aboutsummaryrefslogtreecommitdiff
path: root/test/stl_iterators.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'test/stl_iterators.cpp')
-rw-r--r--test/stl_iterators.cpp562
1 files changed, 562 insertions, 0 deletions
diff --git a/test/stl_iterators.cpp b/test/stl_iterators.cpp
new file mode 100644
index 000000000..72bbf8250
--- /dev/null
+++ b/test/stl_iterators.cpp
@@ -0,0 +1,562 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2018-2019 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+#include <iterator>
+#include <numeric>
+
+template< class Iterator >
+std::reverse_iterator<Iterator>
+make_reverse_iterator( Iterator i )
+{
+ return std::reverse_iterator<Iterator>(i);
+}
+
+#if !EIGEN_HAS_CXX11
+template<class ForwardIt>
+ForwardIt is_sorted_until(ForwardIt firstIt, ForwardIt lastIt)
+{
+ if (firstIt != lastIt) {
+ ForwardIt next = firstIt;
+ while (++next != lastIt) {
+ if (*next < *firstIt)
+ return next;
+ firstIt = next;
+ }
+ }
+ return lastIt;
+}
+template<class ForwardIt>
+bool is_sorted(ForwardIt firstIt, ForwardIt lastIt)
+{
+ return ::is_sorted_until(firstIt, lastIt) == lastIt;
+}
+#else
+using std::is_sorted;
+#endif
+
+template<typename XprType>
+bool is_pointer_based_stl_iterator(const internal::pointer_based_stl_iterator<XprType> &) { return true; }
+
+template<typename XprType>
+bool is_generic_randaccess_stl_iterator(const internal::generic_randaccess_stl_iterator<XprType> &) { return true; }
+
+template<typename Iter>
+bool is_default_constructible_and_assignable(const Iter& it)
+{
+#if EIGEN_HAS_CXX11
+ VERIFY(std::is_default_constructible<Iter>::value);
+ VERIFY(std::is_nothrow_default_constructible<Iter>::value);
+#endif
+ Iter it2;
+ it2 = it;
+ return (it==it2);
+}
+
+template<typename Xpr>
+void check_begin_end_for_loop(Xpr xpr)
+{
+ const Xpr& cxpr(xpr);
+ Index i = 0;
+
+ i = 0;
+ for(typename Xpr::iterator it = xpr.begin(); it!=xpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
+
+ i = 0;
+ for(typename Xpr::const_iterator it = xpr.cbegin(); it!=xpr.cend(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
+
+ i = 0;
+ for(typename Xpr::const_iterator it = cxpr.begin(); it!=cxpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
+
+ i = 0;
+ for(typename Xpr::const_iterator it = xpr.begin(); it!=xpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
+
+ {
+ // simple API check
+ typename Xpr::const_iterator cit = xpr.begin();
+ cit = xpr.cbegin();
+
+ #if EIGEN_HAS_CXX11
+ auto tmp1 = xpr.begin();
+ VERIFY(tmp1==xpr.begin());
+ auto tmp2 = xpr.cbegin();
+ VERIFY(tmp2==xpr.cbegin());
+ #endif
+ }
+
+ VERIFY( xpr.end() -xpr.begin() == xpr.size() );
+ VERIFY( xpr.cend()-xpr.begin() == xpr.size() );
+ VERIFY( xpr.end() -xpr.cbegin() == xpr.size() );
+ VERIFY( xpr.cend()-xpr.cbegin() == xpr.size() );
+
+ if(xpr.size()>0) {
+ VERIFY(xpr.begin() != xpr.end());
+ VERIFY(xpr.begin() < xpr.end());
+ VERIFY(xpr.begin() <= xpr.end());
+ VERIFY(!(xpr.begin() == xpr.end()));
+ VERIFY(!(xpr.begin() > xpr.end()));
+ VERIFY(!(xpr.begin() >= xpr.end()));
+
