aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h')
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h1052
1 files changed, 1052 insertions, 0 deletions
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h b/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h
new file mode 100644
index 000000000..ee16cde9b
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h
@@ -0,0 +1,1052 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
+#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
+
+// evaluator for thread pool device
+#ifdef EIGEN_USE_THREADS
+
+namespace Eigen {
+
+#ifdef EIGEN_USE_SIMPLE_THREAD_POOL
+namespace internal {
+
+template<typename LhsScalar, typename LhsMapper, typename Index>
+struct packLhsArg {
+ LhsScalar* blockA;
+ const LhsMapper& lhs;
+ const Index m_start;
+ const Index k_start;
+ const Index mc;
+ const Index kc;
+};
+
+template<typename LhsScalar, typename RhsScalar, typename RhsMapper, typename OutputMapper, typename Index>
+struct packRhsAndKernelArg {
+ const MaxSizeVector<LhsScalar*>* blockAs;
+ RhsScalar* blockB;
+ const RhsMapper& rhs;
+ OutputMapper& output;
+ const Index m;
+ const Index k;
+ const Index n;
+ const Index mc;
+ const Index kc;
+ const Index nc;
+ const Index num_threads;
+ const Index num_blockAs;
+ const Index max_m;
+ const Index k_block_idx;
+ const Index m_block_idx;
+ const Index n_block_idx;
+ const Index m_blocks;
+ const Index n_blocks;
+ MaxSizeVector<Notification*>* kernel_notifications;
+ const MaxSizeVector<Notification*>* lhs_notifications;
+ const bool need_to_pack;
+};
+
+} // end namespace internal
+#endif // EIGEN_USE_SIMPLE_THREAD_POOL
+
+template<typename Indices, typename LeftArgType, typename RightArgType>
+struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> :
+ public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> > {
+
+ typedef ThreadPoolDevice Device;
+
+ typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
+ typedef TensorContractionEvaluatorBase<Self> Base;
+
+ typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
+ typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
+ typedef typename XprType::Index Index;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+
+ enum {
+ Layout = TensorEvaluator<LeftArgType, Device>::Layout,
+ };
+
+ // Most of the code is assuming that both input tensors are ColMajor. If the
+ // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
+ // If we want to compute A * B = C, where A is LHS and B is RHS, the code
+ // will pretend B is LHS and A is RHS.
+ typedef typename internal::conditional<
+ static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
+ typedef typename internal::conditional<
+ static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
+
+ static const int LDims =
+ internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
+ static const int RDims =
+ internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
+ static const int ContractDims = internal::array_size<Indices>::value;
+
+ typedef array<Index, LDims> left_dim_mapper_t;
+ typedef array<Index, RDims> right_dim_mapper_t;
+
+ typedef array<Index, ContractDims> contract_t;
+ typedef array<Index, LDims - ContractDims> left_nocontract_t;
+ typedef array<Index, RDims - ContractDims> right_nocontract_t;
+
+ static const int NumDims = LDims + RDims - 2 * ContractDims;
+
+ typedef DSizes<Index, NumDims> Dimensions;
+
+ // typedefs needed in evalTo
+ typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
+ typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
+ typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
+
+ typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
+ typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
+
+ TensorEvaluator(const XprType& op, const Device& device) :
+ Base(op, device) {}
+
+#ifndef EIGEN_USE_SIMPLE_THREAD_POOL
+ template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
+ bool rhs_inner_dim_reordered, int Alignment>
+ void evalProduct(Scalar* buffer) const {
+ typedef
+ typename internal::remove_const<typename EvalLeftArgType::Scalar>::type
+ LhsScalar;
+ typedef
+ typename internal::remove_const<typename EvalRightArgType::Scalar>::type
+ RhsScalar;
+ typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
+ typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
+ typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
+ typedef internal::TensorContractionInputMapper<
+ LhsScalar, Index, internal::Lhs, LeftEvaluator, left_nocontract_t,
+ contract_t, internal::packet_traits<LhsScalar>::size,
+ lhs_inner_dim_contiguous, false, Unaligned>
+ LhsMapper;
+ typedef internal::TensorContractionInputMapper<
+ RhsScalar, Index, internal::Rhs, RightEvaluator, right_nocontract_t,
+ contract_t, internal::packet_traits<RhsScalar>::size,
+ rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Unaligned>
+ RhsMapper;
+ typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
+ typedef internal::gemm_pack_lhs<LhsScalar, Index,
+ typename LhsMapper::SubMapper, Traits::mr,
+ Traits::LhsProgress, ColMajor>
+ LhsPacker;
+ typedef internal::gemm_pack_rhs<
+ RhsScalar, Index, typename RhsMapper::SubMapper, Traits::nr, ColMajor>
+ RhsPacker;
+ typedef internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper,
+ Traits::mr, Traits::nr, false, false>
+ GebpKernel;
+
+ const Index m = this->m_i_size;
+ const Index n = this->m_j_size;
+ const Index k = this->m_k_size;
+ if (m == 0 || n == 0 || k == 0) return;
+
+ // Compute a set of algorithm parameters:
+ // - kernel block sizes (bm, bn, bk)
+ // - task grain sizes (number of kernels executed per task: gm, gn)
+ // - number of threads
+ // - sharding by row/column
+ // - parallel packing or first lhs then rhs
+ // and some derived parameters:
+ // - number of tasks (nm, nn, nk)
+ // - number of kernels (nm0, nn0)
+ // Unfortunately, all these parameters are tightly interdependent.
