aboutsummaryrefslogtreecommitdiff
path: root/test/product.h
diff options
context:
space:
mode:
Diffstat (limited to 'test/product.h')
-rw-r--r--test/product.h143
1 files changed, 143 insertions, 0 deletions
diff --git a/test/product.h b/test/product.h
new file mode 100644
index 000000000..4aa9fd56d
--- /dev/null
+++ b/test/product.h
@@ -0,0 +1,143 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+#include <Eigen/QR>
+
+template<typename Derived1, typename Derived2>
+bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision())
+{
+ return !((m1-m2).cwiseAbs2().maxCoeff() < epsilon * epsilon
+ * (std::max)(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff()));
+}
+
+template<typename MatrixType> void product(const MatrixType& m)
+{
+ /* this test covers the following files:
+ Identity.h Product.h
+ */
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::NonInteger NonInteger;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType;
+ typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType;
+ typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
+ MatrixType::Flags&RowMajorBit?ColMajor:RowMajor> OtherMajorMatrixType;
+
+ Index rows = m.rows();
+ Index cols = m.cols();
+
+ // this test relies a lot on Random.h, and there's not much more that we can do
+ // to test it, hence I consider that we will have tested Random.h
+ MatrixType m1 = MatrixType::Random(rows, cols),
+ m2 = MatrixType::Random(rows, cols),
+ m3(rows, cols);
+ RowSquareMatrixType
+ identity = RowSquareMatrixType::Identity(rows, rows),
+ square = RowSquareMatrixType::Random(rows, rows),
+ res = RowSquareMatrixType::Random(rows, rows);
+ ColSquareMatrixType
+ square2 = ColSquareMatrixType::Random(cols, cols),
+ res2 = ColSquareMatrixType::Random(cols, cols);
+ RowVectorType v1 = RowVectorType::Random(rows);
+ ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
+ OtherMajorMatrixType tm1 = m1;
+
+ Scalar s1 = internal::random<Scalar>();
+
+ Index r = internal::random<Index>(0, rows-1),
+ c = internal::random<Index>(0, cols-1),
+ c2 = internal::random<Index>(0, cols-1);
+
+ // begin testing Product.h: only associativity for now
+ // (we use Transpose.h but this doesn't count as a test for it)
+ VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
+ m3 = m1;
+ m3 *= m1.transpose() * m2;
+ VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
+ VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
+
+ // continue testing Product.h: distributivity
+ VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2);
+ VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2);
+
+ // continue testing Product.h: compatibility with ScalarMultiple.h
+ VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1);
+ VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1));
+
+ // test Product.h together with Identity.h
+ VERIFY_IS_APPROX(v1, identity*v1);
+ VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity);
+ // again, test operator() to check const-qualification
+ VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
+
+ if (rows!=cols)
+ VERIFY_RAISES_ASSERT(m3 = m1*m1);
+
+ // test the previous tests were not screwed up because operator* returns 0
+ // (we use the more accurate default epsilon)
+ if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
+ {
+ VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1));
+ }
+
+ // test optimized operator+= path
+ res = square;
+ res.noalias() += m1 * m2.transpose();
+ VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
+ if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
+ {
+ VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
+ }
+ vcres = vc2;
+ vcres.noalias() += m1.transpose() * v1;
+ VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
+
+ // test optimized operator-= path
+ res = square;
+ res.noalias() -= m1 * m2.transpose();
+ VERIFY_IS_APPROX(res, square - (m1 * m2.transpose()));
+ if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
+ {
+ VERIFY(areNotApprox(res,square - m2 * m1.transpose()));
+ }
+ vcres = vc2;
+ vcres.noalias() -= m1.transpose() * v1;
+ VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1);
+
+ tm1 = m1;
+ VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
+ VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);
+
+ // test submatrix and matrix/vector product
+ for (int i=0; i<rows; ++i)
+ res.row(i) = m1.row(i) * m2.transpose();
+ VERIFY_IS_APPROX(res, m1 * m2.transpose());
+ // the other way round:
+ for (int i=0; i<rows; ++i)
+ res.col(i) = m1 * m2.transpose().col(i);
+ VERIFY_IS_APPROX(res, m1 * m2.transpose());
+
+ res2 = square2;
+ res2.noalias() += m1.transpose() * m2;
+ VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
+ if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
+ {
+ VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1));
+ }
+
+ VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval());
+ VERIFY_IS_APPROX(res.col(r).noalias() = square * square.col(r), (square * square.col(r)).eval());
+
+ // inner product
+ Scalar x = square2.row(c) * square2.col(c2);
+ VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum());
+}