+ VERIFY(xpr.cbegin() != xpr.end());
+ VERIFY(xpr.cbegin() < xpr.end());
+ VERIFY(xpr.cbegin() <= xpr.end());
+ VERIFY(!(xpr.cbegin() == xpr.end()));
+ VERIFY(!(xpr.cbegin() > xpr.end()));
+ VERIFY(!(xpr.cbegin() >= xpr.end()));
+
+ VERIFY(xpr.begin() != xpr.cend());
+ VERIFY(xpr.begin() < xpr.cend());
+ VERIFY(xpr.begin() <= xpr.cend());
+ VERIFY(!(xpr.begin() == xpr.cend()));
+ VERIFY(!(xpr.begin() > xpr.cend()));
+ VERIFY(!(xpr.begin() >= xpr.cend()));
+ }
+}
+
+template<typename Scalar, int Rows, int Cols>
+void test_stl_iterators(int rows=Rows, int cols=Cols)
+{
+ typedef Matrix<Scalar,Rows,1> VectorType;
+ #if EIGEN_HAS_CXX11
+ typedef Matrix<Scalar,1,Cols> RowVectorType;
+ #endif
+ typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType;
+ typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType;
+ VectorType v = VectorType::Random(rows);
+ const VectorType& cv(v);
+ ColMatrixType A = ColMatrixType::Random(rows,cols);
+ const ColMatrixType& cA(A);
+ RowMatrixType B = RowMatrixType::Random(rows,cols);
+
+ Index i, j;
+
+ // Verify that iterators are default constructible (See bug #1900)
+ {
+ VERIFY( is_default_constructible_and_assignable(v.begin()));
+ VERIFY( is_default_constructible_and_assignable(v.end()));
+ VERIFY( is_default_constructible_and_assignable(cv.begin()));
+ VERIFY( is_default_constructible_and_assignable(cv.end()));
+
+ VERIFY( is_default_constructible_and_assignable(A.row(0).begin()));
+ VERIFY( is_default_constructible_and_assignable(A.row(0).end()));
+ VERIFY( is_default_constructible_and_assignable(cA.row(0).begin()));
+ VERIFY( is_default_constructible_and_assignable(cA.row(0).end()));
+
+ VERIFY( is_default_constructible_and_assignable(B.row(0).begin()));
+ VERIFY( is_default_constructible_and_assignable(B.row(0).end()));
+ }
+
+ // Check we got a fast pointer-based iterator when expected
+ {
+ VERIFY( is_pointer_based_stl_iterator(v.begin()) );
+ VERIFY( is_pointer_based_stl_iterator(v.end()) );
+ VERIFY( is_pointer_based_stl_iterator(cv.begin()) );
+ VERIFY( is_pointer_based_stl_iterator(cv.end()) );
+
+ j = internal::random<Index>(0,A.cols()-1);
+ VERIFY( is_pointer_based_stl_iterator(A.col(j).begin()) );
+ VERIFY( is_pointer_based_stl_iterator(A.col(j).end()) );
+ VERIFY( is_pointer_based_stl_iterator(cA.col(j).begin()) );
+ VERIFY( is_pointer_based_stl_iterator(cA.col(j).end()) );
+
+ i = internal::random<Index>(0,A.rows()-1);
+ VERIFY( is_pointer_based_stl_iterator(A.row(i).begin()) );
+ VERIFY( is_pointer_based_stl_iterator(A.row(i).end()) );
+ VERIFY( is_pointer_based_stl_iterator(cA.row(i).begin()) );
+ VERIFY( is_pointer_based_stl_iterator(cA.row(i).end()) );
+
+ VERIFY( is_pointer_based_stl_iterator(A.reshaped().begin()) );
+ VERIFY( is_pointer_based_stl_iterator(A.reshaped().end()) );
+ VERIFY( is_pointer_based_stl_iterator(cA.reshaped().begin()) );
+ VERIFY( is_pointer_based_stl_iterator(cA.reshaped().end()) );
+
+ VERIFY( is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().begin()) );
+ VERIFY( is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().end()) );