+ // So in some cases we first compute approximate values, then compute other
+ // values based on these approximations and then refine the approximations.
+
+ // There are lots of heuristics here. There is some reasoning behind them,
+ // but ultimately they are just tuned on contraction benchmarks for
+ // different input configurations, thread counts and instruction sets.
+ // So feel free to question any of them.
+
+ // Compute whether we want to shard by row or by column.
+ // This is a first approximation, it will be refined later. Since we don't
+ // know number of threads yet we use 2, because what's we are most
+ // interested in at this point is whether it makes sense to use
+ // parallelization at all or not.
+ bool shard_by_col = shardByCol(m, n, 2);
+
+ // First approximation of kernel blocking sizes.
+ // Again, we don't know number of threads yet, so we use 2.
+ Index bm, bn, bk;
+ if (shard_by_col) {
+ internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
+ internal::ShardByCol>
+ blocking(k, m, n, 2);
+ bm = blocking.mc();
+ bn = blocking.nc();
+ bk = blocking.kc();
+ } else {
+ internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
+ internal::ShardByRow>
+ blocking(k, m, n, 2);
+ bm = blocking.mc();
+ bn = blocking.nc();
+ bk = blocking.kc();
+ }
+
+ // Compute optimal number of threads.
+ // Note: we use bk instead of k here because we are interested in amount of
+ // _parallelizable_ computations, and computations are not parallelizable
+ // across k dimension.
+ const TensorOpCost cost =
+ contractionCost(m, n, bm, bn, bk, shard_by_col, false);
+ int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
+ static_cast<double>(n) * m, cost, this->m_device.numThreads());
+
+ // TODO(dvyukov): this is a stop-gap to prevent regressions while the cost
+ // model is not tuned. Remove this when the cost model is tuned.
+ if (n == 1) num_threads = 1;
+
+ if (num_threads == 1) {
+ // The single-threaded algorithm should be faster in this case.
+ if (n == 1)
+ this->template evalGemv<lhs_inner_dim_contiguous,
+ rhs_inner_dim_contiguous,
+ rhs_inner_dim_reordered, Alignment>(buffer);
+ else
+ this->template evalGemm<lhs_inner_dim_contiguous,
+ rhs_inner_dim_contiguous,
+ rhs_inner_dim_reordered, Alignment>(buffer);
+ return;
+ }
+
+ // Now that we know number of threads, recalculate sharding and blocking.
+ shard_by_col = shardByCol(m, n, num_threads);
+ if (shard_by_col) {
+ internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
+ internal::ShardByCol>
+ blocking(k, m, n, num_threads);
+ bm = blocking.mc();
+ bn = blocking.nc();
+ bk = blocking.kc();
+ } else {
+ internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
+ internal::ShardByRow>
+ blocking(k, m, n, num_threads);
+ bm = blocking.mc();
+ bn = blocking.nc();
+ bk = blocking.kc();
+ }
+
+ // Number of kernels for each dimension.
+ Index nm0 = divup(m, bm);
+ Index nn0 = divup(n, bn);
+ Index nk = divup(k, bk);
+
+ // Calculate task grain size (number of kernels executed per task).
+ // This task size coarsening serves two purposes:
+ // 1. It reduces per-task overheads including synchronization overheads.
+ // 2. It allows to use caches better (reuse the same packed rhs in several
+ // consecutive kernels).
+ Index gm = 1;
+ Index gn = 1;
+ // If we are sharding by column, then we prefer to reduce rows first.
+ if (shard_by_col) {
+ gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col);
+ gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col);
+ } else {
+ gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col);
+ gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col);
+ }
+ // Number of tasks in each dimension.
+ Index nm = divup(nm0, gm);
+ Index nn = divup(nn0, gn);
+
+ // Last by not least, decide whether we want to issue both lhs and rhs
+ // packing in parallel; or issue lhs packing first, and then issue rhs
+ // packing when lhs packing completes (for !shard_by_col lhs and rhs are
+ // swapped). Parallel packing allows more parallelism (for both packing and
+ // kernels), while sequential packing provides better locality (once
+ // a thread finishes rhs packing it proceed to kernels with that rhs).
+ // First, we are interested in parallel packing if there are few tasks.
+ bool parallel_pack = num_threads >= nm * nn;
+ // Also do parallel packing if all data fits into L2$.
+ if (m * bk * Index(sizeof(LhsScalar)) + n * bk * Index(sizeof(RhsScalar)) <=
+ l2CacheSize() * num_threads)
+ parallel_pack = true;
+ // But don't do it if we will use each rhs only once. Locality seems to be
+ // more important in this case.
+ if ((shard_by_col ? nm : nn) == 1) parallel_pack = false;
+
+ LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides,
+ this->m_i_strides, this->m_left_contracting_strides,
+ this->m_k_strides);
+
+ RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides,
+ this->m_j_strides, this->m_right_contracting_strides,
+ this->m_k_strides);
+
+ Context<LhsPacker, RhsPacker, GebpKernel, LhsMapper, RhsMapper,
+ OutputMapper>(this->m_device, num_threads, lhs, rhs, buffer, m, n,
+ k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, nn0,
+ shard_by_col, parallel_pack)
+ .run();
+ }
+
+ // Context coordinates a single parallel gemm operation.
