aboutsummaryrefslogtreecommitdiff
path: root/test/geo_quaternion.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'test/geo_quaternion.cpp')
-rw-r--r--test/geo_quaternion.cpp255
1 files changed, 255 insertions, 0 deletions
diff --git a/test/geo_quaternion.cpp b/test/geo_quaternion.cpp
new file mode 100644
index 000000000..6e6922864
--- /dev/null
+++ b/test/geo_quaternion.cpp
@@ -0,0 +1,255 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+#include <Eigen/Geometry>
+#include <Eigen/LU>
+#include <Eigen/SVD>
+
+template<typename T> T bounded_acos(T v)
+{
+ using std::acos;
+ using std::min;
+ using std::max;
+ return acos((max)(T(-1),(min)(v,T(1))));
+}
+
+template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1)
+{
+ typedef typename QuatType::Scalar Scalar;
+ typedef Matrix<Scalar,3,1> VectorType;
+ typedef AngleAxis<Scalar> AA;
+
+ Scalar largeEps = test_precision<Scalar>();
+
+ Scalar theta_tot = AA(q1*q0.inverse()).angle();
+ if(theta_tot>M_PI)
+ theta_tot = 2.*M_PI-theta_tot;
+ for(Scalar t=0; t<=1.001; t+=0.1)
+ {
+ QuatType q = q0.slerp(t,q1);
+ Scalar theta = AA(q*q0.inverse()).angle();
+ VERIFY(internal::abs(q.norm() - 1) < largeEps);
+ if(theta_tot==0) VERIFY(theta_tot==0);
+ else VERIFY(internal::abs(theta/theta_tot - t) < largeEps);
+ }
+}
+
+template<typename Scalar, int Options> void quaternion(void)
+{
+ /* this test covers the following files:
+ Quaternion.h
+ */
+
+ typedef Matrix<Scalar,3,3> Matrix3;
+ typedef Matrix<Scalar,3,1> Vector3;
+ typedef Matrix<Scalar,4,1> Vector4;
+ typedef Quaternion<Scalar,Options> Quaternionx;
+ typedef AngleAxis<Scalar> AngleAxisx;
+
+ Scalar largeEps = test_precision<Scalar>();
+ if (internal::is_same<Scalar,float>::value)
+ largeEps = 1e-3f;
+
+ Scalar eps = internal::random<Scalar>() * Scalar(1e-2);
+
+ Vector3 v0 = Vector3::Random(),
+ v1 = Vector3::Random(),
+ v2 = Vector3::Random(),
+ v3 = Vector3::Random();
+
+ Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)),
+ b = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
+
+ // Quaternion: Identity(), setIdentity();
+ Quaternionx q1, q2;
+ q2.setIdentity();
+ VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
+ q1.coeffs().setRandom();
+ VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
+
+ // concatenation
+ q1 *= q2;
+
+ q1 = AngleAxisx(a, v0.normalized());
+ q2 = AngleAxisx(a, v1.normalized());
+
+ // angular distance
+ Scalar refangle = internal::abs(AngleAxisx(q1.inverse()*q2).angle());
+ if (refangle>Scalar(M_PI))
+ refangle = Scalar(2)*Scalar(M_PI) - refangle;
+
+ if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
+ {
+ VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(q1.angularDistance(q2) - refangle), Scalar(1));
+ }
+
+ // rotation matrix conversion
+ VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
+ VERIFY_IS_APPROX(q1 * q2 * v2,
+ q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
+
+ VERIFY( (q2*q1).isApprox(q1*q2, largeEps)
+ || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
+
+ q2 = q1.toRotationMatrix();
+ VERIFY_IS_APPROX(q1*v1,q2*v1);
+
+
+ // angle-axis conversion
+ AngleAxisx aa = AngleAxisx(q1);
+ VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
+
+ // Do not execute the test if the rotation angle is almost zero, or
+ // the rotation axis and v1 are almost parallel.
+ if (internal::abs(aa.angle()) > 5*test_precision<Scalar>()
+ && (aa.axis() - v1.normalized()).norm() < 1.99
+ && (aa.axis() + v1.normalized()).norm() < 1.99)
+ {
+ VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
+ }
+
+ // from two vector creation
+ VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized());
+ VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized());
+ VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized());
+ if (internal::is_same<Scalar,double>::value)
+ {
+ v3 = (v1.array()+eps).matrix();
+ VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized());
+ VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized());
+ }
+
+ // from two vector creation static function
+ VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized());
+ VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized());
+ VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized());
+ if (internal::is_same<Scalar,double>::value)
+ {
+ v3 = (v1.array()+eps).matrix();
+ VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized());
+ VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized());
+ }
+
+ // inverse and conjugate
+ VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
+ VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
+
+ // test casting
+ Quaternion<float> q1f = q1.template cast<float>();
+ VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
+ Quaternion<double> q1d = q1.template cast<double>();
+ VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
+
+ // test bug 369 - improper alignment.
