aboutsummaryrefslogtreecommitdiff
path: root/test/linearstructure.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'test/linearstructure.cpp')
-rw-r--r--test/linearstructure.cpp83
1 files changed, 83 insertions, 0 deletions
diff --git a/test/linearstructure.cpp b/test/linearstructure.cpp
new file mode 100644
index 000000000..fd071c995
--- /dev/null
+++ b/test/linearstructure.cpp
@@ -0,0 +1,83 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+
+template<typename MatrixType> void linearStructure(const MatrixType& m)
+{
+ /* this test covers the following files:
+ CwiseUnaryOp.h, CwiseBinaryOp.h, SelfCwiseBinaryOp.h
+ */
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+
+ Index rows = m.rows();
+ Index cols = m.cols();
+
+ // this test relies a lot on Random.h, and there's not much more that we can do
+ // to test it, hence I consider that we will have tested Random.h
+ MatrixType m1 = MatrixType::Random(rows, cols),
+ m2 = MatrixType::Random(rows, cols),
+ m3(rows, cols);
+
+ Scalar s1 = internal::random<Scalar>();
+ while (internal::abs(s1)<1e-3) s1 = internal::random<Scalar>();
+
+ Index r = internal::random<Index>(0, rows-1),
+ c = internal::random<Index>(0, cols-1);
+
+ VERIFY_IS_APPROX(-(-m1), m1);
+ VERIFY_IS_APPROX(m1+m1, 2*m1);
+ VERIFY_IS_APPROX(m1+m2-m1, m2);
+ VERIFY_IS_APPROX(-m2+m1+m2, m1);
+ VERIFY_IS_APPROX(m1*s1, s1*m1);
+ VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2);
+ VERIFY_IS_APPROX((-m1+m2)*s1, -s1*m1+s1*m2);
+ m3 = m2; m3 += m1;
+ VERIFY_IS_APPROX(m3, m1+m2);
+ m3 = m2; m3 -= m1;
+ VERIFY_IS_APPROX(m3, m2-m1);
+ m3 = m2; m3 *= s1;
+ VERIFY_IS_APPROX(m3, s1*m2);
+ if(!NumTraits<Scalar>::IsInteger)
+ {
+ m3 = m2; m3 /= s1;
+ VERIFY_IS_APPROX(m3, m2/s1);
+ }
+
+ // again, test operator() to check const-qualification
+ VERIFY_IS_APPROX((-m1)(r,c), -(m1(r,c)));
+ VERIFY_IS_APPROX((m1-m2)(r,c), (m1(r,c))-(m2(r,c)));
+ VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
+ VERIFY_IS_APPROX((s1*m1)(r,c), s1*(m1(r,c)));
+ VERIFY_IS_APPROX((m1*s1)(r,c), (m1(r,c))*s1);
+ if(!NumTraits<Scalar>::IsInteger)
+ VERIFY_IS_APPROX((m1/s1)(r,c), (m1(r,c))/s1);
+
+ // use .block to disable vectorization and compare to the vectorized version
+ VERIFY_IS_APPROX(m1+m1.block(0,0,rows,cols), m1+m1);
+ VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), m1.cwiseProduct(m1));
+ VERIFY_IS_APPROX(m1 - m1.block(0,0,rows,cols), m1 - m1);
+ VERIFY_IS_APPROX(m1.block(0,0,rows,cols) * s1, m1 * s1);
+}
+
+void test_linearstructure()
+{
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST_1( linearStructure(Matrix<float, 1, 1>()) );
+ CALL_SUBTEST_2( linearStructure(Matrix2f()) );
+ CALL_SUBTEST_3( linearStructure(Vector3d()) );
+ CALL_SUBTEST_4( linearStructure(Matrix4d()) );
+ CALL_SUBTEST_5( linearStructure(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
+ CALL_SUBTEST_6( linearStructure(MatrixXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ CALL_SUBTEST_7( linearStructure(MatrixXi (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ CALL_SUBTEST_8( linearStructure(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
+ CALL_SUBTEST_9( linearStructure(ArrayXXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ }
+}