aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/CXX11/src/Tensor/Tensor.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/CXX11/src/Tensor/Tensor.h')
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/Tensor.h527
1 files changed, 527 insertions, 0 deletions
diff --git a/unsupported/Eigen/CXX11/src/Tensor/Tensor.h b/unsupported/Eigen/CXX11/src/Tensor/Tensor.h
new file mode 100644
index 000000000..1940a9692
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/Tensor.h
@@ -0,0 +1,527 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_H
+#define EIGEN_CXX11_TENSOR_TENSOR_H
+
+namespace Eigen {
+
+/** \class Tensor
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief The tensor class.
+ *
+ * The %Tensor class is the work-horse for all \em dense tensors within Eigen.
+ *
+ * The %Tensor class encompasses only dynamic-size objects so far.
+ *
+ * The first two template parameters are required:
+ * \tparam Scalar_ \anchor tensor_tparam_scalar Numeric type, e.g. float, double, int or std::complex<float>.
+ * User defined scalar types are supported as well (see \ref user_defined_scalars "here").
+ * \tparam NumIndices_ Number of indices (i.e. rank of the tensor)
+ *
+ * The remaining template parameters are optional -- in most cases you don't have to worry about them.
+ * \tparam Options_ \anchor tensor_tparam_options A combination of either \b #RowMajor or \b #ColMajor, and of either
+ * \b #AutoAlign or \b #DontAlign.
+ * The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
+ * for vectorization. It defaults to aligning tensors. Note that tensors currently do not support any operations that profit from vectorization.
+ * Support for such operations (i.e. adding two tensors etc.) is planned.
+ *
+ * You can access elements of tensors using normal subscripting:
+ *
+ * \code
+ * Eigen::Tensor<double, 4> t(10, 10, 10, 10);
+ * t(0, 1, 2, 3) = 42.0;
+ * \endcode
+ *
+ * This class can be extended with the help of the plugin mechanism described on the page
+ * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TENSOR_PLUGIN.
+ *
+ * <i><b>Some notes:</b></i>
+ *
+ * <dl>
+ * <dt><b>Relation to other parts of Eigen:</b></dt>
+ * <dd>The midterm developement goal for this class is to have a similar hierarchy as Eigen uses for matrices, so that
+ * taking blocks or using tensors in expressions is easily possible, including an interface with the vector/matrix code
+ * by providing .asMatrix() and .asVector() (or similar) methods for rank 2 and 1 tensors. However, currently, the %Tensor
+ * class does not provide any of these features and is only available as a stand-alone class that just allows for
+ * coefficient access. Also, when fixed-size tensors are implemented, the number of template arguments is likely to
+ * change dramatically.</dd>
+ * </dl>
+ *
+ * \ref TopicStorageOrders
+ */
+
+template<typename Scalar_, int NumIndices_, int Options_, typename IndexType_>
+class Tensor : public TensorBase<Tensor<Scalar_, NumIndices_, Options_, IndexType_> >
+{
+ public:
+ typedef Tensor<Scalar_, NumIndices_, Options_, IndexType_> Self;
+ typedef TensorBase<Tensor<Scalar_, NumIndices_, Options_, IndexType_> > Base;
+ typedef typename Eigen::internal::nested<Self>::type Nested;
+ typedef typename internal::traits<Self>::StorageKind StorageKind;
+ typedef typename internal::traits<Self>::Index Index;
+ typedef Scalar_ Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef typename Base::CoeffReturnType CoeffReturnType;
+
+ enum {
+ IsAligned = bool(EIGEN_MAX_ALIGN_BYTES>0) & !(Options_&DontAlign),
+ Layout = Options_ & RowMajor ? RowMajor : ColMajor,
+ CoordAccess = true,
+ RawAccess = true
+ };
+
+ static const int Options = Options_;
+ static const int NumIndices = NumIndices_;
+ typedef DSizes<Index, NumIndices_> Dimensions;
+
+ protected:
+ TensorStorage<Scalar, Dimensions, Options> m_storage;
+
+#ifdef EIGEN_HAS_SFINAE
+ template<typename CustomIndices>
+ struct isOfNormalIndex{
+ static const bool is_array = internal::is_base_of<array<Index, NumIndices>, CustomIndices>::value;
+ static const bool is_int = NumTraits<CustomIndices>::IsInteger;
+ static const bool value = is_array | is_int;
+ };
+#endif
+
+ public:
+ // Metadata
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const { return NumIndices; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(std::size_t n) const { return m_storage.dimensions()[n]; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_storage.dimensions(); }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_storage.size(); }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); }
+
+ // This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
+ // work, because that uses base().coeffRef() - and we don't yet
+ // implement a similar class hierarchy
+ inline Self& base() { return *this; }
+ inline const Self& base() const { return *this; }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes>
+ EIGEN_DEVICE_FUNC inline const Scalar& coeff(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
+ {
+ // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return coeff(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
+ }
+#endif
+
+ // normal indices
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(const array<Index, NumIndices>& indices) const
+ {
+ eigen_internal_assert(checkIndexRange(indices));