+
+ VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().begin()) );
+ VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().end()) );
+ }
+
+ {
+ check_begin_end_for_loop(v);
+ check_begin_end_for_loop(A.col(internal::random<Index>(0,A.cols()-1)));
+ check_begin_end_for_loop(A.row(internal::random<Index>(0,A.rows()-1)));
+ check_begin_end_for_loop(v+v);
+ }
+
+#if EIGEN_HAS_CXX11
+ // check swappable
+ {
+ using std::swap;
+ // pointer-based
+ {
+ VectorType v_copy = v;
+ auto a = v.begin();
+ auto b = v.end()-1;
+ swap(a,b);
+ VERIFY_IS_EQUAL(v,v_copy);
+ VERIFY_IS_EQUAL(*b,*v.begin());
+ VERIFY_IS_EQUAL(*b,v(0));
+ VERIFY_IS_EQUAL(*a,v.end()[-1]);
+ VERIFY_IS_EQUAL(*a,v(last));
+ }
+
+ // generic
+ {
+ RowMatrixType B_copy = B;
+ auto Br = B.reshaped();
+ auto a = Br.begin();
+ auto b = Br.end()-1;
+ swap(a,b);
+ VERIFY_IS_EQUAL(B,B_copy);
+ VERIFY_IS_EQUAL(*b,*Br.begin());
+ VERIFY_IS_EQUAL(*b,Br(0));
+ VERIFY_IS_EQUAL(*a,Br.end()[-1]);
+ VERIFY_IS_EQUAL(*a,Br(last));
+ }
+ }
+
+ // check non-const iterator with for-range loops
+ {
+ i = 0;
+ for(auto x : v) { VERIFY_IS_EQUAL(x,v[i++]); }
+
+ j = internal::random<Index>(0,A.cols()-1);
+ i = 0;
+ for(auto x : A.col(j)) { VERIFY_IS_EQUAL(x,A(i++,j)); }
+
+ i = 0;
+ for(auto x : (v+A.col(j))) { VERIFY_IS_APPROX(x,v(i)+A(i,j)); ++i; }
+
+ j = 0;
+ i = internal::random<Index>(0,A.rows()-1);
+ for(auto x : A.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }
+
+ i = 0;
+ for(auto x : A.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); }
+ }
+
+ // same for const_iterator
+ {
+ i = 0;
+ for(auto x : cv) { VERIFY_IS_EQUAL(x,v[i++]); }
+
+ i = 0;
+ for(auto x : cA.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); }
+
+ j = 0;
+ i = internal::random<Index>(0,A.rows()-1);
+ for(auto x : cA.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }
+ }
+
+ // check reshaped() on row-major
+ {
+ i = 0;
+ Matrix<Scalar,Dynamic,Dynamic,ColMajor> Bc = B;
+ for(auto x : B.reshaped()) { VERIFY_IS_EQUAL(x,Bc(i++)); }
+ }
+
+ // check write access
+ {
+ VectorType w(v.size());
+ i = 0;
+ for(auto& x : w) { x = v(i++); }
+ VERIFY_IS_EQUAL(v,w);
+ }
+
+ // check for dangling pointers
+ {
+ // no dangling because pointer-based
+ {
+ j = internal::random<Index>(0,A.cols()-1);
+ auto it = A.col(j).begin();
+ for(i=0;i<rows;++i) {
+ VERIFY_IS_EQUAL(it[i],A(i,j));
+ }
+ }
+
+ // no dangling because pointer-based
+ {
+ i = internal::random<Index>(0,A.rows()-1);
+ auto it = A.row(i).begin();
+ for(j=0;j<cols;++j) { VERIFY_IS_EQUAL(it[j],A(i,j)); }
+ }
+
+ {
+ j = internal::random<Index>(0,A.cols()-1);
+ // this would produce a dangling pointer:
+ // auto it = (A+2*A).col(j).begin();
+ // we need to name the temporary expression:
+ auto tmp = (A+2*A).col(j);
+ auto it = tmp.begin();
+ for(i=0;i<rows;++i) {
+ VERIFY_IS_APPROX(it[i],3*A(i,j));
+ }
+ }
+ }
+
+ {
+ // check basic for loop on vector-wise iterators
+ j=0;
+ for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) {
+ VERIFY_IS_APPROX( it->coeff(0), A(0,j) );
+ VERIFY_IS_APPROX( (*it).coeff(0), A(0,j) );
