aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/CXX11/src/Tensor
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/CXX11/src/Tensor')
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/README.md1757
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/Tensor.h527
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h299
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h181
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorBase.h1010
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h392
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h384
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h361
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h628
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h56
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h1391
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h467
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h1052
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h279
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h1104
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h212
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h313
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h68
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h337
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h81
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h122
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h279
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h236
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h428
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h181
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h633
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h288
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h371
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h651
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h389
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h167
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h109
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h489
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h185
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h33
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorIO.h79
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h509
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h725
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h229
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h82
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h253
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h209
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h54
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorMap.h321
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h218
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h888
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h397
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h269
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h276
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h781
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h750
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h242
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorRef.h429
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h288
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorScan.h287
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h264
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h146
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h338
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorSycl.h82
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorSyclConvertToDeviceExpression.h121
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorSyclExprConstructor.h239
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractAccessor.h204
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractFunctors.h177
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorSyclLeafCount.h114
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorSyclPlaceHolderExpr.h181
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorSyclRun.h70
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorSyclTuple.h234
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h272
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h248
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h608
70 files changed, 26044 insertions, 0 deletions
diff --git a/unsupported/Eigen/CXX11/src/Tensor/README.md b/unsupported/Eigen/CXX11/src/Tensor/README.md
new file mode 100644
index 000000000..02146527b
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/README.md
@@ -0,0 +1,1757 @@
+# Eigen Tensors
+
+Tensors are multidimensional arrays of elements. Elements are typically scalars,
+but more complex types such as strings are also supported.
+
+[TOC]
+
+## Tensor Classes
+
+You can manipulate a tensor with one of the following classes. They all are in
+the namespace ```::Eigen.```
+
+
+### Class Tensor<data_type, rank>
+
+This is the class to use to create a tensor and allocate memory for it. The
+class is templatized with the tensor datatype, such as float or int, and the
+tensor rank. The rank is the number of dimensions, for example rank 2 is a
+matrix.
+
+Tensors of this class are resizable. For example, if you assign a tensor of a
+different size to a Tensor, that tensor is resized to match its new value.
+
+#### Constructor Tensor<data_type, rank>(size0, size1, ...)
+
+Constructor for a Tensor. The constructor must be passed ```rank``` integers
+indicating the sizes of the instance along each of the the ```rank```
+dimensions.
+
+ // Create a tensor of rank 3 of sizes 2, 3, 4. This tensor owns
+ // memory to hold 24 floating point values (24 = 2 x 3 x 4).
+ Tensor<float, 3> t_3d(2, 3, 4);
+
+ // Resize t_3d by assigning a tensor of different sizes, but same rank.
+ t_3d = Tensor<float, 3>(3, 4, 3);
+
+#### Constructor Tensor<data_type, rank>(size_array)
+
+Constructor where the sizes for the constructor are specified as an array of
+values instead of an explicitly list of parameters. The array type to use is
+```Eigen::array<Eigen::Index>```. The array can be constructed automatically
+from an initializer list.
+
+ // Create a tensor of strings of rank 2 with sizes 5, 7.
+ Tensor<string, 2> t_2d({5, 7});
+
+
+### Class TensorFixedSize<data_type, Sizes<size0, size1, ...>>
+
+Class to use for tensors of fixed size, where the size is known at compile
+time. Fixed sized tensors can provide very fast computations because all their
+dimensions are known by the compiler. FixedSize tensors are not resizable.
+
+If the total number of elements in a fixed size tensor is small enough the
+tensor data is held onto the stack and does not cause heap allocation and free.
+
+ // Create a 4 x 3 tensor of floats.
+ TensorFixedSize<float, Sizes<4, 3>> t_4x3;
+
+### Class TensorMap<Tensor<data_type, rank>>
+
+This is the class to use to create a tensor on top of memory allocated and
+owned by another part of your code. It allows to view any piece of allocated
+memory as a Tensor. Instances of this class do not own the memory where the
+data are stored.
+
+A TensorMap is not resizable because it does not own the memory where its data
+are stored.
+
+#### Constructor TensorMap<Tensor<data_type, rank>>(data, size0, size1, ...)
+
+Constructor for a Tensor. The constructor must be passed a pointer to the
+storage for the data, and "rank" size attributes. The storage has to be
+large enough to hold all the data.
+
+ // Map a tensor of ints on top of stack-allocated storage.
+ int storage[128]; // 2 x 4 x 2 x 8 = 128
+ TensorMap<int, 4> t_4d(storage, 2, 4, 2, 8);
+
+ // The same storage can be viewed as a different tensor.
+ // You can also pass the sizes as an array.
+ TensorMap<int, 2> t_2d(storage, 16, 8);
+
+ // You can also map fixed-size tensors. Here we get a 1d view of
+ // the 2d fixed-size tensor.
+ Tensor<float, Sizes<4, 5>> t_4x3;
+ TensorMap<float, 1> t_12(t_4x3, 12);
+
+
+#### Class TensorRef
+
+See Assigning to a TensorRef below.
+
+## Accessing Tensor Elements
+
+#### <data_type> tensor(index0, index1...)
+
+Return the element at position ```(index0, index1...)``` in tensor
+```tensor```. You must pass as many parameters as the rank of ```tensor```.
+The expression can be used as an l-value to set the value of the element at the
+specified position. The value returned is of the datatype of the tensor.
+
+ // Set the value of the element at position (0, 1, 0);
+ Tensor<float, 3> t_3d(2, 3, 4);
+ t_3d(0, 1, 0) = 12.0f;
+
+ // Initialize all elements to random values.
+ for (int i = 0; i < 2; ++i) {
+ for (int j = 0; j < 3; ++j) {
+ for (int k = 0; k < 4; ++k) {
+ t_3d(i, j, k) = ...some random value...;
+ }
+ }
+ }
+
+ // Print elements of a tensor.
+ for (int i = 0; i < 2; ++i) {
+ LOG(INFO) << t_3d(i, 0, 0);
+ }
+
+
+## TensorLayout
+
+The tensor library supports 2 layouts: ```ColMajor``` (the default) and
+```RowMajor```. Only the default column major layout is currently fully
+supported, and it is therefore not recommended to attempt to use the row major
+layout at the moment.
