rows);
+ DenseMatrix x = DenseMatrix::Random(rows, rows);
+ DenseMatrix refX = DenseMatrix::Random(rows, rows);
+ DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
+ DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
+ DenseMatrix refS = DenseMatrix::Zero(rows, rows);
+ SparseMatrixType mUp(rows, rows);
+ SparseMatrixType mLo(rows, rows);
+ SparseMatrixType mS(rows, rows);
+ do {
+ initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
+ } while (refUp.isZero());
+ refLo = refUp.transpose().conjugate();
+ mLo = mUp.transpose().conjugate();
+ refS = refUp + refLo;
+ refS.diagonal() *= 0.5;
+ mS = mUp + mLo;
+ for (int k=0; k<mS.outerSize(); ++k)
+ for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it)
+ if (it.index() == k)
+ it.valueRef() *= 0.5;
+
+ VERIFY_IS_APPROX(refS.adjoint(), refS);
+ VERIFY_IS_APPROX(mS.transpose().conjugate(), mS);
+ VERIFY_IS_APPROX(mS, refS);
+ VERIFY_IS_APPROX(x=mS*b, refX=refS*b);
+ VERIFY_IS_APPROX(x=mUp.template marked<UpperTriangular|SelfAdjoint>()*b, refX=refS*b);
+ VERIFY_IS_APPROX(x=mLo.template marked<LowerTriangular|SelfAdjoint>()*b, refX=refS*b);
+ VERIFY_IS_APPROX(x=mS.template marked<SelfAdjoint>()*b, refX=refS*b);
+ }
+
+}
+
+void test_eigen2_sparse_product()
+{
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST_1( sparse_product(SparseMatrix<double>(8, 8)) );
+ CALL_SUBTEST_2( sparse_product(SparseMatrix<std::complex<double> >(16, 16)) );
+ CALL_SUBTEST_1( sparse_product(SparseMatrix<double>(33, 33)) );
+
+ CALL_SUBTEST_3( sparse_product(DynamicSparseMatrix<double>(8, 8)) );
+ }
+}