+ return m_storage.data()[linearizedIndex(indices)];
+ }
+
+ // custom indices
+#ifdef EIGEN_HAS_SFINAE
+ template<typename CustomIndices,
+ EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) )
+ >
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(CustomIndices& indices) const
+ {
+ return coeff(internal::customIndices2Array<Index,NumIndices>(indices));
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff() const
+ {
+ EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return m_storage.data()[0];
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const
+ {
+ eigen_internal_assert(index >= 0 && index < size());
+ return m_storage.data()[index];
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes>
+ inline Scalar& coeffRef(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
+ {
+ // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return coeffRef(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
+ }
+#endif
+
+ // normal indices
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices)
+ {
+ eigen_internal_assert(checkIndexRange(indices));
+ return m_storage.data()[linearizedIndex(indices)];
+ }
+
+ // custom indices
+#ifdef EIGEN_HAS_SFINAE
+ template<typename CustomIndices,
+ EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) )
+ >
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(CustomIndices& indices)
+ {
+ return coeffRef(internal::customIndices2Array<Index,NumIndices>(indices));
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef()
+ {
+ EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return m_storage.data()[0];
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
+ {
+ eigen_internal_assert(index >= 0 && index < size());
+ return m_storage.data()[index];
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes>
+ inline const Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
+ {
+ // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return this->operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
+ }
+#else
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const
+ {
+ return coeff(array<Index, 2>(i0, i1));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const
+ {
+ return coeff(array<Index, 3>(i0, i1, i2));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const
+ {
+ return coeff(array<Index, 4>(i0, i1, i2, i3));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const
+ {
+ return coeff(array<Index, 5>(i0, i1, i2, i3, i4));
+ }
+#endif
+
+ // custom indices
+#ifdef EIGEN_HAS_SFINAE
+ template<typename CustomIndices,
+ EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) )
+ >
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(CustomIndices& indices) const
+ {
+ return coeff(internal::customIndices2Array<Index,NumIndices>(indices));
+ }
+#endif
+
+ // normal indices
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const
+ {
+ return coeff(indices);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const
+ {
+ eigen_internal_assert(index >= 0 && index < size());
+ return coeff(index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()() const
+ {
+ EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return coeff();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator[](Index index) const
+ {
+ // The bracket operator is only for vectors, use the parenthesis operator instead.
+ EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return coeff(index);
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes>
+ inline Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
+ {
+ // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
+ }
+#else
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1)
+ {
+ return coeffRef(array<Index, 2>(i0, i1));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2)
+ {
+ return coeffRef(array<Index, 3>(i0, i1, i2));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3)
+ {
+ return coeffRef(array<Index, 4>(i0, i1, i2, i3));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4)
+ {
+ return coeffRef(array<Index, 5>(i0, i1, i2, i3, i4));
+ }
+#endif
+
+ // normal indices
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices)
+ {
+ return coeffRef(indices);
+ }
+
+ // custom indices
+#ifdef EIGEN_HAS_SFINAE
+ template<typename CustomIndices,
+ EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) )
+ >
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(CustomIndices& indices)
+ {
+ return coeffRef(internal::customIndices2Array<Index,NumIndices>(indices));
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index index)
+ {
+ eigen_assert(index >= 0 && index < size());
+ return coeffRef(index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()()
+ {
+ EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return coeffRef();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator[](Index index)
+ {
+ // The bracket operator is only for vectors, use the parenthesis operator instead
+ EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return coeffRef(index);
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Tensor()
+ : m_storage()
+ {
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Tensor(const Self& other)
+ : m_storage(other.m_storage)
+ {
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index firstDimension, IndexTypes... otherDimensions)
+ : m_storage(firstDimension, otherDimensions...)