+
+The layout of a tensor is optionally specified as part of its type. If not
+specified explicitly column major is assumed.
+
+ Tensor<float, 3, ColMajor> col_major; // equivalent to Tensor<float, 3>
+ TensorMap<Tensor<float, 3, RowMajor> > row_major(data, ...);
+
+All the arguments to an expression must use the same layout. Attempting to mix
+different layouts will result in a compilation error.
+
+It is possible to change the layout of a tensor or an expression using the
+```swap_layout()``` method. Note that this will also reverse the order of the
+dimensions.
+
+ Tensor<float, 2, ColMajor> col_major(2, 4);
+ Tensor<float, 2, RowMajor> row_major(2, 4);
+
+ Tensor<float, 2> col_major_result = col_major; // ok, layouts match
+ Tensor<float, 2> col_major_result = row_major; // will not compile
+
+ // Simple layout swap
+ col_major_result = row_major.swap_layout();
+ eigen_assert(col_major_result.dimension(0) == 4);
+ eigen_assert(col_major_result.dimension(1) == 2);
+
+ // Swap the layout and preserve the order of the dimensions
+ array<int, 2> shuffle(1, 0);
+ col_major_result = row_major.swap_layout().shuffle(shuffle);
+ eigen_assert(col_major_result.dimension(0) == 2);
+ eigen_assert(col_major_result.dimension(1) == 4);
+
+
+## Tensor Operations
+
+The Eigen Tensor library provides a vast library of operations on Tensors:
+numerical operations such as addition and multiplication, geometry operations
+such as slicing and shuffling, etc. These operations are available as methods
+of the Tensor classes, and in some cases as operator overloads. For example
+the following code computes the elementwise addition of two tensors:
+
+ Tensor<float, 3> t1(2, 3, 4);
+ ...set some values in t1...
+ Tensor<float, 3> t2(2, 3, 4);
+ ...set some values in t2...
+ // Set t3 to the element wise sum of t1 and t2
+ Tensor<float, 3> t3 = t1 + t2;
+
+While the code above looks easy enough, it is important to understand that the
+expression ```t1 + t2``` is not actually adding the values of the tensors. The
+expression instead constructs a "tensor operator" object of the class
+TensorCwiseBinaryOp<scalar_sum>, which has references to the tensors
+```t1``` and ```t2```. This is a small C++ object that knows how to add
+```t1``` and ```t2```. It is only when the value of the expression is assigned
+to the tensor ```t3``` that the addition is actually performed. Technically,
+this happens through the overloading of ```operator=()``` in the Tensor class.
+
+This mechanism for computing tensor expressions allows for lazy evaluation and
+optimizations which are what make the tensor library very fast.
+
+Of course, the tensor operators do nest, and the expression ```t1 + t2 *
+0.3f``` is actually represented with the (approximate) tree of operators:
+
+ TensorCwiseBinaryOp<scalar_sum>(t1, TensorCwiseUnaryOp<scalar_mul>(t2, 0.3f))
+
+
+### Tensor Operations and C++ "auto"
+
+Because Tensor operations create tensor operators, the C++ ```auto``` keyword
+does not have its intuitive meaning. Consider these 2 lines of code:
+
+ Tensor<float, 3> t3 = t1 + t2;
+ auto t4 = t1 + t2;
+
+In the first line we allocate the tensor ```t3``` and it will contain the
+result of the addition of ```t1``` and ```t2```. In the second line, ```t4```
+is actually the tree of tensor operators that will compute the addition of
+```t1``` and ```t2```. In fact, ```t4``` is *not* a tensor and you cannot get
+the values of its elements:
+
+ Tensor<float, 3> t3 = t1 + t2;
+ cout << t3(0, 0, 0); // OK prints the value of t1(0, 0, 0) + t2(0, 0, 0)
+
+ auto t4 = t1 + t2;
+ cout << t4(0, 0, 0); // Compilation error!
+
+When you use ```auto``` you do not get a Tensor as a result but instead a
+non-evaluated expression. So only use ```auto``` to delay evaluation.
+
+Unfortunately, there is no single underlying concrete type for holding
+non-evaluated expressions, hence you have to use auto in the case when you do
+want to hold non-evaluated expressions.
+
+When you need the results of set of tensor computations you have to assign the
+result to a Tensor that will be capable of holding onto them. This can be
+either a normal Tensor, a fixed size Tensor, or a TensorMap on an existing
+piece of memory. All the following will work:
+
+ auto t4 = t1 + t2;
+
+ Tensor<float, 3> result = t4; // Could also be: result(t4);
+ cout << result(0, 0, 0);
+
+ TensorMap<float, 4> result(<a float* with enough space>, <size0>, ...) = t4;
+ cout << result(0, 0, 0);
+
+ TensorFixedSize<float, Sizes<size0, ...>> result = t4;
+ cout << result(0, 0, 0);
+
+Until you need the results, you can keep the operation around, and even reuse
+it for additional operations. As long as you keep the expression as an
+operation, no computation is performed.
+
+ // One way to compute exp((t1 + t2) * 0.2f);
+ auto t3 = t1 + t2;
+ auto t4 = t3 * 0.2f;
+ auto t5 = t4.exp();
+ Tensor<float, 3> result = t5;
+
+ // Another way, exactly as efficient as the previous one:
+ Tensor<float, 3> result = ((t1 + t2) * 0.2f).exp();
+
+### Controlling When Expression are Evaluated
+
+There are several ways to control when expressions are evaluated:
+
+* Assignment to a Tensor, TensorFixedSize, or TensorMap.
+* Use of the eval() method.
+* Assignment to a TensorRef.
+
+#### Assigning to a Tensor, TensorFixedSize, or TensorMap.
+
+The most common way to evaluate an expression is to assign it to a Tensor. In
+the example below, the ```auto``` declarations make the intermediate values
+"Operations", not Tensors, and do not cause the expressions to be evaluated.
+The assignment to the Tensor ```result``` causes the evaluation of all the
+operations.
+
+ auto t3 = t1 + t2; // t3 is an Operation.
