aboutsummaryrefslogtreecommitdiff
path: root/test/eigen2/product.h
diff options
context:
space:
mode:
Diffstat (limited to 'test/eigen2/product.h')
-rw-r--r--test/eigen2/product.h129
1 files changed, 0 insertions, 129 deletions
diff --git a/test/eigen2/product.h b/test/eigen2/product.h
deleted file mode 100644
index ae1b4bae4..000000000
--- a/test/eigen2/product.h
+++ /dev/null
@@ -1,129 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra. Eigen itself is part of the KDE project.
-//
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#include "main.h"
-#include <Eigen/Array>
-#include <Eigen/QR>
-
-template<typename Derived1, typename Derived2>
-bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = precision<typename Derived1::RealScalar>())
-{
- return !((m1-m2).cwise().abs2().maxCoeff() < epsilon * epsilon
- * std::max(m1.cwise().abs2().maxCoeff(), m2.cwise().abs2().maxCoeff()));
-}
-
-template<typename MatrixType> void product(const MatrixType& m)
-{
- /* this test covers the following files:
- Identity.h Product.h
- */
-
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::FloatingPoint FloatingPoint;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType;
- typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType;
- typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
- MatrixType::Options^RowMajor> OtherMajorMatrixType;
-
- int rows = m.rows();
- int cols = m.cols();
-
- // this test relies a lot on Random.h, and there's not much more that we can do
- // to test it, hence I consider that we will have tested Random.h
- MatrixType m1 = MatrixType::Random(rows, cols),
- m2 = MatrixType::Random(rows, cols),
- m3(rows, cols);
- RowSquareMatrixType
- identity = RowSquareMatrixType::Identity(rows, rows),
- square = RowSquareMatrixType::Random(rows, rows),
- res = RowSquareMatrixType::Random(rows, rows);
- ColSquareMatrixType
- square2 = ColSquareMatrixType::Random(cols, cols),
- res2 = ColSquareMatrixType::Random(cols, cols);
- RowVectorType v1 = RowVectorType::Random(rows);
- ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
- OtherMajorMatrixType tm1 = m1;
-
- Scalar s1 = ei_random<Scalar>();
-
- int r = ei_random<int>(0, rows-1),
- c = ei_random<int>(0, cols-1);
-
- // begin testing Product.h: only associativity for now
- // (we use Transpose.h but this doesn't count as a test for it)
-
- VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
- m3 = m1;
- m3 *= m1.transpose() * m2;
- VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
- VERIFY_IS_APPROX(m3, m1.lazy() * (m1.transpose()*m2));
-
- // continue testing Product.h: distributivity
- VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2);
- VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2);
-
- // continue testing Product.h: compatibility with ScalarMultiple.h
- VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1);
- VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1));
-
- // again, test operator() to check const-qualification
- s1 += (square.lazy() * m1)(r,c);
-
- // test Product.h together with Identity.h
- VERIFY_IS_APPROX(v1, identity*v1);
- VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity);
- // again, test operator() to check const-qualification
- VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
-
- if (rows!=cols)
- VERIFY_RAISES_ASSERT(m3 = m1*m1);
-
- // test the previous tests were not screwed up because operator* returns 0
- // (we use the more accurate default epsilon)
- if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
- {
- VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1));
- }
-
- // test optimized operator+= path
- res = square;
- res += (m1 * m2.transpose()).lazy();
- VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
- if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
- {
- VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
- }
- vcres = vc2;
- vcres += (m1.transpose() * v1).lazy();
- VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
- tm1 = m1;
- VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
- VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);
-
- // test submatrix and matrix/vector product
- for (int i=0; i<rows; ++i)
- res.row(i) = m1.row(i) * m2.transpose();
- VERIFY_IS_APPROX(res, m1 * m2.transpose());
- // the other way round:
- for (int i=0; i<rows; ++i)
- res.col(i) = m1 * m2.transpose().col(i);
- VERIFY_IS_APPROX(res, m1 * m2.transpose());
-
- res2 = square2;
- res2 += (m1.transpose() * m2).lazy();
- VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
-
- if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
- {
- VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1));
- }
-}
-