+ }
+ j=0;
+ for (auto it = A.colwise().begin(); it != A.colwise().end(); ++it, ++j) {
+ (*it).coeffRef(0) = (*it).coeff(0); // compilation check
+ it->coeffRef(0) = it->coeff(0); // compilation check
+ VERIFY_IS_APPROX( it->coeff(0), A(0,j) );
+ VERIFY_IS_APPROX( (*it).coeff(0), A(0,j) );
+ }
+
+ // check valuetype gives us a copy
+ j=0;
+ for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) {
+ typename decltype(it)::value_type tmp = *it;
+ VERIFY_IS_NOT_EQUAL( tmp.data() , it->data() );
+ VERIFY_IS_APPROX( tmp, A.col(j) );
+ }
+ }
+
+#endif
+
+ if(rows>=3) {
+ VERIFY_IS_EQUAL((v.begin()+rows/2)[1], v(rows/2+1));
+
+ VERIFY_IS_EQUAL((A.rowwise().begin()+rows/2)[1], A.row(rows/2+1));
+ }
+
+ if(cols>=3) {
+ VERIFY_IS_EQUAL((A.colwise().begin()+cols/2)[1], A.col(cols/2+1));
+ }
+
+ // check std::sort
+ {
+ // first check that is_sorted returns false when required
+ if(rows>=2)
+ {
+ v(1) = v(0)-Scalar(1);
+ #if EIGEN_HAS_CXX11
+ VERIFY(!is_sorted(std::begin(v),std::end(v)));
+ #else
+ VERIFY(!is_sorted(v.cbegin(),v.cend()));
+ #endif
+ }
+
+ // on a vector
+ {
+ std::sort(v.begin(),v.end());
+ VERIFY(is_sorted(v.begin(),v.end()));
+ VERIFY(!::is_sorted(make_reverse_iterator(v.end()),make_reverse_iterator(v.begin())));
+ }
+
+ // on a column of a column-major matrix -> pointer-based iterator and default increment
+ {
+ j = internal::random<Index>(0,A.cols()-1);
+ // std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators
+ typename ColMatrixType::ColXpr Acol = A.col(j);
+ std::sort(Acol.begin(),Acol.end());
+ VERIFY(is_sorted(Acol.cbegin(),Acol.cend()));
+ A.setRandom();
+
+ std::sort(A.col(j).begin(),A.col(j).end());
+ VERIFY(is_sorted(A.col(j).cbegin(),A.col(j).cend()));
+ A.setRandom();
+ }
+
+ // on a row of a rowmajor matrix -> pointer-based iterator and runtime increment
+ {
+ i = internal::random<Index>(0,A.rows()-1);
+ typename ColMatrixType::RowXpr Arow = A.row(i);
+ VERIFY_IS_EQUAL( std::distance(Arow.begin(),Arow.end()), cols);
+ std::sort(Arow.begin(),Arow.end());
+ VERIFY(is_sorted(Arow.cbegin(),Arow.cend()));
+ A.setRandom();
+
+ std::sort(A.row(i).begin(),A.row(i).end());
+ VERIFY(is_sorted(A.row(i).cbegin(),A.row(i).cend()));
+ A.setRandom();
+ }
+
+ // with a generic iterator
+ {
+ Reshaped<RowMatrixType,RowMatrixType::SizeAtCompileTime,1> B1 = B.reshaped();
+ std::sort(B1.begin(),B1.end());
+ VERIFY(is_sorted(B1.cbegin(),B1.cend()));
+ B.setRandom();
+
+ // assertion because nested expressions are different
+ // std::sort(B.reshaped().begin(),B.reshaped().end());
+ // VERIFY(is_sorted(B.reshaped().cbegin(),B.reshaped().cend()));
+ // B.setRandom();
+ }
+ }
+
+ // check with partial_sum
+ {
+ j = internal::random<Index>(0,A.cols()-1);
+ typename ColMatrixType::ColXpr Acol = A.col(j);
+ std::partial_sum(Acol.begin(), Acol.end(), v.begin());
+ VERIFY_IS_APPROX(v(seq(1,last)), v(seq(0,last-1))+Acol(seq(1,last)));
+
+ // inplace
+ std::partial_sum(Acol.begin(), Acol.end(), Acol.begin());
+ VERIFY_IS_APPROX(v, Acol);
+ }
+
+ // stress random access as required by std::nth_element