+ auto t4 = t3 * 0.2f; // t4 is an Operation.
+ auto t5 = t4.exp(); // t5 is an Operation.
+ Tensor<float, 3> result = t5; // The operations are evaluated.
+
+If you know the ranks and sizes of the Operation value you can assign the
+Operation to a TensorFixedSize instead of a Tensor, which is a bit more
+efficient.
+
+ // We know that the result is a 4x4x2 tensor!
+ TensorFixedSize<float, 4, 4, 2> result = t5;
+
+Simiarly, assigning an expression to a TensorMap causes its evaluation. Like
+tensors of type TensorFixedSize, TensorMaps cannot be resized so they have to
+have the rank and sizes of the expression that are assigned to them.
+
+#### Calling eval().
+
+When you compute large composite expressions, you sometimes want to tell Eigen
+that an intermediate value in the expression tree is worth evaluating ahead of
+time. This is done by inserting a call to the ```eval()``` method of the
+expression Operation.
+
+ // The previous example could have been written:
+ Tensor<float, 3> result = ((t1 + t2) * 0.2f).exp();
+
+ // If you want to compute (t1 + t2) once ahead of time you can write:
+ Tensor<float, 3> result = ((t1 + t2).eval() * 0.2f).exp();
+
+Semantically, calling ```eval()``` is equivalent to materializing the value of
+the expression in a temporary Tensor of the right size. The code above in
+effect does:
+
+ // .eval() knows the size!
+ TensorFixedSize<float, 4, 4, 2> tmp = t1 + t2;
+ Tensor<float, 3> result = (tmp * 0.2f).exp();
+
+Note that the return value of ```eval()``` is itself an Operation, so the
+following code does not do what you may think:
+
+ // Here t3 is an evaluation Operation. t3 has not been evaluated yet.
+ auto t3 = (t1 + t2).eval();
+
+ // You can use t3 in another expression. Still no evaluation.
+ auto t4 = (t3 * 0.2f).exp();
+
+ // The value is evaluated when you assign the Operation to a Tensor, using
+ // an intermediate tensor to represent t3.x
+ Tensor<float, 3> result = t4;
+
+While in the examples above calling ```eval()``` does not make a difference in
+performance, in other cases it can make a huge difference. In the expression
+below the ```broadcast()``` expression causes the ```X.maximum()``` expression
+to be evaluated many times:
+
+ Tensor<...> X ...;
+ Tensor<...> Y = ((X - X.maximum(depth_dim).reshape(dims2d).broadcast(bcast))
+ * beta).exp();
+
+Inserting a call to ```eval()``` between the ```maximum()``` and
+```reshape()``` calls guarantees that maximum() is only computed once and
+greatly speeds-up execution:
+
+ Tensor<...> Y =
+ ((X - X.maximum(depth_dim).eval().reshape(dims2d).broadcast(bcast))
+ * beta).exp();
+
+In the other example below, the tensor ```Y``` is both used in the expression
+and its assignment. This is an aliasing problem and if the evaluation is not
+done in the right order Y will be updated incrementally during the evaluation
+resulting in bogus results:
+
+ Tensor<...> Y ...;
+ Y = Y / (Y.sum(depth_dim).reshape(dims2d).broadcast(bcast));
+
+Inserting a call to ```eval()``` between the ```sum()``` and ```reshape()```
+expressions ensures that the sum is computed before any updates to ```Y``` are
+done.
+
+ Y = Y / (Y.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast));
+
+Note that an eval around the full right hand side expression is not needed
+because the generated has to compute the i-th value of the right hand side
+before assigning it to the left hand side.
+
+However, if you were assigning the expression value to a shuffle of ```Y```
+then you would need to force an eval for correctness by adding an ```eval()```
+call for the right hand side:
+
+ Y.shuffle(...) =
+ (Y / (Y.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast))).eval();
+
+
+#### Assigning to a TensorRef.
+
+If you need to access only a few elements from the value of an expression you
+can avoid materializing the value in a full tensor by using a TensorRef.
+
+A TensorRef is a small wrapper class for any Eigen Operation. It provides
+overloads for the ```()``` operator that let you access individual values in
+the expression. TensorRef is convenient, because the Operation themselves do
+not provide a way to access individual elements.
+
+ // Create a TensorRef for the expression. The expression is not
+ // evaluated yet.
+ TensorRef<Tensor<float, 3> > ref = ((t1 + t2) * 0.2f).exp();
+
+ // Use "ref" to access individual elements. The expression is evaluated
+ // on the fly.
+ float at_0 = ref(0, 0, 0);
+ cout << ref(0, 1, 0);
+
+Only use TensorRef when you need a subset of the values of the expression.
+TensorRef only computes the values you access. However note that if you are
+going to access all the values it will be much faster to materialize the
+results in a Tensor first.
+
+In some cases, if the full Tensor result would be very large, you may save
+memory by accessing it as a TensorRef. But not always. So don't count on it.
+
+
+### Controlling How Expressions Are Evaluated
+
+The tensor library provides several implementations of the various operations
+such as contractions and convolutions. The implementations are optimized for
+different environments: single threaded on CPU, multi threaded on CPU, or on a
+GPU using cuda. Additional implementations may be added later.
+
+You can choose which implementation to use with the ```device()``` call. If
+you do not choose an implementation explicitly the default implementation that
+uses a single thread on the CPU is used.
+
+The default implementation has been optimized for recent Intel CPUs, taking
+advantage of SSE, AVX, and FMA instructions. Work is ongoing to tune the
+library on ARM CPUs. Note that you need to pass compiler-dependent flags
+to enable the use of SSE, AVX, and other instructions.
+
+For example, the following code adds two tensors using the default
+single-threaded CPU implementation:
+
+ Tensor<float, 2> a(30, 40);
+ Tensor<float, 2> b(30, 40);
+ Tensor<float, 2> c = a + b;
+
+To choose a different implementation you have to insert a ```device()``` call
+before the assignment of the result. For technical C++ reasons this requires
+that the Tensor for the result be declared on its own. This means that you
+have to know the size of the result.