+ template <typename LhsPacker, typename RhsPacker, typename GebpKernel,
+ typename LhsMapper, typename RhsMapper, typename OutputMapper>
+ class Context {
+ public:
+ Context(const Device& device, int num_threads, LhsMapper& lhs,
+ RhsMapper& rhs, Scalar* buffer, Index tm, Index tn, Index tk, Index bm,
+ Index bn, Index bk, Index nm, Index nn, Index nk, Index gm,
+ Index gn, Index nm0, Index nn0, bool shard_by_col,
+ bool parallel_pack)
+ : device_(device),
+ lhs_(lhs),
+ rhs_(rhs),
+ buffer_(buffer),
+ output_(buffer, tm),
+ num_threads_(num_threads),
+ shard_by_col_(shard_by_col),
+ parallel_pack_(parallel_pack),
+ m_(tm),
+ n_(tn),
+ k_(tk),
+ bm_(bm),
+ bn_(bn),
+ bk_(bk),
+ nm_(nm),
+ nn_(nn),
+ nk_(nk),
+ gm_(gm),
+ gn_(gn),
+ nm0_(nm0),
+ nn0_(nn0)
+ {
+ for (Index x = 0; x < P; x++) {
+ // Normal number of notifications for k slice switch is
+ // nm_ + nn_ + nm_ * nn_. However, first P - 1 slices will receive only
+ // nm_ + nn_ notifications, because they will not receive notifications
+ // from preceeding kernels.
+ state_switch_[x] =
+ x == 0
+ ? 1
+ : (parallel_pack_ ? nn_ + nm_ : (shard_by_col_ ? nn_ : nm_)) +
+ (x == P - 1 ? nm_ * nn_ : 0);
+ state_packing_ready_[x] =
+ parallel_pack_ ? 0 : (shard_by_col_ ? nm_ : nn_);
+ state_kernel_[x] = new std::atomic<uint8_t>*[nm_];
+ for (Index m = 0; m < nm_; m++) {
+ state_kernel_[x][m] = new std::atomic<uint8_t>[nn_];
+ // Kernels generally receive 3 notifications (previous kernel + 2
+ // packing), but the first slice won't get notifications from previous
+ // kernels.
+ for (Index n = 0; n < nn_; n++)
+ state_kernel_[x][m][n].store(
+ (x == 0 ? 0 : 1) + (parallel_pack_ ? 2 : 1),
+ std::memory_order_relaxed);
+ }
+ }
+
+ // Allocate memory for packed rhs/lhs matrices.
+ size_t align = numext::maxi(EIGEN_MAX_ALIGN_BYTES, 1);
+ size_t lhs_size =
+ divup<size_t>(bm_ * bk_ * sizeof(LhsScalar), align) * align;
+ size_t rhs_size =
+ divup<size_t>(bn_ * bk_ * sizeof(RhsScalar), align) * align;
+ packed_mem_ = static_cast<char*>(internal::aligned_malloc(
+ (nm0_ * lhs_size + nn0_ * rhs_size) * std::min<size_t>(nk_, P - 1)));
+ char* mem = static_cast<char*>(packed_mem_);
+ for (Index x = 0; x < numext::mini<Index>(nk_, P - 1); x++) {
+ packed_lhs_[x].resize(nm0_);
+ for (Index m = 0; m < nm0_; m++) {
+ packed_lhs_[x][m] = reinterpret_cast<LhsScalar*>(mem);
+ mem += lhs_size;
+ }
+ packed_rhs_[x].resize(nn0_);
+ for (Index n = 0; n < nn0_; n++) {
+ packed_rhs_[x][n] = reinterpret_cast<RhsScalar*>(mem);
+ mem += rhs_size;
+ }
+ }
+ }
+
+ ~Context() {
+ for (Index x = 0; x < P; x++) {
+ for (Index m = 0; m < nm_; m++) delete[] state_kernel_[x][m];
+ delete[] state_kernel_[x];
+ }
+ internal::aligned_free(packed_mem_);
+ }
+
+ void run() {
+ // Kick off packing of the first slice.
+ signal_switch(0, 1);
+ // Wait for overall completion.
+ // TODO(dvyukov): this wait can lead to deadlock.
+ // If nthreads contractions are concurrently submitted from worker
+ // threads, this wait will block all worker threads and the system will
+ // deadlock.
+ done_.Wait();
+ }
+
+ private:
+ Notification done_;
+ const Device& device_;
+ LhsMapper& lhs_;
+ RhsMapper& rhs_;
+ Scalar* const buffer_;
+ OutputMapper output_;
+ const int num_threads_;
+ const bool shard_by_col_;
+ const bool parallel_pack_;
+ // Matrix sizes.
+ const Index m_;
+ const Index n_;
+ const Index k_;
+ // Block sizes.
+ const Index bm_;
+ const Index bn_;
+ const Index bk_;
+ // Number of tasks.
+ const Index nm_;
+ const Index nn_;
+ const Index nk_;
+ // Task grain sizes (number of kernels executed per task).
+ const Index gm_;
+ const Index gn_;
+ // Number of blocks (this is different from ni_/nn_ because of task size
+ // coarsening).
+ const Index nm0_;
+ const Index nn0_;
+
+ // Parallelization strategy.
+ //
+ // Blocks related to the same k block can run in parallel because they write
+ // to different output blocks. So we parallelize within k slices, this
+ // gives us parallelism level of m x n. Before we can start any kernels
+ // related to k-th slice, we need to issue m lhs packing tasks and n rhs
+ // packing tasks.
+ //
+ // However, there is a bottleneck when we are finishing kernels for k-th
+ // slice (at the very end there is only 1 runnable kernel). To mitigate this
+ // bottleneck we allow kernels from k-th and k+1-th slices to run in
+ // parallel. Note that (m, n, k) and (m, n, k+1) kernels write to the same
+ // output block, so they must not run in parallel.
