aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h')
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h361
1 files changed, 361 insertions, 0 deletions
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h b/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h
new file mode 100644
index 000000000..59bf90d93
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h
@@ -0,0 +1,361 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H
+#define EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H
+
+namespace Eigen {
+
+/** \class TensorConcatenationOp
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor concatenation class.
+ *
+ *
+ */
+namespace internal {
+template<typename Axis, typename LhsXprType, typename RhsXprType>
+struct traits<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> >
+{
+ // Type promotion to handle the case where the types of the lhs and the rhs are different.
+ typedef typename promote_storage_type<typename LhsXprType::Scalar,
+ typename RhsXprType::Scalar>::ret Scalar;
+ typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind,
+ typename traits<RhsXprType>::StorageKind>::ret StorageKind;
+ typedef typename promote_index_type<typename traits<LhsXprType>::Index,
+ typename traits<RhsXprType>::Index>::type Index;
+ typedef typename LhsXprType::Nested LhsNested;
+ typedef typename RhsXprType::Nested RhsNested;
+ typedef typename remove_reference<LhsNested>::type _LhsNested;
+ typedef typename remove_reference<RhsNested>::type _RhsNested;
+ static const int NumDimensions = traits<LhsXprType>::NumDimensions;
+ static const int Layout = traits<LhsXprType>::Layout;
+ enum { Flags = 0 };
+};
+
+template<typename Axis, typename LhsXprType, typename RhsXprType>
+struct eval<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, Eigen::Dense>
+{
+ typedef const TensorConcatenationOp<Axis, LhsXprType, RhsXprType>& type;
+};
+
+template<typename Axis, typename LhsXprType, typename RhsXprType>
+struct nested<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, 1, typename eval<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> >::type>
+{
+ typedef TensorConcatenationOp<Axis, LhsXprType, RhsXprType> type;
+};
+
+} // end namespace internal
+
+
+template<typename Axis, typename LhsXprType, typename RhsXprType>
+class TensorConcatenationOp : public TensorBase<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, WriteAccessors>
+{
+ public:
+ typedef typename internal::traits<TensorConcatenationOp>::Scalar Scalar;
+ typedef typename internal::traits<TensorConcatenationOp>::StorageKind StorageKind;
+ typedef typename internal::traits<TensorConcatenationOp>::Index Index;
+ typedef typename internal::nested<TensorConcatenationOp>::type Nested;
+ typedef typename internal::promote_storage_type<typename LhsXprType::CoeffReturnType,
+ typename RhsXprType::CoeffReturnType>::ret CoeffReturnType;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConcatenationOp(const LhsXprType& lhs, const RhsXprType& rhs, Axis axis)
+ : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_axis(axis) {}
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename LhsXprType::Nested>::type&
+ lhsExpression() const { return m_lhs_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename RhsXprType::Nested>::type&
+ rhsExpression() const { return m_rhs_xpr; }
+
+ EIGEN_DEVICE_FUNC const Axis& axis() const { return m_axis; }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorConcatenationOp& operator = (const TensorConcatenationOp& other)
+ {
+ typedef TensorAssignOp<TensorConcatenationOp, const TensorConcatenationOp> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorConcatenationOp& operator = (const OtherDerived& other)
+ {
+ typedef TensorAssignOp<TensorConcatenationOp, const OtherDerived> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ protected:
+ typename LhsXprType::Nested m_lhs_xpr;
+ typename RhsXprType::Nested m_rhs_xpr;
+ const Axis m_axis;
+};
+
+
+// Eval as rvalue
+template<typename Axis, typename LeftArgType, typename RightArgType, typename Device>
+struct TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device>
+{
+ typedef TensorConcatenationOp<Axis, LeftArgType, RightArgType> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumDims = internal::array_size<typename TensorEvaluator<LeftArgType, Device>::Dimensions>::value;
+ static const int RightNumDims = internal::array_size<typename TensorEvaluator<RightArgType, Device>::Dimensions>::value;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ enum {
+ IsAligned = false,
+ PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<LeftArgType, Device>::Layout,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_leftImpl(op.lhsExpression(), device), m_rightImpl(op.rhsExpression(), device), m_axis(op.axis())
+ {
+ EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout) || NumDims == 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ EIGEN_STATIC_ASSERT((NumDims == RightNumDims), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
+
+ eigen_assert(0 <= m_axis && m_axis < NumDims);
+ const Dimensions& lhs_dims = m_leftImpl.dimensions();
+ const Dimensions& rhs_dims = m_rightImpl.dimensions();
+ {
+ int i = 0;
+ for (; i < m_axis; ++i) {
+ eigen_assert(lhs_dims[i] > 0);
+ eigen_assert(lhs_dims[i] == rhs_dims[i]);
+ m_dimensions[i] = lhs_dims[i];
+ }
+ eigen_assert(lhs_dims[i] > 0); // Now i == m_axis.