+
+ Eigen::Tensor<float, 2> c(30, 40);
+ c.device(...) = a + b;
+
+The call to ```device()``` must be the last call on the left of the operator=.
+
+You must pass to the ```device()``` call an Eigen device object. There are
+presently three devices you can use: DefaultDevice, ThreadPoolDevice and
+GpuDevice.
+
+
+#### Evaluating With the DefaultDevice
+
+This is exactly the same as not inserting a ```device()``` call.
+
+ DefaultDevice my_device;
+ c.device(my_device) = a + b;
+
+#### Evaluating with a Thread Pool
+
+ // Create the Eigen ThreadPoolDevice.
+ Eigen::ThreadPoolDevice my_device(4 /* number of threads to use */);
+
+ // Now just use the device when evaluating expressions.
+ Eigen::Tensor<float, 2> c(30, 50);
+ c.device(my_device) = a.contract(b, dot_product_dims);
+
+
+#### Evaluating On GPU
+
+This is presently a bit more complicated than just using a thread pool device.
+You need to create a GPU device but you also need to explicitly allocate the
+memory for tensors with cuda.
+
+
+## API Reference
+
+### Datatypes
+
+In the documentation of the tensor methods and Operation we mention datatypes
+that are tensor-type specific:
+
+#### <Tensor-Type>::Dimensions
+
+Acts like an array of ints. Has an ```int size``` attribute, and can be
+indexed like an array to access individual values. Used to represent the
+dimensions of a tensor. See ```dimensions()```.
+
+#### <Tensor-Type>::Index
+
+Acts like an ```int```. Used for indexing tensors along their dimensions. See
+```operator()```, ```dimension()```, and ```size()```.
+
+#### <Tensor-Type>::Scalar
+
+Represents the datatype of individual tensor elements. For example, for a
+```Tensor<float>```, ```Scalar``` is the type ```float```. See
+```setConstant()```.
+
+#### <Operation>
+
+We use this pseudo type to indicate that a tensor Operation is returned by a
+method. We indicate in the text the type and dimensions of the tensor that the
+Operation returns after evaluation.
+
+The Operation will have to be evaluated, for example by assigning it to a
+tensor, before you can access the values of the resulting tensor. You can also
+access the values through a TensorRef.
+
+
+## Built-in Tensor Methods
+
+These are usual C++ methods that act on tensors immediately. They are not
+Operations which provide delayed evaluation of their results. Unless specified
+otherwise, all the methods listed below are available on all tensor classes:
+Tensor, TensorFixedSize, and TensorMap.
+
+## Metadata
+
+### int NumDimensions
+
+Constant value indicating the number of dimensions of a Tensor. This is also
+known as the tensor "rank".
+
+ Eigen::Tensor<float, 2> a(3, 4);
+ cout << "Dims " << a.NumDimensions;
+ => Dims 2
+
+### Dimensions dimensions()
+
+Returns an array-like object representing the dimensions of the tensor.
+The actual type of the dimensions() result is <Tensor-Type>::Dimensions.
+
+ Eigen::Tensor<float, 2> a(3, 4);
+ const Eigen::Tensor<float, 2>::Dimensions& d = a.dimensions();
+ cout << "Dim size: " << d.size << ", dim 0: " << d[0]
+ << ", dim 1: " << d[1];
+ => Dim size: 2, dim 0: 3, dim 1: 4
+
+If you use a C++11 compiler, you can use ```auto``` to simplify the code:
+
+ const auto& d = a.dimensions();
+ cout << "Dim size: " << d.size << ", dim 0: " << d[0]
+ << ", dim 1: " << d[1];
+ => Dim size: 2, dim 0: 3, dim 1: 4
+
+### Index dimension(Index n)
+
+Returns the n-th dimension of the tensor. The actual type of the
+```dimension()``` result is ```<Tensor-Type>::Index```, but you can
+always use it like an int.
+
+ Eigen::Tensor<float, 2> a(3, 4);
+ int dim1 = a.dimension(1);
+ cout << "Dim 1: " << dim1;
+ => Dim 1: 4
+
+### Index size()
+
+Returns the total number of elements in the tensor. This is the product of all
+the tensor dimensions. The actual type of the ```size()``` result is
+```<Tensor-Type>::Index```, but you can always use it like an int.
+
+ Eigen::Tensor<float, 2> a(3, 4);
+ cout << "Size: " << a.size();
+ => Size: 12
+
+
+### Getting Dimensions From An Operation
+
+A few operations provide ```dimensions()``` directly,
+e.g. ```TensorReslicingOp```. Most operations defer calculating dimensions
+until the operation is being evaluated. If you need access to the dimensions
+of a deferred operation, you can wrap it in a TensorRef (see Assigning to a
+TensorRef above), which provides ```dimensions()``` and ```dimension()``` as
+above.
+
+TensorRef can also wrap the plain Tensor types, so this is a useful idiom in
+templated contexts where the underlying object could be either a raw Tensor
+or some deferred operation (e.g. a slice of a Tensor). In this case, the
+template code can wrap the object in a TensorRef and reason about its
+dimensionality while remaining agnostic to the underlying type.
+
+
+## Constructors
+
+### Tensor
+
+Creates a tensor of the specified size. The number of arguments must be equal
+to the rank of the tensor. The content of the tensor is not initialized.
+
+ Eigen::Tensor<float, 2> a(3, 4);
+ cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
+ => NumRows: 3 NumCols: 4
+
+### TensorFixedSize
+
+Creates a tensor of the specified size. The number of arguments in the Size<>
+template parameter determines the rank of the tensor. The content of the tensor
+is not initialized.
+
+ Eigen::TensorFixedSize<float, Size<3, 4>> a;
+ cout << "Rank: " << a.rank() << endl;
+ => Rank: 2
+ cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
+ => NumRows: 3 NumCols: 4
+
+### TensorMap
+
+Creates a tensor mapping an existing array of data. The data must not be freed
+until the TensorMap is discarded, and the size of the data must be large enough
+to accomodate of the coefficients of the tensor.