+ //
+ // This gives us the following dependency graph.
+ // On each k slice we have m x n kernel tasks, m lhs paking tasks and n rhs
+ // packing tasks.
+ // Kernel (m, n, k) can start when:
+ // - kernel (m, n, k-1) has finished
+ // - lhs packing (m, k) has finished
+ // - rhs packing (n, k) has finished
+ // Lhs/rhs packing can start when:
+ // - all k-1 packing has finished (artificially imposed to limit amount of
+ // parallel packing)
+ //
+ // On top of that we limit runnable tasks to two consecutive k slices.
+ // This is done to limit amount of memory we need for packed lhs/rhs
+ // (for each k slice we need m*bk + n*bk memory in packed_lhs_/packed_rhs_).
+ //
+ // state_switch_ tracks when we are ready to switch to the next k slice.
+ // state_kernel_[m][n] tracks when we are ready to kick off kernel (m, n).
+ // These variable are rolling over 3 consecutive k slices: first two we are
+ // actively executing + one to track completion of kernels in the second
+ // slice.
+ static const Index P = 3;
+ void* packed_mem_;
+ std::vector<LhsScalar*> packed_lhs_[P - 1];
+ std::vector<RhsScalar*> packed_rhs_[P - 1];
+ std::atomic<uint8_t>** state_kernel_[P];
+ // state_switch_ is frequently modified by worker threads, while other
+ // fields are read-only after constructor. Let's move it to a separate cache
+ // line to reduce cache-coherency traffic.
+ char pad_[128];
+ std::atomic<Index> state_packing_ready_[P];
+ std::atomic<Index> state_switch_[P];
+
+ void pack_lhs(Index m, Index k) {
+ const Index mend = m * gm_ + gm(m);
+ for (Index m1 = m * gm_; m1 < mend; m1++)
+ LhsPacker()(packed_lhs_[k % (P - 1)][m1],
+ lhs_.getSubMapper(m1 * bm_, k * bk_), bk(k), bm(m1));
+
+ if (!parallel_pack_ && shard_by_col_) {
+ signal_packing(k);
+ } else {
+ signal_switch(k + 1);
+ for (Index n = nn_ - 1; n >= 0; n--) signal_kernel(m, n, k, n == 0);
+ }
+ }
+
+ void pack_rhs(Index n, Index k) {
+ const Index nend = n * gn_ + gn(n);
+ for (Index n1 = n * gn_; n1 < nend; n1++) {
+ if (k == 0) {
+ // Zero the output memory in parallel.
+ // On 10000x2x10000 mm zeroing can easily take half of time.
+ // Zero (bn x m) row. Safe to do here because all kernels that will
+ // write to this memory depend on completion of this task.
+ // Note: don't call device_.memset() here. device_.memset() blocks on
+ // thread pool worker thread, which can lead to underutilization and
+ // deadlocks.
+ memset(buffer_ + n1 * bn_ * m_, 0, bn(n1) * m_ * sizeof(Scalar));
+ }
+ RhsPacker()(packed_rhs_[k % (P - 1)][n1],
+ rhs_.getSubMapper(k * bk_, n1 * bn_), bk(k), bn(n1));
+ }
+
+ if (parallel_pack_ || shard_by_col_) {
+ signal_switch(k + 1);
+ for (Index m = nm_ - 1; m >= 0; m--) signal_kernel(m, n, k, m == 0);
+ } else {
+ signal_packing(k);
+ }
+ }
+
+ void kernel(Index m, Index n, Index k) {
+ // Note: order of iteration matters here. Iteration over m is innermost
+ // because we want to reuse the same packed rhs in consequetive tasks
+ // (rhs fits into L2$ while lhs only into L3$).
+ const Index nend = n * gn_ + gn(n);
+ const Index mend = m * gm_ + gm(m);
+ if (shard_by_col_) {
+ for (Index n1 = n * gn_; n1 < nend; n1++) {
+ for (Index m1 = m * gm_; m1 < mend; m1++)
+ GebpKernel()(output_.getSubMapper(m1 * bm_, n1 * bn_),
+ packed_lhs_[k % (P - 1)][m1],
+ packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1),
+ Scalar(1), -1, -1, 0, 0);
+ }
+ } else {
+ for (Index m1 = m * gm_; m1 < mend; m1++)
+ for (Index n1 = n * gn_; n1 < nend; n1++) {
+ GebpKernel()(output_.getSubMapper(m1 * bm_, n1 * bn_),
+ packed_lhs_[k % (P - 1)][m1],
+ packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1),
+ Scalar(1), -1, -1, 0, 0);
+ }
+ }
+ signal_kernel(m, n, k + 1, false);
+ signal_switch(k + 2);
+ }
+
+ void signal_packing(Index k) {
+ eigen_assert(!parallel_pack_);
+ Index s = state_packing_ready_[k % P].fetch_sub(1);
+ eigen_assert(s > 0);
+ if (s != 1) return;
+ state_packing_ready_[k % P] = shard_by_col_ ? nm_ : nn_;
+ enqueue_packing(k, shard_by_col_);
+ }
+
+ void signal_kernel(Index m, Index n, Index k, bool sync) {
+ std::atomic<uint8_t>* state = &state_kernel_[k % P][m][n];
+ Index s = state->load();
+ eigen_assert(s > 0);
+ if (s != 1 && state->fetch_sub(1) != 1) return;
+ state->store(parallel_pack_ ? 3 : 2, std::memory_order_relaxed);
+ if (sync)
+ kernel(m, n, k);
+ else
+ device_.enqueueNoNotification([=]() { kernel(m, n, k); });
+ }
+
+ void signal_switch(Index k, Index v = 1) {
+ Index s = state_switch_[k % P].fetch_sub(v);
+ eigen_assert(s >= v);
+ if (s != v) return;
+
+ // Ready to switch to the next k slice.
