aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h')
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h509
1 files changed, 509 insertions, 0 deletions
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h b/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h
new file mode 100644
index 000000000..566856ed2
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h
@@ -0,0 +1,509 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
+#define EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
+
+namespace Eigen {
+
+/** \class TensorImagePatch
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Patch extraction specialized for image processing.
+ * This assumes that the input has a least 3 dimensions ordered as follow:
+ * 1st dimension: channels (of size d)
+ * 2nd dimension: rows (of size r)
+ * 3rd dimension: columns (of size c)
+ * There can be additional dimensions such as time (for video) or batch (for
+ * bulk processing after the first 3.
+ * Calling the image patch code with patch_rows and patch_cols is equivalent
+ * to calling the regular patch extraction code with parameters d, patch_rows,
+ * patch_cols, and 1 for all the additional dimensions.
+ */
+namespace internal {
+template<DenseIndex Rows, DenseIndex Cols, typename XprType>
+struct traits<TensorImagePatchOp<Rows, Cols, XprType> > : public traits<XprType>
+{
+ typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions + 1;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<DenseIndex Rows, DenseIndex Cols, typename XprType>
+struct eval<TensorImagePatchOp<Rows, Cols, XprType>, Eigen::Dense>
+{
+ typedef const TensorImagePatchOp<Rows, Cols, XprType>& type;
+};
+
+template<DenseIndex Rows, DenseIndex Cols, typename XprType>
+struct nested<TensorImagePatchOp<Rows, Cols, XprType>, 1, typename eval<TensorImagePatchOp<Rows, Cols, XprType> >::type>
+{
+ typedef TensorImagePatchOp<Rows, Cols, XprType> type;
+};
+
+} // end namespace internal
+
+template<DenseIndex Rows, DenseIndex Cols, typename XprType>
+class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorImagePatchOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorImagePatchOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorImagePatchOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorImagePatchOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
+ DenseIndex row_strides, DenseIndex col_strides,
+ DenseIndex in_row_strides, DenseIndex in_col_strides,
+ DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
+ PaddingType padding_type, Scalar padding_value)
+ : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
+ m_row_strides(row_strides), m_col_strides(col_strides),
+ m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
+ m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
+ m_padding_explicit(false), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0),
+ m_padding_type(padding_type), m_padding_value(padding_value) {}
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
+ DenseIndex row_strides, DenseIndex col_strides,
+ DenseIndex in_row_strides, DenseIndex in_col_strides,
+ DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
+ DenseIndex padding_top, DenseIndex padding_bottom,
+ DenseIndex padding_left, DenseIndex padding_right,
+ Scalar padding_value)
+ : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
+ m_row_strides(row_strides), m_col_strides(col_strides),
+ m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
+ m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
+ m_padding_explicit(true), m_padding_top(padding_top), m_padding_bottom(padding_bottom),
+ m_padding_left(padding_left), m_padding_right(padding_right),
+ m_padding_type(PADDING_VALID), m_padding_value(padding_value) {}
+
+ EIGEN_DEVICE_FUNC
+ DenseIndex patch_rows() const { return m_patch_rows; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex patch_cols() const { return m_patch_cols; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex row_strides() const { return m_row_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex col_strides() const { return m_col_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex in_row_strides() const { return m_in_row_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex in_col_strides() const { return m_in_col_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex row_inflate_strides() const { return m_row_inflate_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex col_inflate_strides() const { return m_col_inflate_strides; }
+ EIGEN_DEVICE_FUNC
+ bool padding_explicit() const { return m_padding_explicit; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex padding_top() const { return m_padding_top; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex padding_bottom() const { return m_padding_bottom; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex padding_left() const { return m_padding_left; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex padding_right() const { return m_padding_right; }
+ EIGEN_DEVICE_FUNC
+ PaddingType padding_type() const { return m_padding_type; }
+ EIGEN_DEVICE_FUNC
+ Scalar padding_value() const { return m_padding_value; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const DenseIndex m_patch_rows;
+ const DenseIndex m_patch_cols;
+ const DenseIndex m_row_strides;
+ const DenseIndex m_col_strides;
+ const DenseIndex m_in_row_strides;
+ const DenseIndex m_in_col_strides;
+ const DenseIndex m_row_inflate_strides;
+ const DenseIndex m_col_inflate_strides;
+ const bool m_padding_explicit;
+ const DenseIndex m_padding_top;
+ const DenseIndex m_padding_bottom;
+ const DenseIndex m_padding_left;
+ const DenseIndex m_padding_right;
+ const PaddingType m_padding_type;
+ const Scalar m_padding_value;
+};
+
+// Eval as rvalue
+template<DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
+{
+ typedef TensorImagePatchOp<Rows, Cols, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
+ static const int NumDims = NumInputDims + 1;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
+ typedef TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>,
+ Device> Self;
+ typedef TensorEvaluator<ArgType, Device> Impl;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device)
+ {
+ EIGEN_STATIC_ASSERT((NumDims >= 4), YOU_MADE_A_PROGRAMMING_MISTAKE);
+
+ m_paddingValue = op.padding_value();
+
+ const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
+
+ // Caches a few variables.
