aboutsummaryrefslogtreecommitdiff
path: root/test/lu.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'test/lu.cpp')
-rw-r--r--test/lu.cpp207
1 files changed, 207 insertions, 0 deletions
diff --git a/test/lu.cpp b/test/lu.cpp
new file mode 100644
index 000000000..6cbcb0a95
--- /dev/null
+++ b/test/lu.cpp
@@ -0,0 +1,207 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+#include <Eigen/LU>
+using namespace std;
+
+template<typename MatrixType> void lu_non_invertible()
+{
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ /* this test covers the following files:
+ LU.h
+ */
+ Index rows, cols, cols2;
+ if(MatrixType::RowsAtCompileTime==Dynamic)
+ {
+ rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
+ }
+ else
+ {
+ rows = MatrixType::RowsAtCompileTime;
+ }
+ if(MatrixType::ColsAtCompileTime==Dynamic)
+ {
+ cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
+ cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE);
+ }
+ else
+ {
+ cols2 = cols = MatrixType::ColsAtCompileTime;
+ }
+
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime
+ };
+ typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType;
+ typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType;
+ typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime>
+ CMatrixType;
+ typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime>
+ RMatrixType;
+
+ Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
+
+ // The image of the zero matrix should consist of a single (zero) column vector
+ VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1));
+
+ MatrixType m1(rows, cols), m3(rows, cols2);
+ CMatrixType m2(cols, cols2);
+ createRandomPIMatrixOfRank(rank, rows, cols, m1);
+
+ FullPivLU<MatrixType> lu;
+
+ // The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank
+ // of singular values are either 0 or 1.
+ // So it's not clear at all that the epsilon should play any role there.
+ lu.setThreshold(RealScalar(0.01));
+ lu.compute(m1);
+
+ MatrixType u(rows,cols);
+ u = lu.matrixLU().template triangularView<Upper>();
+ RMatrixType l = RMatrixType::Identity(rows,rows);
+ l.block(0,0,rows,(std::min)(rows,cols)).template triangularView<StrictlyLower>()
+ = lu.matrixLU().block(0,0,rows,(std::min)(rows,cols));
+
+ VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u);
+
+ KernelMatrixType m1kernel = lu.kernel();
+ ImageMatrixType m1image = lu.image(m1);
+
+ VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
+ VERIFY(rank == lu.rank());
+ VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
+ VERIFY(!lu.isInjective());
+ VERIFY(!lu.isInvertible());
+ VERIFY(!lu.isSurjective());
+ VERIFY((m1 * m1kernel).isMuchSmallerThan(m1));
+ VERIFY(m1image.fullPivLu().rank() == rank);
+ VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image);
+
+ m2 = CMatrixType::Random(cols,cols2);
+ m3 = m1*m2;
+ m2 = CMatrixType::Random(cols,cols2);
+ // test that the code, which does resize(), may be applied to an xpr
+ m2.block(0,0,m2.rows(),m2.cols()) = lu.solve(m3);
+ VERIFY_IS_APPROX(m3, m1*m2);
+}
+
+template<typename MatrixType> void lu_invertible()
+{
+ /* this test covers the following files:
+ LU.h
+ */