+ // Reset counter for the next iteration.
+ state_switch_[k % P] =
+ (parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_)) +
+ nm_ * nn_;
+ if (k < nk_) {
+ // Issue lhs/rhs packing. Their completion will in turn kick off
+ // kernels.
+ if (parallel_pack_) {
+ enqueue_packing(k, !shard_by_col_);
+ enqueue_packing(k, shard_by_col_);
+ } else if (shard_by_col_) {
+ enqueue_packing(k, false);
+ } else {
+ enqueue_packing(k, true);
+ }
+
+ // Termination handling.
+ // Because kernel completion signals k + 2 switch, we need to finish nk
+ // + 2 slices without issuing any tasks on nk + 1 slice. So here we
+ // pretend that all nk + 1 packing tasks just finish instantly; so that
+ // nk + 2 switch only waits for completion of nk kernels.
+ } else if (k == nk_) {
+ signal_switch(k + 1,
+ parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_));
+ } else {
+ done_.Notify();
+ }
+ }
+
+ // Enqueue all rhs/lhs packing for k-th slice.
+ void enqueue_packing(Index k, bool rhs) {
+ enqueue_packing_helper(0, rhs ? nn_ : nm_, k, rhs);
+ }
+
+ void enqueue_packing_helper(Index start, Index end, Index k, bool rhs) {
+ if (end - start == 1) {
+ if (rhs)
+ pack_rhs(start, k);
+ else
+ pack_lhs(start, k);
+ } else {
+ Index mid = (start + end) / 2;
+ device_.enqueueNoNotification(
+ [=]() { enqueue_packing_helper(mid, end, k, rhs); });
+ device_.enqueueNoNotification(
+ [=]() { enqueue_packing_helper(start, mid, k, rhs); });
+ }
+ }
+
+ // Block sizes with accounting for potentially incomplete last block.
+ Index bm(Index m) const { return m + 1 < nm0_ ? bm_ : m_ + bm_ - bm_ * nm0_; }
+ Index bn(Index n) const { return n + 1 < nn0_ ? bn_ : n_ + bn_ - bn_ * nn0_; }
+ Index bk(Index k) const { return k + 1 < nk_ ? bk_ : k_ + bk_ - bk_ * nk_; }
+ // Task grain sizes accounting for potentially incomplete last task.
+ Index gm(Index m) const { return m + 1 < nm_ ? gm_ : nm0_ + gm_ - gm_ * nm_; }
+ Index gn(Index n) const { return n + 1 < nn_ ? gn_ : nn0_ + gn_ - gn_ * nn_; }
+
+ Context(const Context&) = delete;
+ void operator=(const Context&) = delete;
+ };
+
+ // Decide whether we want to shard m x n contraction by columns or by rows.
+ static bool shardByCol(Index m, Index n, Index num_threads) {
+ // Note: we are comparing both n and m against Traits::nr, it is not
+ // a mistake. We are trying to figure out how both n and m will fit into
+ // the main sharding dimension.
+
+ // Sharding by column is the default
+ // ... unless there is enough data for vectorization over rows
+ if (m / num_threads >= Traits::nr &&
+ // and not enough data for vectorization over columns
+ (n / num_threads < Traits::nr ||
+ // ... or barely enough data for vectorization over columns,
+ // but it is not evenly dividable across threads
+ (n / num_threads < 4 * Traits::nr &&
+ (n % (num_threads * Traits::nr)) != 0 &&
+ // ... and it is evenly dividable across threads for rows
+ ((m % (num_threads * Traits::nr)) == 0 ||
+ // .. or it is not evenly dividable for both dimensions but
+ // there is much more data over rows so that corner effects are
+ // mitigated.
+ (m / n >= 6)))))
+ return false;
+ // Wait, or if matrices are just substantially prolonged over the other
+ // dimension.
+ if (n / num_threads < 16 * Traits::nr && m > n * 32) return false;
+ return true;
+ }
+
+ Index coarsenM(Index m, Index n, Index bm, Index bn, Index bk, Index gn,
+ int num_threads, bool shard_by_col) const {
+ Index gm = 1;
+ Index gm1 = 1;
+ Index nm0 = divup(m, bm);
+ Index nm1 = nm0;
+ for (;;) {
+ // Find the next candidate for m grain size. It needs to result in
+ // different number of blocks. E.g. if we have 10 kernels, we want to try
+ // 5 and 10, but not 6, 7, 8 and 9.
+ while (gm1 <= nm0 && nm1 == divup(nm0, gm1)) gm1++;
+ if (gm1 > nm0) break;
+ // Check the candidate.
+ int res = checkGrain(m, n, bm, bn, bk, gm1, gn, gm, gn, num_threads,
+ shard_by_col);
+ if (res < 0) break;
+ nm1 = divup(nm0, gm1);
+ if (res == 0) continue;
+ // Commit new grain size.