+
+ float data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
+ Eigen::TensorMap<float, 2> a(data, 3, 4);
+ cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
+ => NumRows: 3 NumCols: 4
+ cout << "a(1, 2): " << a(1, 2) << endl;
+ => a(1, 2): 9
+
+
+## Contents Initialization
+
+When a new Tensor or a new TensorFixedSize are created, memory is allocated to
+hold all the tensor elements, but the memory is not initialized. Similarly,
+when a new TensorMap is created on top of non-initialized memory the memory its
+contents are not initialized.
+
+You can use one of the methods below to initialize the tensor memory. These
+have an immediate effect on the tensor and return the tensor itself as a
+result. These are not tensor Operations which delay evaluation.
+
+### <Tensor-Type> setConstant(const Scalar& val)
+
+Sets all elements of the tensor to the constant value ```val```. ```Scalar```
+is the type of data stored in the tensor. You can pass any value that is
+convertible to that type.
+
+Returns the tensor itself in case you want to chain another call.
+
+ a.setConstant(12.3f);
+ cout << "Constant: " << endl << a << endl << endl;
+ =>
+ Constant:
+ 12.3 12.3 12.3 12.3
+ 12.3 12.3 12.3 12.3
+ 12.3 12.3 12.3 12.3
+
+Note that ```setConstant()``` can be used on any tensor where the element type
+has a copy constructor and an ```operator=()```:
+
+ Eigen::Tensor<string, 2> a(2, 3);
+ a.setConstant("yolo");
+ cout << "String tensor: " << endl << a << endl << endl;
+ =>
+ String tensor:
+ yolo yolo yolo
+ yolo yolo yolo
+
+
+### <Tensor-Type> setZero()
+
+Fills the tensor with zeros. Equivalent to ```setConstant(Scalar(0))```.
+Returns the tensor itself in case you want to chain another call.
+
+ a.setZero();
+ cout << "Zeros: " << endl << a << endl << endl;
+ =>
+ Zeros:
+ 0 0 0 0
+ 0 0 0 0
+ 0 0 0 0
+
+
+### <Tensor-Type> setValues({..initializer_list})
+
+Fills the tensor with explicit values specified in a std::initializer_list.
+The type of the initializer list depends on the type and rank of the tensor.
+
+If the tensor has rank N, the initializer list must be nested N times. The
+most deeply nested lists must contains P scalars of the Tensor type where P is
+the size of the last dimension of the Tensor.
+
+For example, for a ```TensorFixedSize<float, 2, 3>``` the initializer list must
+contains 2 lists of 3 floats each.
+
+```setValues()``` returns the tensor itself in case you want to chain another
+call.
+
+ Eigen::Tensor<float, 2> a(2, 3);
+ a.setValues({{0.0f, 1.0f, 2.0f}, {3.0f, 4.0f, 5.0f}});
+ cout << "a" << endl << a << endl << endl;
+ =>
+ a
+ 0 1 2
+ 3 4 5
+
+If a list is too short, the corresponding elements of the tensor will not be
+changed. This is valid at each level of nesting. For example the following
+code only sets the values of the first row of the tensor.
+
+ Eigen::Tensor<int, 2> a(2, 3);
+ a.setConstant(1000);
+ a.setValues({{10, 20, 30}});
+ cout << "a" << endl << a << endl << endl;
+ =>
+ a
+ 10 20 30
+ 1000 1000 1000
+
+### <Tensor-Type> setRandom()
+
+Fills the tensor with random values. Returns the tensor itself in case you
+want to chain another call.
+
+ a.setRandom();
+ cout << "Random: " << endl << a << endl << endl;
+ =>
+ Random:
+ 0.680375 0.59688 -0.329554 0.10794
+ -0.211234 0.823295 0.536459 -0.0452059
+ 0.566198 -0.604897 -0.444451 0.257742
+
+You can customize ```setRandom()``` by providing your own random number
+generator as a template argument:
+
+ a.setRandom<MyRandomGenerator>();
+
+Here, ```MyRandomGenerator``` must be a struct with the following member
+functions, where Scalar and Index are the same as ```<Tensor-Type>::Scalar```
+and ```<Tensor-Type>::Index```.
+
+See ```struct UniformRandomGenerator``` in TensorFunctors.h for an example.
+
+ // Custom number generator for use with setRandom().
+ struct MyRandomGenerator {
+ // Default and copy constructors. Both are needed
+ MyRandomGenerator() { }
+ MyRandomGenerator(const MyRandomGenerator& ) { }
+
+ // Return a random value to be used. "element_location" is the
+ // location of the entry to set in the tensor, it can typically
+ // be ignored.
+ Scalar operator()(Eigen::DenseIndex element_location,
+ Eigen::DenseIndex /*unused*/ = 0) const {
+ return <randomly generated value of type T>;
+ }
+
+ // Same as above but generates several numbers at a time.
+ typename internal::packet_traits<Scalar>::type packetOp(
+ Eigen::DenseIndex packet_location, Eigen::DenseIndex /*unused*/ = 0) const {
+ return <a packet of randomly generated values>;
+ }
+ };
+
+You can also use one of the 2 random number generators that are part of the
+tensor library:
+* UniformRandomGenerator
+* NormalRandomGenerator
+
+
+## Data Access
+
+The Tensor, TensorFixedSize, and TensorRef classes provide the following
+accessors to access the tensor coefficients:
+
+ const Scalar& operator()(const array<Index, NumIndices>& indices)
+ const Scalar& operator()(Index firstIndex, IndexTypes... otherIndices)
+ Scalar& operator()(const array<Index, NumIndices>& indices)
+ Scalar& operator()(Index firstIndex, IndexTypes... otherIndices)
+
+The number of indices must be equal to the rank of the tensor. Moreover, these
+accessors are not available on tensor expressions. In order to access the
+values of a tensor expression, the expression must either be evaluated or
+wrapped in a TensorRef.
+
+
+### Scalar* data() and const Scalar* data() const
+
+Returns a pointer to the storage for the tensor. The pointer is const if the
+tensor was const. This allows direct access to the data. The layout of the
+data depends on the tensor layout: RowMajor or ColMajor.
+
+This access is usually only needed for special cases, for example when mixing
+Eigen Tensor code with other libraries.