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_inputDepth = input_dims[0];
+ m_inputRows = input_dims[1];
+ m_inputCols = input_dims[2];
+ } else {
+ m_inputDepth = input_dims[NumInputDims-1];
+ m_inputRows = input_dims[NumInputDims-2];
+ m_inputCols = input_dims[NumInputDims-3];
+ }
+
+ m_row_strides = op.row_strides();
+ m_col_strides = op.col_strides();
+
+ // Input strides and effective input/patch size
+ m_in_row_strides = op.in_row_strides();
+ m_in_col_strides = op.in_col_strides();
+ m_row_inflate_strides = op.row_inflate_strides();
+ m_col_inflate_strides = op.col_inflate_strides();
+ // The "effective" input rows and input cols are the input rows and cols
+ // after inflating them with zeros.
+ // For examples, a 2x3 matrix with row_inflate_strides and
+ // col_inflate_strides of 2 comes from:
+ // A B C
+ // D E F
+ //
+ // to a matrix is 3 x 5:
+ //
+ // A . B . C
+ // . . . . .
+ // D . E . F
+
+ m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
+ m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
+ m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
+ m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
+
+ if (op.padding_explicit()) {
+ m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
+ m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
+ m_rowPaddingTop = op.padding_top();
+ m_colPaddingLeft = op.padding_left();
+ } else {
+ // Computing padding from the type
+ switch (op.padding_type()) {
+ case PADDING_VALID:
+ m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
+ m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
+ // Calculate the padding
+ m_rowPaddingTop = numext::maxi<Index>(0, ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2);
+ m_colPaddingLeft = numext::maxi<Index>(0, ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2);
+ break;
+ case PADDING_SAME:
+ m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
+ m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
+ // Calculate the padding
+ m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2;
+ m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2;
+ break;
+ default:
+ eigen_assert(false && "unexpected padding");
+ }
+ }
+ eigen_assert(m_outputRows > 0);
+ eigen_assert(m_outputCols > 0);
+
+ // Dimensions for result of extraction.
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ // ColMajor
+ // 0: depth
+ // 1: patch_rows
+ // 2: patch_cols
+ // 3: number of patches
+ // 4 and beyond: anything else (such as batch).
+ m_dimensions[0] = input_dims[0];
+ m_dimensions[1] = op.patch_rows();
+ m_dimensions[2] = op.patch_cols();
+ m_dimensions[3] = m_outputRows * m_outputCols;
+ for (int i = 4; i < NumDims; ++i) {
+ m_dimensions[i] = input_dims[i-1];
+ }
+ } else {
+ // RowMajor
+ // NumDims-1: depth
+ // NumDims-2: patch_rows
+ // NumDims-3: patch_cols
+ // NumDims-4: number of patches
+ // NumDims-5 and beyond: anything else (such as batch).
+ m_dimensions[NumDims-1] = input_dims[NumInputDims-1];
+ m_dimensions[NumDims-2] = op.patch_rows();
+ m_dimensions[NumDims-3] = op.patch_cols();
+ m_dimensions[NumDims-4] = m_outputRows * m_outputCols;
+ for (int i = NumDims-5; i >= 0; --i) {
+ m_dimensions[i] = input_dims[i];
+ }
+ }
+
+ // Strides for moving the patch in various dimensions.
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_colStride = m_dimensions[1];
+ m_patchStride = m_colStride * m_dimensions[2] * m_dimensions[0];
+ m_otherStride = m_patchStride * m_dimensions[3];
+ } else {
+ m_colStride = m_dimensions[NumDims-2];
+ m_patchStride = m_colStride * m_dimensions[NumDims-3] * m_dimensions[NumDims-1];
+ m_otherStride = m_patchStride * m_dimensions[NumDims-4];
+ }
+
+ // Strides for navigating through the input tensor.
+ m_rowInputStride = m_inputDepth;
+ m_colInputStride = m_inputDepth * m_inputRows;
+ m_patchInputStride = m_inputDepth * m_inputRows * m_inputCols;
+
+ // Fast representations of different variables.
+ m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
+ m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
+ m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
+ m_fastInflateRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
+ m_fastInflateColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
+ m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
+
+ // Number of patches in the width dimension.
+ m_fastOutputRows = internal::TensorIntDivisor<Index>(m_outputRows);
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
+ } else {
+ m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ // Patch index corresponding to the passed in index.
+ const Index patchIndex = index / m_fastPatchStride;
+ // Find the offset of the element wrt the location of the first element.
+ const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
+
+ // Other ways to index this element.
+ const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride;
+ const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
+
+ // Calculate col index in the input original tensor.