+ gm = gm1;
+ }
+ return gm;
+ }
+
+ Index coarsenN(Index m, Index n, Index bm, Index bn, Index bk, Index gm,
+ int num_threads, bool shard_by_col) const {
+ Index gn = 1;
+ Index gn1 = 1;
+ Index nn0 = divup(n, bn);
+ Index nn1 = nn0;
+ for (;;) {
+ while (gn1 <= nn0 && nn1 == divup(nn0, gn1)) gn1++;
+ if (gn1 > nn0) break;
+ int res = checkGrain(m, n, bm, bn, bk, gm, gn1, gm, gn, num_threads,
+ shard_by_col);
+ if (res < 0) break;
+ nn1 = divup(nn0, gn1);
+ if (res == 0) continue;
+ gn = gn1;
+ }
+ return gn;
+ }
+
+ // checkGrain checks whether grain (gm, gn) is suitable and is better than
+ // (oldgm, oldgn).
+ int checkGrain(Index m, Index n, Index bm, Index bn, Index bk, Index gm,
+ Index gn, Index oldgm, Index oldgn, int num_threads,
+ bool shard_by_col) const {
+ const TensorOpCost cost =
+ contractionCost(bm * gm, bn * gn, bm, bn, bk, shard_by_col, true);
+ double taskSize = TensorCostModel<ThreadPoolDevice>::taskSize(
+ static_cast<double>(bm) * gm * bn * gn, cost);
+ // If the task is too small, then we agree on it regardless of anything
+ // else. Otherwise synchronization overheads will dominate.
+ if (taskSize < 1) return 1;
+ // If it is too large, then we reject it and all larger tasks.
+ if (taskSize > 2) return -1;
+ // Now we are in presumably good task size range.
+ // The main deciding factor here is parallelism. Consider that we have 12
+ // kernels and 4 threads. Grains of 2, 3 and 4 all yield good task sizes.
+ // But 2/4 yield 6/3 tasks, which gives us parallelism of 0.75 (at most 3/4
+ // of cores will be busy). While grain size 3 gives us 4 tasks, which gives
+ // us parallelism of 1 (we can load all cores).
+ Index nm0 = divup(m, bm);
+ Index nn0 = divup(n, bn);
+ Index new_tasks = divup(nm0, gm) * divup(nn0, gn);
+ double new_parallelism = static_cast<double>(new_tasks) /
+ (divup<int>(new_tasks, num_threads) * num_threads);
+ Index old_tasks = divup(nm0, oldgm) * divup(nn0, oldgn);
+ double old_parallelism = static_cast<double>(old_tasks) /
+ (divup<int>(old_tasks, num_threads) * num_threads);
+ if (new_parallelism > old_parallelism || new_parallelism == 1) return 1;
+ return 0;
+ }
+
+#else // EIGEN_USE_SIMPLE_THREAD_POOL
+
+ template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
+ void evalProduct(Scalar* buffer) const {
+ if (this->m_j_size == 1) {
+ this->template evalGemv<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
+ return;
+ }
+
+ evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
+ }
+
+ template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
+ void evalGemm(Scalar* buffer) const {
+ // columns in left side, rows in right side
+ const Index k = this->m_k_size;
+
+ // rows in left side
+ const Index m = this->m_i_size;
+
+ // columns in right side
+ const Index n = this->m_j_size;
+
+ // zero out the result buffer (which must be of size at least m * n * sizeof(Scalar)
+ this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
+
+
+ const int lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size;
+ const int rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size;
+
+ typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
+ LeftEvaluator, left_nocontract_t,
+ contract_t, lhs_packet_size,
+ lhs_inner_dim_contiguous,
+ false, Unaligned> LhsMapper;
+
+ typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
+ RightEvaluator, right_nocontract_t,
+ contract_t, rhs_packet_size,
+ rhs_inner_dim_contiguous,
+ rhs_inner_dim_reordered, Unaligned> RhsMapper;
+
+ typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
+
+ // TODO: packing could be faster sometimes if we supported row major tensor mappers
+ typedef internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, Traits::mr,
+ Traits::LhsProgress, ColMajor> LhsPacker;
+ typedef internal::gemm_pack_rhs<RhsScalar, Index, typename RhsMapper::SubMapper, Traits::nr, ColMajor> RhsPacker;
+
+ // TODO: replace false, false with conjugate values?
+ typedef internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper,
+ Traits::mr, Traits::nr, false, false> GebpKernel;
+
+ typedef internal::packLhsArg<LhsScalar, LhsMapper, Index> packLArg;
+ typedef internal::packRhsAndKernelArg<LhsScalar, RhsScalar, RhsMapper, OutputMapper, Index> packRKArg;
+
+ // initialize data mappers
+ LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
+ this->m_left_contracting_strides, this->m_k_strides);
+
+ RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
+ this->m_right_contracting_strides, this->m_k_strides);
+
+ OutputMapper output(buffer, m);
+
+ // compute block sizes (which depend on number of threads)
+ const Index num_threads = this->m_device.numThreads();
+ internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index, internal::ShardByCol> blocking(k, m, n, num_threads);
+ Index mc = blocking.mc();
+ Index nc = blocking.nc();
+ Index kc = blocking.kc();
+ eigen_assert(mc <= m);
+ eigen_assert(nc <= n);
+ eigen_assert(kc <= k);
+
+#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
+ const Index k_blocks = CEIL_DIV(k, kc);
+ const Index n_blocks = CEIL_DIV(n, nc);
+ const Index m_blocks = CEIL_DIV(m, mc);
+ const Index sizeA = mc * kc;
+ const Index sizeB = kc * nc;
+
+ /* cout << "m: " << m << " n: " << n << " k: " << k << endl;
+ cout << "mc: " << mc << " nc: " << nc << " kc: " << kc << endl;
+ cout << "m_blocks: " << m_blocks << " n_blocks: " << n_blocks << " k_blocks: " << k_blocks << endl;
+ cout << "num threads: " << num_threads << endl;
+ */
+
+ // note: m_device.allocate should return 16 byte aligned pointers, but if blockA and blockB
+ // aren't 16 byte aligned segfaults will happen due to SIMD instructions
+ // note: You can get away with allocating just a single blockA and offsets and meet the
+ // the alignment requirements with the assumption that
+ // (Traits::mr * sizeof(ResScalar)) % 16 == 0
+ const Index numBlockAs = numext::mini(num_threads, m_blocks);
+ MaxSizeVector<LhsScalar *> blockAs(num_threads);
+ for (int i = 0; i < num_threads; i++) {
+ blockAs.push_back(static_cast<LhsScalar *>(this->m_device.allocate(sizeA * sizeof(LhsScalar))));
+ }
+
+ // To circumvent alignment issues, I'm just going to separately allocate the memory for each thread
+ // TODO: is this too much memory to allocate? This simplifies coding a lot, but is wasteful.