+ {
+ // The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+#else
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit Tensor(Index dim1)
+ : m_storage(dim1, array<Index, 1>(dim1))
+ {
+ EIGEN_STATIC_ASSERT(1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2)
+ : m_storage(dim1*dim2, array<Index, 2>(dim1, dim2))
+ {
+ EIGEN_STATIC_ASSERT(2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3)
+ : m_storage(dim1*dim2*dim3, array<Index, 3>(dim1, dim2, dim3))
+ {
+ EIGEN_STATIC_ASSERT(3 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3, Index dim4)
+ : m_storage(dim1*dim2*dim3*dim4, array<Index, 4>(dim1, dim2, dim3, dim4))
+ {
+ EIGEN_STATIC_ASSERT(4 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3, Index dim4, Index dim5)
+ : m_storage(dim1*dim2*dim3*dim4*dim5, array<Index, 5>(dim1, dim2, dim3, dim4, dim5))
+ {
+ EIGEN_STATIC_ASSERT(5 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+#endif
+
+ /** Normal Dimension */
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit Tensor(const array<Index, NumIndices>& dimensions)
+ : m_storage(internal::array_prod(dimensions), dimensions)
+ {
+ EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Tensor(const TensorBase<OtherDerived, ReadOnlyAccessors>& other)
+ {
+ typedef TensorAssignOp<Tensor, const OtherDerived> Assign;
+ Assign assign(*this, other.derived());
+ resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ }
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Tensor(const TensorBase<OtherDerived, WriteAccessors>& other)
+ {
+ typedef TensorAssignOp<Tensor, const OtherDerived> Assign;
+ Assign assign(*this, other.derived());
+ resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Tensor& operator=(const Tensor& other)
+ {
+ typedef TensorAssignOp<Tensor, const Tensor> Assign;
+ Assign assign(*this, other);
+ resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Tensor& operator=(const OtherDerived& other)
+ {
+ typedef TensorAssignOp<Tensor, const OtherDerived> Assign;
+ Assign assign(*this, other);
+ resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes> EIGEN_DEVICE_FUNC
+ void resize(Index firstDimension, IndexTypes... otherDimensions)
+ {
+ // The number of dimensions used to resize a tensor must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ resize(array<Index, NumIndices>{{firstDimension, otherDimensions...}});
+ }
+#endif
+
+ /** Normal Dimension */
+ EIGEN_DEVICE_FUNC void resize(const array<Index, NumIndices>& dimensions)
+ {
+ int i;
+ Index size = Index(1);
+ for (i = 0; i < NumIndices; i++) {
+ internal::check_rows_cols_for_overflow<Dynamic>::run(size, dimensions[i]);
+ size *= dimensions[i];
+ }
+ #ifdef EIGEN_INITIALIZE_COEFFS
+ bool size_changed = size != this->size();
+ m_storage.resize(size, dimensions);
+ if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
+ #else
+ m_storage.resize(size, dimensions);
+ #endif
+ }
+
+ // Why this overload, DSizes is derived from array ??? //
+ EIGEN_DEVICE_FUNC void resize(const DSizes<Index, NumIndices>& dimensions) {
+ array<Index, NumIndices> dims;
+ for (int i = 0; i < NumIndices; ++i) {
+ dims[i] = dimensions[i];
+ }
+ resize(dims);
+ }
+
+ EIGEN_DEVICE_FUNC
+ void resize()
+ {
+ EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ // Nothing to do: rank 0 tensors have fixed size
+ }
+
+ /** Custom Dimension */
+#ifdef EIGEN_HAS_SFINAE
+ template<typename CustomDimension,
+ EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomDimension>::value) )
+ >
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(CustomDimension& dimensions)
+ {
+ resize(internal::customIndices2Array<Index,NumIndices>(dimensions));
+ }
+#endif
+
+#ifndef EIGEN_EMULATE_CXX11_META_H
+ template <typename std::ptrdiff_t... Indices>
+ EIGEN_DEVICE_FUNC
+ void resize(const Sizes<Indices...>& dimensions) {
+ array<Index, NumIndices> dims;
+ for (int i = 0; i < NumIndices; ++i) {
+ dims[i] = static_cast<Index>(dimensions[i]);
+ }
+ resize(dims);
+ }
+#else
+ template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5>
+ EIGEN_DEVICE_FUNC
+ void resize(const Sizes<V1, V2, V3, V4, V5>& dimensions) {
+ array<Index, NumIndices> dims;
+ for (int i = 0; i < NumIndices; ++i) {
+ dims[i] = static_cast<Index>(dimensions[i]);
+ }
+ resize(dims);
+ }
+#endif
+
+ protected:
+
+ bool checkIndexRange(const array<Index, NumIndices>& indices) const
+ {
+ using internal::array_apply_and_reduce;
+ using internal::array_zip_and_reduce;
+ using internal::greater_equal_zero_op;
+ using internal::logical_and_op;
+ using internal::lesser_op;
+
+ return
+ // check whether the indices are all >= 0
+ array_apply_and_reduce<logical_and_op, greater_equal_zero_op>(indices) &&
+ // check whether the indices fit in the dimensions
+ array_zip_and_reduce<logical_and_op, lesser_op>(indices, m_storage.dimensions());
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index linearizedIndex(const array<Index, NumIndices>& indices) const
+ {
+ if (Options&RowMajor) {
+ return m_storage.dimensions().IndexOfRowMajor(indices);
+ } else {
+ return m_storage.dimensions().IndexOfColMajor(indices);
+ }
+ }
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_H