+ eigen_assert(rhs_dims[i] > 0);
+ m_dimensions[i] = lhs_dims[i] + rhs_dims[i];
+ for (++i; i < NumDims; ++i) {
+ eigen_assert(lhs_dims[i] > 0);
+ eigen_assert(lhs_dims[i] == rhs_dims[i]);
+ m_dimensions[i] = lhs_dims[i];
+ }
+ }
+
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_leftStrides[0] = 1;
+ m_rightStrides[0] = 1;
+ m_outputStrides[0] = 1;
+
+ for (int j = 1; j < NumDims; ++j) {
+ m_leftStrides[j] = m_leftStrides[j-1] * lhs_dims[j-1];
+ m_rightStrides[j] = m_rightStrides[j-1] * rhs_dims[j-1];
+ m_outputStrides[j] = m_outputStrides[j-1] * m_dimensions[j-1];
+ }
+ } else {
+ m_leftStrides[NumDims - 1] = 1;
+ m_rightStrides[NumDims - 1] = 1;
+ m_outputStrides[NumDims - 1] = 1;
+
+ for (int j = NumDims - 2; j >= 0; --j) {
+ m_leftStrides[j] = m_leftStrides[j+1] * lhs_dims[j+1];
+ m_rightStrides[j] = m_rightStrides[j+1] * rhs_dims[j+1];
+ m_outputStrides[j] = m_outputStrides[j+1] * m_dimensions[j+1];
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ // TODO(phli): Add short-circuit memcpy evaluation if underlying data are linear?
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/)
+ {
+ m_leftImpl.evalSubExprsIfNeeded(NULL);
+ m_rightImpl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup()
+ {
+ m_leftImpl.cleanup();
+ m_rightImpl.cleanup();
+ }
+
+ // TODO(phli): attempt to speed this up. The integer divisions and modulo are slow.
+ // See CL/76180724 comments for more ideas.
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ // Collect dimension-wise indices (subs).
+ array<Index, NumDims> subs;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ subs[i] = index / m_outputStrides[i];
+ index -= subs[i] * m_outputStrides[i];
+ }
+ subs[0] = index;
+ } else {
+ for (int i = 0; i < NumDims - 1; ++i) {
+ subs[i] = index / m_outputStrides[i];
+ index -= subs[i] * m_outputStrides[i];
+ }
+ subs[NumDims - 1] = index;
+ }
+
+ const Dimensions& left_dims = m_leftImpl.dimensions();
+ if (subs[m_axis] < left_dims[m_axis]) {
+ Index left_index;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ left_index = subs[0];
+ for (int i = 1; i < NumDims; ++i) {
+ left_index += (subs[i] % left_dims[i]) * m_leftStrides[i];
+ }
+ } else {
+ left_index = subs[NumDims - 1];
+ for (int i = NumDims - 2; i >= 0; --i) {
+ left_index += (subs[i] % left_dims[i]) * m_leftStrides[i];
+ }
+ }
+ return m_leftImpl.coeff(left_index);
+ } else {
+ subs[m_axis] -= left_dims[m_axis];
+ const Dimensions& right_dims = m_rightImpl.dimensions();
+ Index right_index;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ right_index = subs[0];
+ for (int i = 1; i < NumDims; ++i) {
+ right_index += (subs[i] % right_dims[i]) * m_rightStrides[i];
+ }
+ } else {
+ right_index = subs[NumDims - 1];
+ for (int i = NumDims - 2; i >= 0; --i) {
+ right_index += (subs[i] % right_dims[i]) * m_rightStrides[i];
+ }
+ }
+ return m_rightImpl.coeff(right_index);
+ }
+ }
+
+ // TODO(phli): Add a real vectorization.