+ // Other options: (1) reuse memory when a thread finishes. con: tricky
+ // (2) allocate block B memory in each thread. con: overhead
+ MaxSizeVector<RhsScalar *> blockBs(n_blocks);
+ for (int i = 0; i < n_blocks; i++) {
+ blockBs.push_back(static_cast<RhsScalar *>(this->m_device.allocate(sizeB * sizeof(RhsScalar))));
+ }
+
+ // lhs_notifications starts with all null Notifications
+ MaxSizeVector<Notification*> lhs_notifications(num_threads, nullptr);
+
+ // this should really be numBlockAs * n_blocks;
+ const Index num_kernel_notifications = num_threads * n_blocks;
+ MaxSizeVector<Notification*> kernel_notifications(num_kernel_notifications,
+ nullptr);
+
+ for (Index k_block_idx = 0; k_block_idx < k_blocks; k_block_idx++) {
+ const Index k_start = k_block_idx * kc;
+ // make sure we don't overshoot right edge of left matrix
+ const Index actual_kc = numext::mini(k_start + kc, k) - k_start;
+
+ for (Index m_block_idx = 0; m_block_idx < m_blocks; m_block_idx += numBlockAs) {
+ const Index num_blocks = numext::mini(m_blocks-m_block_idx, numBlockAs);
+
+ for (Index mt_block_idx = m_block_idx; mt_block_idx < m_block_idx+num_blocks; mt_block_idx++) {
+ const Index m_start = mt_block_idx * mc;
+ const Index actual_mc = numext::mini(m_start + mc, m) - m_start;
+ eigen_assert(actual_mc > 0);
+
+ Index blockAId = (k_block_idx * m_blocks + mt_block_idx) % num_threads;
+
+ for (int i = 0; i < n_blocks; ++i) {
+ Index notification_id = (blockAId * n_blocks + i);
+ // Wait for any current kernels using this slot to complete
+ // before using it.
+ if (kernel_notifications[notification_id]) {
+ wait_until_ready(kernel_notifications[notification_id]);
+ delete kernel_notifications[notification_id];
+ }
+ kernel_notifications[notification_id] = new Notification();
+ }
+ const packLArg arg = {
+ blockAs[blockAId], // blockA
+ lhs, // lhs
+ m_start, // m
+ k_start, // k
+ actual_mc, // mc
+ actual_kc, // kc
+ };
+
+ // Delete any existing notification since we may be
+ // replacing it. The algorithm should ensure that there are
+ // no existing waiters on this notification.
+ delete lhs_notifications[blockAId];
+ lhs_notifications[blockAId] =
+ this->m_device.enqueue(&Self::packLhs<packLArg, LhsPacker>, arg);
+ }
+
+ // now start kernels.
+ const Index m_base_start = m_block_idx * mc;
+ const bool need_to_pack = m_block_idx == 0;
+
+ for (Index n_block_idx = 0; n_block_idx < n_blocks; n_block_idx++) {
+ const Index n_start = n_block_idx * nc;
+ const Index actual_nc = numext::mini(n_start + nc, n) - n_start;
+
+ // first make sure the previous kernels are all done before overwriting rhs. Also wait if
+ // we're going to start new k. In both cases need_to_pack is true.
+ if (need_to_pack) {
+ for (Index i = num_blocks; i < num_threads; ++i) {
+ Index blockAId = (k_block_idx * m_blocks + i + m_block_idx) % num_threads;
+ Index future_id = (blockAId * n_blocks + n_block_idx);
+ wait_until_ready(kernel_notifications[future_id]);
+ }
+ }
+
+ packRKArg arg = {
+ &blockAs, // blockA
+ blockBs[n_block_idx], // blockB
+ rhs, // rhs
+ output, // output
+ m_base_start, // m
+ k_start, // k
+ n_start, // n
+ mc, // mc
+ actual_kc, // kc
+ actual_nc, // nc
+ num_threads,
+ numBlockAs,
+ m,
+ k_block_idx,
+ m_block_idx,
+ n_block_idx, // n_block_idx
+ m_blocks, // m_blocks
+ n_blocks, // n_blocks
+ &kernel_notifications, // kernel notifications
+ &lhs_notifications, // lhs notifications
+ need_to_pack, // need_to_pack
+ };
+
+ // We asynchronously kick off this function, which ends up
+ // notifying the appropriate kernel_notifications objects,
+ // which this thread waits on before exiting.