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+ int size = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
+
+ MatrixType m1(size, size), m2(size, size), m3(size, size);
+ FullPivLU<MatrixType> lu;
+ lu.setThreshold(RealScalar(0.01));
+ do {
+ m1 = MatrixType::Random(size,size);
+ lu.compute(m1);
+ } while(!lu.isInvertible());
+
+ VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
+ VERIFY(0 == lu.dimensionOfKernel());
+ VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector
+ VERIFY(size == lu.rank());
+ VERIFY(lu.isInjective());
+ VERIFY(lu.isSurjective());
+ VERIFY(lu.isInvertible());
+ VERIFY(lu.image(m1).fullPivLu().isInvertible());
+ m3 = MatrixType::Random(size,size);
+ m2 = lu.solve(m3);
+ VERIFY_IS_APPROX(m3, m1*m2);
+ VERIFY_IS_APPROX(m2, lu.inverse()*m3);
+}
+
+template<typename MatrixType> void lu_partial_piv()
+{
+ /* this test covers the following files:
+ PartialPivLU.h
+ */
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+ Index rows = internal::random<Index>(1,4);
+ Index cols = rows;
+
+ MatrixType m1(cols, rows);
+ m1.setRandom();
+ PartialPivLU<MatrixType> plu(m1);
+
+ VERIFY_IS_APPROX(m1, plu.reconstructedMatrix());
+}
+
+template<typename MatrixType> void lu_verify_assert()
+{
+ MatrixType tmp;
+
+ FullPivLU<MatrixType> lu;
+ VERIFY_RAISES_ASSERT(lu.matrixLU())
+ VERIFY_RAISES_ASSERT(lu.permutationP())
+ VERIFY_RAISES_ASSERT(lu.permutationQ())
+ VERIFY_RAISES_ASSERT(lu.kernel())
+ VERIFY_RAISES_ASSERT(lu.image(tmp))
+ VERIFY_RAISES_ASSERT(lu.solve(tmp))
+ VERIFY_RAISES_ASSERT(lu.determinant())
+ VERIFY_RAISES_ASSERT(lu.rank())
+ VERIFY_RAISES_ASSERT(lu.dimensionOfKernel())
+ VERIFY_RAISES_ASSERT(lu.isInjective())
+ VERIFY_RAISES_ASSERT(lu.isSurjective())
+ VERIFY_RAISES_ASSERT(lu.isInvertible())
+ VERIFY_RAISES_ASSERT(lu.inverse())
+
+ PartialPivLU<MatrixType> plu;
+ VERIFY_RAISES_ASSERT(plu.matrixLU())
+ VERIFY_RAISES_ASSERT(plu.permutationP())
+ VERIFY_RAISES_ASSERT(plu.solve(tmp))
+ VERIFY_RAISES_ASSERT(plu.determinant())
+ VERIFY_RAISES_ASSERT(plu.inverse())
+}
+
+void test_lu()
+{
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST_1( lu_non_invertible<Matrix3f>() );
+ CALL_SUBTEST_1( lu_verify_assert<Matrix3f>() );
+
+ CALL_SUBTEST_2( (lu_non_invertible<Matrix<double, 4, 6> >()) );
+ CALL_SUBTEST_2( (lu_verify_assert<Matrix<double, 4, 6> >()) );
+
+ CALL_SUBTEST_3( lu_non_invertible<MatrixXf>() );
+ CALL_SUBTEST_3( lu_invertible<MatrixXf>() );
+ CALL_SUBTEST_3( lu_verify_assert<MatrixXf>() );
+
+ CALL_SUBTEST_4( lu_non_invertible<MatrixXd>() );
+ CALL_SUBTEST_4( lu_invertible<MatrixXd>() );
+ CALL_SUBTEST_4( lu_partial_piv<MatrixXd>() );
+ CALL_SUBTEST_4( lu_verify_assert<MatrixXd>() );
+
+ CALL_SUBTEST_5( lu_non_invertible<MatrixXcf>() );
+ CALL_SUBTEST_5( lu_invertible<MatrixXcf>() );
+ CALL_SUBTEST_5( lu_verify_assert<MatrixXcf>() );
+
+ CALL_SUBTEST_6( lu_non_invertible<MatrixXcd>() );
+ CALL_SUBTEST_6( lu_invertible<MatrixXcd>() );
+ CALL_SUBTEST_6( lu_partial_piv<MatrixXcd>() );
+ CALL_SUBTEST_6( lu_verify_assert<MatrixXcd>() );
+
+ CALL_SUBTEST_7(( lu_non_invertible<Matrix<float,Dynamic,16> >() ));
+
+ // Test problem size constructors
+ CALL_SUBTEST_9( PartialPivLU<MatrixXf>(10) );
+ CALL_SUBTEST_9( FullPivLU<MatrixXf>(10, 20); );
+ }
+}