+ if(rows>=3)
+ {
+ v.setRandom();
+ VectorType v1 = v;
+ std::sort(v1.begin(),v1.end());
+ std::nth_element(v.begin(), v.begin()+rows/2, v.end());
+ VERIFY_IS_APPROX(v1(rows/2), v(rows/2));
+
+ v.setRandom();
+ v1 = v;
+ std::sort(v1.begin()+rows/2,v1.end());
+ std::nth_element(v.begin()+rows/2, v.begin()+rows/4, v.end());
+ VERIFY_IS_APPROX(v1(rows/4), v(rows/4));
+ }
+
+#if EIGEN_HAS_CXX11
+ // check rows/cols iterators with range-for loops
+ {
+ j = 0;
+ for(auto c : A.colwise()) { VERIFY_IS_APPROX(c.sum(), A.col(j).sum()); ++j; }
+ j = 0;
+ for(auto c : B.colwise()) { VERIFY_IS_APPROX(c.sum(), B.col(j).sum()); ++j; }
+
+ j = 0;
+ for(auto c : B.colwise()) {
+ i = 0;
+ for(auto& x : c) {
+ VERIFY_IS_EQUAL(x, B(i,j));
+ x = A(i,j);
+ ++i;
+ }
+ ++j;
+ }
+ VERIFY_IS_APPROX(A,B);
+ B.setRandom();
+
+ i = 0;
+ for(auto r : A.rowwise()) { VERIFY_IS_APPROX(r.sum(), A.row(i).sum()); ++i; }
+ i = 0;
+ for(auto r : B.rowwise()) { VERIFY_IS_APPROX(r.sum(), B.row(i).sum()); ++i; }
+ }
+
+
+ // check rows/cols iterators with STL algorithms
+ {
+ RowVectorType row = RowVectorType::Random(cols);
+ A.rowwise() = row;
+ VERIFY( std::all_of(A.rowwise().begin(), A.rowwise().end(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(),row.squaredNorm()); }) );
+ VERIFY( std::all_of(A.rowwise().rbegin(), A.rowwise().rend(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(),row.squaredNorm()); }) );
+
+ VectorType col = VectorType::Random(rows);
+ A.colwise() = col;
+ VERIFY( std::all_of(A.colwise().begin(), A.colwise().end(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
+ VERIFY( std::all_of(A.colwise().rbegin(), A.colwise().rend(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
+ VERIFY( std::all_of(A.colwise().cbegin(), A.colwise().cend(), [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
+ VERIFY( std::all_of(A.colwise().crbegin(), A.colwise().crend(), [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
+
+ i = internal::random<Index>(0,A.rows()-1);
+ A.setRandom();
+ A.row(i).setZero();
+ VERIFY_IS_EQUAL( std::find_if(A.rowwise().begin(), A.rowwise().end(), [](typename ColMatrixType::RowXpr x) { return x.squaredNorm() == Scalar(0); })-A.rowwise().begin(), i );
+ VERIFY_IS_EQUAL( std::find_if(A.rowwise().rbegin(), A.rowwise().rend(), [](typename ColMatrixType::RowXpr x) { return x.squaredNorm() == Scalar(0); })-A.rowwise().rbegin(), (A.rows()-1) - i );
+
+ j = internal::random<Index>(0,A.cols()-1);
+ A.setRandom();
+ A.col(j).setZero();
+ VERIFY_IS_EQUAL( std::find_if(A.colwise().begin(), A.colwise().end(), [](typename ColMatrixType::ColXpr x) { return x.squaredNorm() == Scalar(0); })-A.colwise().begin(), j );
+ VERIFY_IS_EQUAL( std::find_if(A.colwise().rbegin(), A.colwise().rend(), [](typename ColMatrixType::ColXpr x) { return x.squaredNorm() == Scalar(0); })-A.colwise().rbegin(), (A.cols()-1) - j );
+ }
+
+ {
+ using VecOp = VectorwiseOp<ArrayXXi, 0>;
+ STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cbegin())>::value ));
+ STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cend ())>::value ));