+
+Scalar is the type of data stored in the tensor.
+
+ Eigen::Tensor<float, 2> a(3, 4);
+ float* a_data = a.data();
+ a_data[0] = 123.45f;
+ cout << "a(0, 0): " << a(0, 0);
+ => a(0, 0): 123.45
+
+
+## Tensor Operations
+
+All the methods documented below return non evaluated tensor ```Operations```.
+These can be chained: you can apply another Tensor Operation to the value
+returned by the method.
+
+The chain of Operation is evaluated lazily, typically when it is assigned to a
+tensor. See "Controlling when Expression are Evaluated" for more details about
+their evaluation.
+
+### <Operation> constant(const Scalar& val)
+
+Returns a tensor of the same type and dimensions as the original tensor but
+where all elements have the value ```val```.
+
+This is useful, for example, when you want to add or subtract a constant from a
+tensor, or multiply every element of a tensor by a scalar.
+
+ Eigen::Tensor<float, 2> a(2, 3);
+ a.setConstant(1.0f);
+ Eigen::Tensor<float, 2> b = a + a.constant(2.0f);
+ Eigen::Tensor<float, 2> c = b * b.constant(0.2f);
+ cout << "a" << endl << a << endl << endl;
+ cout << "b" << endl << b << endl << endl;
+ cout << "c" << endl << c << endl << endl;
+ =>
+ a
+ 1 1 1
+ 1 1 1
+
+ b
+ 3 3 3
+ 3 3 3
+
+ c
+ 0.6 0.6 0.6
+ 0.6 0.6 0.6
+
+### <Operation> random()
+
+Returns a tensor of the same type and dimensions as the current tensor
+but where all elements have random values.
+
+This is for example useful to add random values to an existing tensor.
+The generation of random values can be customized in the same manner
+as for ```setRandom()```.
+
+ Eigen::Tensor<float, 2> a(2, 3);
+ a.setConstant(1.0f);
+ Eigen::Tensor<float, 2> b = a + a.random();
+ cout << "a" << endl << a << endl << endl;
+ cout << "b" << endl << b << endl << endl;
+ =>
+ a
+ 1 1 1
+ 1 1 1
+
+ b
+ 1.68038 1.5662 1.82329
+ 0.788766 1.59688 0.395103
+
+
+## Unary Element Wise Operations
+
+All these operations take a single input tensor as argument and return a tensor
+of the same type and dimensions as the tensor to which they are applied. The
+requested operations are applied to each element independently.
+
+### <Operation> operator-()
+
+Returns a tensor of the same type and dimensions as the original tensor
+containing the opposite values of the original tensor.
+
+ Eigen::Tensor<float, 2> a(2, 3);
+ a.setConstant(1.0f);
+ Eigen::Tensor<float, 2> b = -a;
+ cout << "a" << endl << a << endl << endl;
+ cout << "b" << endl << b << endl << endl;
+ =>
+ a
+ 1 1 1
+ 1 1 1
+
+ b
+ -1 -1 -1
+ -1 -1 -1
+
+### <Operation> sqrt()
+
+Returns a tensor of the same type and dimensions as the original tensor
+containing the square roots of the original tensor.
+
+### <Operation> rsqrt()
+
+Returns a tensor of the same type and dimensions as the original tensor
+containing the inverse square roots of the original tensor.
+
+### <Operation> square()
+
+Returns a tensor of the same type and dimensions as the original tensor
+containing the squares of the original tensor values.
+
+### <Operation> inverse()
+
+Returns a tensor of the same type and dimensions as the original tensor
+containing the inverse of the original tensor values.
+
+### <Operation> exp()
+
+Returns a tensor of the same type and dimensions as the original tensor
+containing the exponential of the original tensor.
+
+### <Operation> log()
+
+Returns a tensor of the same type and dimensions as the original tensor
+containing the natural logarithms of the original tensor.
+
+### <Operation> abs()
+
+Returns a tensor of the same type and dimensions as the original tensor
+containing the absolute values of the original tensor.
+
+### <Operation> pow(Scalar exponent)
+
+Returns a tensor of the same type and dimensions as the original tensor
+containing the coefficients of the original tensor to the power of the
+exponent.
+
+The type of the exponent, Scalar, is always the same as the type of the
+tensor coefficients. For example, only integer exponents can be used in
+conjuntion with tensors of integer values.
+
+You can use cast() to lift this restriction. For example this computes
+cubic roots of an int Tensor:
+
+ Eigen::Tensor<int, 2> a(2, 3);
+ a.setValues({{0, 1, 8}, {27, 64, 125}});
+ Eigen::Tensor<double, 2> b = a.cast<double>().pow(1.0 / 3.0);
+ cout << "a" << endl << a << endl << endl;
+ cout << "b" << endl << b << endl << endl;
+ =>
+ a
+ 0 1 8
+ 27 64 125
+
+ b
+ 0 1 2
+ 3 4 5
+
+### <Operation> operator * (Scalar scale)
+
+Multiplies all the coefficients of the input tensor by the provided scale.
+
+### <Operation> cwiseMax(Scalar threshold)
+TODO
+
+### <Operation> cwiseMin(Scalar threshold)
+TODO
+
+### <Operation> unaryExpr(const CustomUnaryOp& func)
+TODO
+
+
+## Binary Element Wise Operations
+
+These operations take two input tensors as arguments. The 2 input tensors should
+be of the same type and dimensions. The result is a tensor of the same
+dimensions as the tensors to which they are applied, and unless otherwise
+specified it is also of the same type. The requested operations are applied to
+each pair of elements independently.
+
+### <Operation> operator+(const OtherDerived& other)
+
+Returns a tensor of the same type and dimensions as the input tensors
+containing the coefficient wise sums of the inputs.
+
+### <Operation> operator-(const OtherDerived& other)
+
+Returns a tensor of the same type and dimensions as the input tensors
+containing the coefficient wise differences of the inputs.
+
+### <Operation> operator*(const OtherDerived& other)
+
+Returns a tensor of the same type and dimensions as the input tensors
+containing the coefficient wise products of the inputs.