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
+ EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index + packetSize - 1 < dimensions().TotalSize());
+
+ EIGEN_ALIGN_MAX CoeffReturnType values[packetSize];
+ for (int i = 0; i < packetSize; ++i) {
+ values[i] = coeff(index+i);
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ const double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() +
+ 2 * TensorOpCost::MulCost<Index>() +
+ TensorOpCost::DivCost<Index>() +
+ TensorOpCost::ModCost<Index>());
+ const double lhs_size = m_leftImpl.dimensions().TotalSize();
+ const double rhs_size = m_rightImpl.dimensions().TotalSize();
+ return (lhs_size / (lhs_size + rhs_size)) *
+ m_leftImpl.costPerCoeff(vectorized) +
+ (rhs_size / (lhs_size + rhs_size)) *
+ m_rightImpl.costPerCoeff(vectorized) +
+ TensorOpCost(0, 0, compute_cost);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ protected:
+ Dimensions m_dimensions;
+ array<Index, NumDims> m_outputStrides;
+ array<Index, NumDims> m_leftStrides;
+ array<Index, NumDims> m_rightStrides;
+ TensorEvaluator<LeftArgType, Device> m_leftImpl;
+ TensorEvaluator<RightArgType, Device> m_rightImpl;
+ const Axis m_axis;
+};
+
+// Eval as lvalue
+template<typename Axis, typename LeftArgType, typename RightArgType, typename Device>
+ struct TensorEvaluator<TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device>
+ : public TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device>
+{
+ typedef TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device> Base;
+ typedef TensorConcatenationOp<Axis, LeftArgType, RightArgType> XprType;
+ typedef typename Base::Dimensions Dimensions;
+ enum {
+ IsAligned = false,
+ PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<LeftArgType, Device>::Layout,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(XprType& op, const Device& device)
+ : Base(op, device)
+ {
+ EIGEN_STATIC_ASSERT((static_cast<int>(Layout) == static_cast<int>(ColMajor)), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ }
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
+ {
+ // Collect dimension-wise indices (subs).
+ array<Index, Base::NumDims> subs;
+ for (int i = Base::NumDims - 1; i > 0; --i) {
+ subs[i] = index / this->m_outputStrides[i];
+ index -= subs[i] * this->m_outputStrides[i];
+ }
+ subs[0] = index;
+
+ const Dimensions& left_dims = this->m_leftImpl.dimensions();
+ if (subs[this->m_axis] < left_dims[this->m_axis]) {
+ Index left_index = subs[0];
+ for (int i = 1; i < Base::NumDims; ++i) {
+ left_index += (subs[i] % left_dims[i]) * this->m_leftStrides[i];
+ }
+ return this->m_leftImpl.coeffRef(left_index);
+ } else {
+ subs[this->m_axis] -= left_dims[this->m_axis];
+ const Dimensions& right_dims = this->m_rightImpl.dimensions();
+ Index right_index = subs[0];
+ for (int i = 1; i < Base::NumDims; ++i) {
+ right_index += (subs[i] % right_dims[i]) * this->m_rightStrides[i];
+ }
+ return this->m_rightImpl.coeffRef(right_index);
+ }
+ }
+
+ template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ void writePacket(Index index, const PacketReturnType& x)
+ {
+ const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
+ EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index + packetSize - 1 < this->dimensions().TotalSize());
+
+ EIGEN_ALIGN_MAX CoeffReturnType values[packetSize];
+ internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
+ for (int i = 0; i < packetSize; ++i) {
+ coeffRef(index+i) = values[i];
+ }
+ }
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H