+ const Index colIndex = patch2DIndex / m_fastOutputRows;
+ const Index colOffset = patchOffset / m_fastColStride;
+ const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
+ const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInflateColStride) : 0);
+ if (inputCol < 0 || inputCol >= m_input_cols_eff ||
+ ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
+ return Scalar(m_paddingValue);
+ }
+
+ // Calculate row index in the original input tensor.
+ const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
+ const Index rowOffset = patchOffset - colOffset * m_colStride;
+ const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
+ const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInflateRowStride) : 0);
+ if (inputRow < 0 || inputRow >= m_input_rows_eff ||
+ ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
+ return Scalar(m_paddingValue);
+ }
+
+ const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
+ const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
+
+ const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + otherIndex * m_patchInputStride;
+ return m_impl.coeff(inputIndex);
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
+
+ if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1) {
+ return packetWithPossibleZero(index);
+ }
+
+ const Index indices[2] = {index, index + PacketSize - 1};
+ const Index patchIndex = indices[0] / m_fastPatchStride;
+ if (patchIndex != indices[1] / m_fastPatchStride) {
+ return packetWithPossibleZero(index);
+ }
+ const Index otherIndex = (NumDims == 4) ? 0 : indices[0] / m_fastOtherStride;
+ eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
+
+ // Find the offset of the element wrt the location of the first element.
+ const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
+ (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
+
+ const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
+ eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
+
+ const Index colIndex = patch2DIndex / m_fastOutputRows;
+ const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride};
+
+ // Calculate col indices in the original input tensor.
+ const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] -
+ m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
+ if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
+ return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
+ }
+
+ if (inputCols[0] == inputCols[1]) {
+ const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
+ const Index rowOffsets[2] = {patchOffsets[0] - colOffsets[0]*m_colStride, patchOffsets[1] - colOffsets[1]*m_colStride};
+ eigen_assert(rowOffsets[0] <= rowOffsets[1]);
+ // Calculate col indices in the original input tensor.
+ const Index inputRows[2] = {rowIndex * m_row_strides + rowOffsets[0] -
+ m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
+
+ if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
+ return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
+ }
+
+ if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) {
+ // no padding
+ const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
+ const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
+ const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex * m_patchInputStride;
+ return m_impl.template packet<Unaligned>(inputIndex);
+ }
+ }
+
+ return packetWithPossibleZero(index);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
+
+ Index rowPaddingTop() const { return m_rowPaddingTop; }
+ Index colPaddingLeft() const { return m_colPaddingLeft; }
+ Index outputRows() const { return m_outputRows; }
+ Index outputCols() const { return m_outputCols; }
+ Index userRowStride() const { return m_row_strides; }
+ Index userColStride() const { return m_col_strides; }
+ Index userInRowStride() const { return m_in_row_strides; }
+ Index userInColStride() const { return m_in_col_strides; }
+ Index rowInflateStride() const { return m_row_inflate_strides; }
+ Index colInflateStride() const { return m_col_inflate_strides; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ // We conservatively estimate the cost for the code path where the computed
+ // index is inside the original image and
+ // TensorEvaluator<ArgType, Device>::CoordAccess is false.
+ const double compute_cost = 3 * TensorOpCost::DivCost<Index>() +
+ 6 * TensorOpCost::MulCost<Index>() +
+ 8 * TensorOpCost::MulCost<Index>();
+ return m_impl.costPerCoeff(vectorized) +
+ TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
+ }
+
+ protected:
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
+ {
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
+ for (int i = 0; i < PacketSize; ++i) {
+ values[i] = coeff(index+i);
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+
+ Dimensions m_dimensions;
+
+ Index m_otherStride;
+ Index m_patchStride;
+ Index m_colStride;
+ Index m_row_strides;
+ Index m_col_strides;
+
+ Index m_in_row_strides;
+ Index m_in_col_strides;
+ Index m_row_inflate_strides;
+ Index m_col_inflate_strides;
+
+ Index m_input_rows_eff;
+ Index m_input_cols_eff;
+ Index m_patch_rows_eff;
+ Index m_patch_cols_eff;
+
+ internal::TensorIntDivisor<Index> m_fastOtherStride;
+ internal::TensorIntDivisor<Index> m_fastPatchStride;
+ internal::TensorIntDivisor<Index> m_fastColStride;
+ internal::TensorIntDivisor<Index> m_fastInflateRowStride;
+ internal::TensorIntDivisor<Index> m_fastInflateColStride;
+ internal::TensorIntDivisor<Index> m_fastInputColsEff;
+
+ Index m_rowInputStride;
+ Index m_colInputStride;
+ Index m_patchInputStride;
+
+ Index m_inputDepth;
+ Index m_inputRows;
+ Index m_inputCols;
+
+ Index m_outputRows;
+ Index m_outputCols;
+
+ Index m_rowPaddingTop;
+ Index m_colPaddingLeft;
+
+ internal::TensorIntDivisor<Index> m_fastOutputRows;
+ internal::TensorIntDivisor<Index> m_fastOutputDepth;
+
+ Scalar m_paddingValue;
+
+ TensorEvaluator<ArgType, Device> m_impl;
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H