aboutsummaryrefslogtreecommitdiff
path: root/test/stable_norm.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'test/stable_norm.cpp')
-rw-r--r--test/stable_norm.cpp105
1 files changed, 91 insertions, 14 deletions
diff --git a/test/stable_norm.cpp b/test/stable_norm.cpp
index 231dd9189..c3eb5ff31 100644
--- a/test/stable_norm.cpp
+++ b/test/stable_norm.cpp
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -9,14 +9,6 @@
#include "main.h"
-// workaround aggressive optimization in ICC
-template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
-
-template<typename T> bool isFinite(const T& x)
-{
- return isNotNaN(sub(x,x));
-}
-
template<typename T> EIGEN_DONT_INLINE T copy(const T& x)
{
return x;
@@ -32,6 +24,8 @@ template<typename MatrixType> void stable_norm(const MatrixType& m)
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ bool complex_real_product_ok = true;
// Check the basic machine-dependent constants.
{
@@ -44,6 +38,16 @@ template<typename MatrixType> void stable_norm(const MatrixType& m)
VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2))
&& "the stable norm algorithm cannot be guaranteed on this computer");
+
+ Scalar inf = std::numeric_limits<RealScalar>::infinity();
+ if(NumTraits<Scalar>::IsComplex && (numext::isnan)(inf*RealScalar(1)) )
+ {
+ complex_real_product_ok = false;
+ static bool first = true;
+ if(first)
+ std::cerr << "WARNING: compiler mess up complex*real product, " << inf << " * " << 1.0 << " = " << inf*RealScalar(1) << std::endl;
+ first = false;
+ }
}
@@ -76,19 +80,19 @@ template<typename MatrixType> void stable_norm(const MatrixType& m)
RealScalar size = static_cast<RealScalar>(m.size());
- // test isFinite
- VERIFY(!isFinite( std::numeric_limits<RealScalar>::infinity()));
- VERIFY(!isFinite(sqrt(-abs(big))));
+ // test numext::isfinite
+ VERIFY(!(numext::isfinite)( std::numeric_limits<RealScalar>::infinity()));
+ VERIFY(!(numext::isfinite)(sqrt(-abs(big))));
// test overflow
- VERIFY(isFinite(sqrt(size)*abs(big)));
+ VERIFY((numext::isfinite)(sqrt(size)*abs(big)));
VERIFY_IS_NOT_APPROX(sqrt(copy(vbig.squaredNorm())), abs(sqrt(size)*big)); // here the default norm must fail
VERIFY_IS_APPROX(vbig.stableNorm(), sqrt(size)*abs(big));
VERIFY_IS_APPROX(vbig.blueNorm(), sqrt(size)*abs(big));
VERIFY_IS_APPROX(vbig.hypotNorm(), sqrt(size)*abs(big));
// test underflow
- VERIFY(isFinite(sqrt(size)*abs(small)));
+ VERIFY((numext::isfinite)(sqrt(size)*abs(small)));
VERIFY_IS_NOT_APPROX(sqrt(copy(vsmall.squaredNorm())), abs(sqrt(size)*small)); // here the default norm must fail
VERIFY_IS_APPROX(vsmall.stableNorm(), sqrt(size)*abs(small));
VERIFY_IS_APPROX(vsmall.blueNorm(), sqrt(size)*abs(small));
@@ -101,6 +105,79 @@ template<typename MatrixType> void stable_norm(const MatrixType& m)
VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm());
VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm());
VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm());
+
+ // test NaN, +inf, -inf
+ MatrixType v;
+ Index i = internal::random<Index>(0,rows-1);
+ Index j = internal::random<Index>(0,cols-1);
+
+ // NaN
+ {
+ v = vrand;
+ v(i,j) = std::numeric_limits<RealScalar>::quiet_NaN();
+ VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY((numext::isnan)(v.squaredNorm()));
+ VERIFY(!(numext::isfinite)(v.norm())); VERIFY((numext::isnan)(v.norm()));
+ VERIFY(!(numext::isfinite)(v.stableNorm())); VERIFY((numext::isnan)(v.stableNorm()));
+ VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY((numext::isnan)(v.blueNorm()));
+ VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY((numext::isnan)(v.hypotNorm()));
+ }
+
+ // +inf
+ {
+ v = vrand;
+ v(i,j) = std::numeric_limits<RealScalar>::infinity();
+ VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY(isPlusInf(v.squaredNorm()));
+ VERIFY(!(numext::isfinite)(v.norm())); VERIFY(isPlusInf(v.norm()));
+ VERIFY(!(numext::isfinite)(v.stableNorm()));
+ if(complex_real_product_ok){
+ VERIFY(isPlusInf(v.stableNorm()));
+ }
+ VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY(isPlusInf(v.blueNorm()));
+ VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY(isPlusInf(v.hypotNorm()));
+ }
+
+ // -inf
+ {
+ v = vrand;
+ v(i,j) = -std::numeric_limits<RealScalar>::infinity();
+ VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY(isPlusInf(v.squaredNorm()));
+ VERIFY(!(numext::isfinite)(v.norm())); VERIFY(isPlusInf(v.norm()));
+ VERIFY(!(numext::isfinite)(v.stableNorm()));
+ if(complex_real_product_ok) {
+ VERIFY(isPlusInf(v.stableNorm()));
+ }
+ VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY(isPlusInf(v.blueNorm()));
+ VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY(isPlusInf(v.hypotNorm()));
+ }
+
+ // mix
+ {
+ Index i2 = internal::random<Index>(0,rows-1);
+ Index j2 = internal::random<Index>(0,cols-1);
+ v = vrand;
+ v(i,j) = -std::numeric_limits<RealScalar>::infinity();
+ v(i2,j2) = std::numeric_limits<RealScalar>::quiet_NaN();
+ VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY((numext::isnan)(v.squaredNorm()));
+ VERIFY(!(numext::isfinite)(v.norm())); VERIFY((numext::isnan)(v.norm()));
+ VERIFY(!(numext::isfinite)(v.stableNorm())); VERIFY((numext::isnan)(v.stableNorm()));
+ VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY((numext::isnan)(v.blueNorm()));
+ VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY((numext::isnan)(v.hypotNorm()));
+ }
+
+ // stableNormalize[d]
+ {
+ VERIFY_IS_APPROX(vrand.stableNormalized(), vrand.normalized());
+ MatrixType vcopy(vrand);
+ vcopy.stableNormalize();
+ VERIFY_IS_APPROX(vcopy, vrand.normalized());
+ VERIFY_IS_APPROX((vrand.stableNormalized()).norm(), RealScalar(1));
+ VERIFY_IS_APPROX(vcopy.norm(), RealScalar(1));
+ VERIFY_IS_APPROX((vbig.stableNormalized()).norm(), RealScalar(1));
+ VERIFY_IS_APPROX((vsmall.stableNormalized()).norm(), RealScalar(1));
+ RealScalar big_scaling = ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4));
+ VERIFY_IS_APPROX(vbig/big_scaling, (vbig.stableNorm() * vbig.stableNormalized()).eval()/big_scaling);
+ VERIFY_IS_APPROX(vsmall, vsmall.stableNorm() * vsmall.stableNormalized());
+ }
}
void test_stable_norm()