+ #if EIGEN_COMP_CXXVER>=14
+ STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::cbegin(std::declval<const VecOp&>()))>::value ));
+ STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::cend (std::declval<const VecOp&>()))>::value ));
+ #endif
+ }
+
+#endif
+}
+
+
+#if EIGEN_HAS_CXX11
+// When the compiler sees expression IsContainerTest<C>(0), if C is an
+// STL-style container class, the first overload of IsContainerTest
+// will be viable (since both C::iterator* and C::const_iterator* are
+// valid types and NULL can be implicitly converted to them). It will
+// be picked over the second overload as 'int' is a perfect match for
+// the type of argument 0. If C::iterator or C::const_iterator is not
+// a valid type, the first overload is not viable, and the second
+// overload will be picked.
+template <class C,
+ class Iterator = decltype(::std::declval<const C&>().begin()),
+ class = decltype(::std::declval<const C&>().end()),
+ class = decltype(++::std::declval<Iterator&>()),
+ class = decltype(*::std::declval<Iterator>()),
+ class = typename C::const_iterator>
+bool IsContainerType(int /* dummy */) { return true; }
+
+template <class C>
+bool IsContainerType(long /* dummy */) { return false; }
+
+template <typename Scalar, int Rows, int Cols>
+void test_stl_container_detection(int rows=Rows, int cols=Cols)
+{
+ typedef Matrix<Scalar,Rows,1> VectorType;
+ typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType;
+ typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType;
+
+ ColMatrixType A = ColMatrixType::Random(rows, cols);
+ RowMatrixType B = RowMatrixType::Random(rows, cols);
+
+ Index i = 1;
+
+ using ColMatrixColType = decltype(A.col(i));
+ using ColMatrixRowType = decltype(A.row(i));
+ using RowMatrixColType = decltype(B.col(i));
+ using RowMatrixRowType = decltype(B.row(i));
+
+ // Vector and matrix col/row are valid Stl-style container.
+ VERIFY_IS_EQUAL(IsContainerType<VectorType>(0), true);
+ VERIFY_IS_EQUAL(IsContainerType<ColMatrixColType>(0), true);
+ VERIFY_IS_EQUAL(IsContainerType<ColMatrixRowType>(0), true);
+ VERIFY_IS_EQUAL(IsContainerType<RowMatrixColType>(0), true);
+ VERIFY_IS_EQUAL(IsContainerType<RowMatrixRowType>(0), true);
+
+ // But the matrix itself is not a valid Stl-style container.
+ VERIFY_IS_EQUAL(IsContainerType<ColMatrixType>(0), rows == 1 || cols == 1);
+ VERIFY_IS_EQUAL(IsContainerType<RowMatrixType>(0), rows == 1 || cols == 1);
+}
+#endif
+
+EIGEN_DECLARE_TEST(stl_iterators)
+{
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST_1(( test_stl_iterators<double,2,3>() ));
+ CALL_SUBTEST_1(( test_stl_iterators<float,7,5>() ));
+ CALL_SUBTEST_1(( test_stl_iterators<int,Dynamic,Dynamic>(internal::random<int>(5,10), internal::random<int>(5,10)) ));
+ CALL_SUBTEST_1(( test_stl_iterators<int,Dynamic,Dynamic>(internal::random<int>(10,200), internal::random<int>(10,200)) ));
+ }
+
+#if EIGEN_HAS_CXX11
+ CALL_SUBTEST_1(( test_stl_container_detection<float,1,1>() ));
+ CALL_SUBTEST_1(( test_stl_container_detection<float,5,5>() ));
+#endif
+}