+ Quaternionx *q = new Quaternionx;
+ delete q;
+
+ q1 = AngleAxisx(a, v0.normalized());
+ q2 = AngleAxisx(b, v1.normalized());
+ check_slerp(q1,q2);
+
+ q1 = AngleAxisx(b, v1.normalized());
+ q2 = AngleAxisx(b+M_PI, v1.normalized());
+ check_slerp(q1,q2);
+
+ q1 = AngleAxisx(b, v1.normalized());
+ q2 = AngleAxisx(-b, -v1.normalized());
+ check_slerp(q1,q2);
+
+ q1.coeffs() = Vector4::Random().normalized();
+ q2.coeffs() = -q1.coeffs();
+ check_slerp(q1,q2);
+}
+
+template<typename Scalar> void mapQuaternion(void){
+ typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA;
+ typedef Map<Quaternion<Scalar> > MQuaternionUA;
+ typedef Map<const Quaternion<Scalar> > MCQuaternionUA;
+ typedef Quaternion<Scalar> Quaternionx;
+
+ EIGEN_ALIGN16 Scalar array1[4];
+ EIGEN_ALIGN16 Scalar array2[4];
+ EIGEN_ALIGN16 Scalar array3[4+1];
+ Scalar* array3unaligned = array3+1;
+
+// std::cerr << array1 << " " << array2 << " " << array3 << "\n";
+ MQuaternionA(array1).coeffs().setRandom();
+ (MQuaternionA(array2)) = MQuaternionA(array1);
+ (MQuaternionUA(array3unaligned)) = MQuaternionA(array1);
+
+ Quaternionx q1 = MQuaternionA(array1);
+ Quaternionx q2 = MQuaternionA(array2);
+ Quaternionx q3 = MQuaternionUA(array3unaligned);
+ Quaternionx q4 = MCQuaternionUA(array3unaligned);
+
+ VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
+ VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
+ VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs());
+ #ifdef EIGEN_VECTORIZE
+ if(internal::packet_traits<Scalar>::Vectorizable)
+ VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned)));
+ #endif
+}
+
+template<typename Scalar> void quaternionAlignment(void){
+ typedef Quaternion<Scalar,AutoAlign> QuaternionA;
+ typedef Quaternion<Scalar,DontAlign> QuaternionUA;
+
+ EIGEN_ALIGN16 Scalar array1[4];
+ EIGEN_ALIGN16 Scalar array2[4];
+ EIGEN_ALIGN16 Scalar array3[4+1];
+ Scalar* arrayunaligned = array3+1;
+
+ QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA;
+ QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA;
+ QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA;
+
+ q1->coeffs().setRandom();
+ *q2 = *q1;
+ *q3 = *q1;
+
+ VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs());
+ VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs());
+ #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY
+ if(internal::packet_traits<Scalar>::Vectorizable)
+ VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA));
+ #endif
+}
+
+template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
+{
+ // there's a lot that we can't test here while still having this test compile!
+ // the only possible approach would be to run a script trying to compile stuff and checking that it fails.
+ // CMake can help with that.
+
+ // verify that map-to-const don't have LvalueBit
+ typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
+ VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) );
+ VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) );
+ VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) );
+ VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
+}
+
+void test_geo_quaternion()
+{
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST_1(( quaternion<float,AutoAlign>() ));
+ CALL_SUBTEST_1( check_const_correctness(Quaternionf()) );
+ CALL_SUBTEST_2(( quaternion<double,AutoAlign>() ));
+ CALL_SUBTEST_2( check_const_correctness(Quaterniond()) );
+ CALL_SUBTEST_3(( quaternion<float,DontAlign>() ));
+ CALL_SUBTEST_4(( quaternion<double,DontAlign>() ));
+ CALL_SUBTEST_5(( quaternionAlignment<float>() ));
+ CALL_SUBTEST_6(( quaternionAlignment<double>() ));
+ CALL_SUBTEST_1( mapQuaternion<float>() );
+ CALL_SUBTEST_2( mapQuaternion<double>() );
+ }
+}