+
+### <Operation> operator/(const OtherDerived& other)
+
+Returns a tensor of the same type and dimensions as the input tensors
+containing the coefficient wise quotients of the inputs.
+
+This operator is not supported for integer types.
+
+### <Operation> cwiseMax(const OtherDerived& other)
+
+Returns a tensor of the same type and dimensions as the input tensors
+containing the coefficient wise maximums of the inputs.
+
+### <Operation> cwiseMin(const OtherDerived& other)
+
+Returns a tensor of the same type and dimensions as the input tensors
+containing the coefficient wise mimimums of the inputs.
+
+### <Operation> Logical operators
+
+The following logical operators are supported as well:
+
+* operator&&(const OtherDerived& other)
+* operator||(const OtherDerived& other)
+* operator<(const OtherDerived& other)
+* operator<=(const OtherDerived& other)
+* operator>(const OtherDerived& other)
+* operator>=(const OtherDerived& other)
+* operator==(const OtherDerived& other)
+* operator!=(const OtherDerived& other)
+
+They all return a tensor of boolean values.
+
+
+## Selection (select(const ThenDerived& thenTensor, const ElseDerived& elseTensor)
+
+Selection is a coefficient-wise ternary operator that is the tensor equivalent
+to the if-then-else operation.
+
+ Tensor<bool, 3> if = ...;
+ Tensor<float, 3> then = ...;
+ Tensor<float, 3> else = ...;
+ Tensor<float, 3> result = if.select(then, else);
+
+The 3 arguments must be of the same dimensions, which will also be the dimension
+of the result. The 'if' tensor must be of type boolean, the 'then' and the
+'else' tensor must be of the same type, which will also be the type of the
+result.
+
+Each coefficient in the result is equal to the corresponding coefficient in the
+'then' tensor if the corresponding value in the 'if' tensor is true. If not, the
+resulting coefficient will come from the 'else' tensor.
+
+
+## Contraction
+
+Tensor *contractions* are a generalization of the matrix product to the
+multidimensional case.
+
+ // Create 2 matrices using tensors of rank 2
+ Eigen::Tensor<int, 2> a(2, 3);
+ a.setValues({{1, 2, 3}, {6, 5, 4}});
+ Eigen::Tensor<int, 2> b(3, 2);
+ a.setValues({{1, 2}, {4, 5}, {5, 6}});
+
+ // Compute the traditional matrix product
+ array<IndexPair<int>, 1> product_dims = { IndexPair(1, 0) };
+ Eigen::Tensor<int, 2> AB = a.contract(b, product_dims);
+
+ // Compute the product of the transpose of the matrices
+ array<IndexPair<int>, 1> transpose_product_dims = { IndexPair(0, 1) };
+ Eigen::Tensor<int, 2> AtBt = a.contract(b, transposed_product_dims);
+
+
+## Reduction Operations
+
+A *Reduction* operation returns a tensor with fewer dimensions than the
+original tensor. The values in the returned tensor are computed by applying a
+*reduction operator* to slices of values from the original tensor. You specify
+the dimensions along which the slices are made.
+
+The Eigen Tensor library provides a set of predefined reduction operators such
+as ```maximum()``` and ```sum()``` and lets you define additional operators by
+implementing a few methods from a reductor template.
+
+### Reduction Dimensions
+
+All reduction operations take a single parameter of type
+```<TensorType>::Dimensions``` which can always be specified as an array of
+ints. These are called the "reduction dimensions." The values are the indices
+of the dimensions of the input tensor over which the reduction is done. The
+parameter can have at most as many element as the rank of the input tensor;
+each element must be less than the tensor rank, as it indicates one of the
+dimensions to reduce.
+
+Each dimension of the input tensor should occur at most once in the reduction
+dimensions as the implementation does not remove duplicates.
+
+The order of the values in the reduction dimensions does not affect the
+results, but the code may execute faster if you list the dimensions in
+increasing order.
+
+Example: Reduction along one dimension.
+
+ // Create a tensor of 2 dimensions
+ Eigen::Tensor<int, 2> a(2, 3);
+ a.setValues({{1, 2, 3}, {6, 5, 4}});
+ // Reduce it along the second dimension (1)...
+ Eigen::array<int, 1> dims({1 /* dimension to reduce */});
+ // ...using the "maximum" operator.
+ // The result is a tensor with one dimension. The size of
+ // that dimension is the same as the first (non-reduced) dimension of a.
+ Eigen::Tensor<int, 1> b = a.maximum(dims);
+ cout << "a" << endl << a << endl << endl;
+ cout << "b" << endl << b << endl << endl;
+ =>
+ a
+ 1 2 3
+ 6 5 4
+
+ b
+ 3
+ 6
+
+Example: Reduction along two dimensions.
+
+ Eigen::Tensor<float, 3, Eigen::ColMajor> a(2, 3, 4);
+ a.setValues({{{0.0f, 1.0f, 2.0f, 3.0f},
+ {7.0f, 6.0f, 5.0f, 4.0f},
+ {8.0f, 9.0f, 10.0f, 11.0f}},
+ {{12.0f, 13.0f, 14.0f, 15.0f},
+ {19.0f, 18.0f, 17.0f, 16.0f},
+ {20.0f, 21.0f, 22.0f, 23.0f}}});
+ // The tensor a has 3 dimensions. We reduce along the
+ // first 2, resulting in a tensor with a single dimension
+ // of size 4 (the last dimension of a.)
+ // Note that we pass the array of reduction dimensions
+ // directly to the maximum() call.
+ Eigen::Tensor<float, 1, Eigen::ColMajor> b =
+ a.maximum(Eigen::array<int, 2>({0, 1}));
+ cout << "b" << endl << b << endl << endl;
+ =>
+ b
+ 20
+ 21
+ 22
+ 23
+
+#### Reduction along all dimensions
+
+As a special case, if you pass no parameter to a reduction operation the
+original tensor is reduced along *all* its dimensions. The result is a
+scalar, represented as a zero-dimension tensor.