+ this->m_device.enqueueNoNotification(&Self::packRhsAndKernel<packRKArg, RhsPacker, GebpKernel>, arg);
+ }
+ }
+ }
+
+ // Make sure all the kernels are done.
+ for (size_t i = 0; i < kernel_notifications.size(); ++i) {
+ wait_until_ready(kernel_notifications[i]);
+ delete kernel_notifications[i];
+ }
+
+ // No need to wait for lhs notifications since they should have
+ // already been waited on. Just clean them up.
+ for (size_t i = 0; i < lhs_notifications.size(); ++i) {
+ delete lhs_notifications[i];
+ }
+
+ // deallocate all of the memory for both A and B's
+ for (size_t i = 0; i < blockAs.size(); i++) {
+ this->m_device.deallocate(blockAs[i]);
+ }
+ for (size_t i = 0; i < blockBs.size(); i++) {
+ this->m_device.deallocate(blockBs[i]);
+ }
+
+#undef CEIL_DIV
+ }
+
+ /*
+ * Packs a LHS block of size (mt, kc) starting at lhs(m, k). Before packing
+ * the LHS block, check that all of the kernels that worked on the same
+ * mt_block_idx in the previous m_block are done.
+ */
+ template <typename packLArg, typename LhsPacker>
+ static void packLhs(const packLArg arg) {
+ // perform actual packing
+ LhsPacker pack_lhs;
+ pack_lhs(arg.blockA, arg.lhs.getSubMapper(arg.m_start, arg.k_start), arg.kc, arg.mc);
+ }
+
+ /*
+ * Packs a RHS block of size (kc, nc) starting at (k, n) after checking that
+ * all kernels in the previous block are done.
+ * Then for each LHS future, we wait on the future and then call GEBP
+ * on the area packed by the future (which starts at
+ * blockA + future_idx * mt * kc) on the LHS and with the full packed
+ * RHS block.
+ * The output of this GEBP is written to output(m + i * mt, n).
+ */
+ template <typename packRKArg, typename RhsPacker, typename GebpKernel>
+ static void packRhsAndKernel(packRKArg arg) {
+ if (arg.need_to_pack) {
+ RhsPacker pack_rhs;
+ pack_rhs(arg.blockB, arg.rhs.getSubMapper(arg.k, arg.n), arg.kc, arg.nc);
+ }
+
+ GebpKernel gebp;
+ for (Index mt_block_idx = 0; mt_block_idx < arg.num_blockAs; mt_block_idx++) {
+ const Index m_base_start = arg.m + arg.mc*mt_block_idx;
+ if (m_base_start < arg.max_m) {
+ Index blockAId = (arg.k_block_idx * arg.m_blocks + mt_block_idx + arg.m_block_idx) % arg.num_threads;
+ wait_until_ready((*arg.lhs_notifications)[blockAId]);
+ const Index actual_mc = numext::mini(m_base_start + arg.mc, arg.max_m) - m_base_start;
+ gebp(arg.output.getSubMapper(m_base_start, arg.n),
+ (*arg.blockAs)[blockAId], arg.blockB,
+ actual_mc, arg.kc, arg.nc, Scalar(1), -1, -1, 0, 0);
+
+ // Notify that the kernel is done.
+ const Index set_idx = blockAId * arg.n_blocks + arg.n_block_idx;
+ (*arg.kernel_notifications)[set_idx]->Notify();
+ }
+ }
+ }
+#endif // EIGEN_USE_SIMPLE_THREAD_POOL
+
+ TensorOpCost contractionCost(Index m, Index n, Index bm, Index bn, Index bk,
+ bool shard_by_col, bool prepacked) const {
+ const int packed_size = std::min<int>(PacketType<LhsScalar, Device>::size,
+ PacketType<RhsScalar, Device>::size);
+ const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
+ const double kd = static_cast<double>(bk);
+ // Peak VFMA bandwidth is 0.5. However if we have not enough data for
+ // vectorization bandwidth drops. The 4.0 and 2.0 bandwidth is determined
+ // experimentally.
+ double computeBandwidth = bk == 1 ? 4.0 :
+ (shard_by_col ? bn : bm) < Traits::nr ||
+ (shard_by_col ? bm : bn) < Traits::mr ? 2.0 : 0.5;
+#ifndef EIGEN_VECTORIZE_FMA
+ // Bandwidth of all of VFMA/MULPS/ADDPS is 0.5 on latest Intel processors.
+ // However for MULPS/ADDPS we have dependent sequence of 2 such instructions,
+ // so overall bandwidth is 1.0.
+ if (computeBandwidth == 0.5) computeBandwidth = 1.0;
+#endif
+ // Computations.
+ TensorOpCost cost = TensorOpCost(0, 0, kd * computeBandwidth, true, packed_size);
+ // Output stores.
+ cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size);
+ if (prepacked) {
+ // Packing and kernels are executed in different tasks. When we calculate
+ // task grain size we look only at kernel cost assuming that kernel
+ // is more expensive than packing.
+ return cost;
+ }
+ // Lhs/rhs loads + computations.
+ TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * (kd / n);
+ TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * (kd / m);
+ // Lhs packing memory cost does not contribute considerably to overall
+ // execution time because lhs is prefetched early and accessed sequentially.
+ if (shard_by_col)
+ lhsCost.dropMemoryCost();
+ else
+ rhsCost.dropMemoryCost();
+ return cost + lhsCost + rhsCost;
+ }
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_USE_THREADS
+#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H