+
+ Eigen::Tensor<float, 3> a(2, 3, 4);
+ a.setValues({{{0.0f, 1.0f, 2.0f, 3.0f},
+ {7.0f, 6.0f, 5.0f, 4.0f},
+ {8.0f, 9.0f, 10.0f, 11.0f}},
+ {{12.0f, 13.0f, 14.0f, 15.0f},
+ {19.0f, 18.0f, 17.0f, 16.0f},
+ {20.0f, 21.0f, 22.0f, 23.0f}}});
+ // Reduce along all dimensions using the sum() operator.
+ Eigen::Tensor<float, 0> b = a.sum();
+ cout << "b" << endl << b << endl << endl;
+ =>
+ b
+ 276
+
+
+### <Operation> sum(const Dimensions& new_dims)
+### <Operation> sum()
+
+Reduce a tensor using the sum() operator. The resulting values
+are the sum of the reduced values.
+
+### <Operation> mean(const Dimensions& new_dims)
+### <Operation> mean()
+
+Reduce a tensor using the mean() operator. The resulting values
+are the mean of the reduced values.
+
+### <Operation> maximum(const Dimensions& new_dims)
+### <Operation> maximum()
+
+Reduce a tensor using the maximum() operator. The resulting values are the
+largest of the reduced values.
+
+### <Operation> minimum(const Dimensions& new_dims)
+### <Operation> minimum()
+
+Reduce a tensor using the minimum() operator. The resulting values
+are the smallest of the reduced values.
+
+### <Operation> prod(const Dimensions& new_dims)
+### <Operation> prod()
+
+Reduce a tensor using the prod() operator. The resulting values
+are the product of the reduced values.
+
+### <Operation> all(const Dimensions& new_dims)
+### <Operation> all()
+Reduce a tensor using the all() operator. Casts tensor to bool and then checks
+whether all elements are true. Runs through all elements rather than
+short-circuiting, so may be significantly inefficient.
+
+### <Operation> any(const Dimensions& new_dims)
+### <Operation> any()
+Reduce a tensor using the any() operator. Casts tensor to bool and then checks
+whether any element is true. Runs through all elements rather than
+short-circuiting, so may be significantly inefficient.
+
+
+### <Operation> reduce(const Dimensions& new_dims, const Reducer& reducer)
+
+Reduce a tensor using a user-defined reduction operator. See ```SumReducer```
+in TensorFunctors.h for information on how to implement a reduction operator.
+
+
+## Scan Operations
+
+A *Scan* operation returns a tensor with the same dimensions as the original
+tensor. The operation performs an inclusive scan along the specified
+axis, which means it computes a running total along the axis for a given
+reduction operation.
+If the reduction operation corresponds to summation, then this computes the
+prefix sum of the tensor along the given axis.
+
+Example:
+dd a comment to this line
+
+ // Create a tensor of 2 dimensions
+ Eigen::Tensor<int, 2> a(2, 3);
+ a.setValues({{1, 2, 3}, {4, 5, 6}});
+ // Scan it along the second dimension (1) using summation
+ Eigen::Tensor<int, 2> b = a.cumsum(1);
+ // The result is a tensor with the same size as the input
+ cout << "a" << endl << a << endl << endl;
+ cout << "b" << endl << b << endl << endl;
+ =>
+ a
+ 1 2 3
+ 6 5 4
+
+ b
+ 1 3 6
+ 4 9 15
+
+### <Operation> cumsum(const Index& axis)
+
+Perform a scan by summing consecutive entries.
+
+### <Operation> cumprod(const Index& axis)
+
+Perform a scan by multiplying consecutive entries.
+
+
+## Convolutions
+
+### <Operation> convolve(const Kernel& kernel, const Dimensions& dims)
+
+Returns a tensor that is the output of the convolution of the input tensor with the kernel,
+along the specified dimensions of the input tensor. The dimension size for dimensions of the output tensor
+which were part of the convolution will be reduced by the formula:
+output_dim_size = input_dim_size - kernel_dim_size + 1 (requires: input_dim_size >= kernel_dim_size).
+The dimension sizes for dimensions that were not part of the convolution will remain the same.
+Performance of the convolution can depend on the length of the stride(s) of the input tensor dimension(s) along which the
+convolution is computed (the first dimension has the shortest stride for ColMajor, whereas RowMajor's shortest stride is
+for the last dimension).
+
+ // Compute convolution along the second and third dimension.
+ Tensor<float, 4, DataLayout> input(3, 3, 7, 11);
+ Tensor<float, 2, DataLayout> kernel(2, 2);
+ Tensor<float, 4, DataLayout> output(3, 2, 6, 11);
+ input.setRandom();
+ kernel.setRandom();
+
+ Eigen::array<ptrdiff_t, 2> dims({1, 2}); // Specify second and third dimension for convolution.
+ output = input.convolve(kernel, dims);
+
+ for (int i = 0; i < 3; ++i) {
+ for (int j = 0; j < 2; ++j) {
+ for (int k = 0; k < 6; ++k) {
+ for (int l = 0; l < 11; ++l) {
+ const float result = output(i,j,k,l);
+ const float expected = input(i,j+0,k+0,l) * kernel(0,0) +
+ input(i,j+1,k+0,l) * kernel(1,0) +
+ input(i,j+0,k+1,l) * kernel(0,1) +
+ input(i,j+1,k+1,l) * kernel(1,1);
+ VERIFY_IS_APPROX(result, expected);
+ }
+ }
+ }
+ }
+
+
+## Geometrical Operations
+
+These operations return a Tensor with different dimensions than the original
+Tensor. They can be used to access slices of tensors, see them with different
+dimensions, or pad tensors with additional data.
+
+### <Operation> reshape(const Dimensions& new_dims)
+
+Returns a view of the input tensor that has been reshaped to the specified
+new dimensions. The argument new_dims is an array of Index values. The
+rank of the resulting tensor is equal to the number of elements in new_dims.
+
+The product of all the sizes in the new dimension array must be equal to
+the number of elements in the input tensor.
+
+ // Increase the rank of the input tensor by introducing a new dimension
+ // of size 1.
+ Tensor<float, 2> input(7, 11);
+ array<int, 3> three_dims{{7, 11, 1}};
+ Tensor<float, 3> result = input.reshape(three_dims);
+
+ // Decrease the rank of the input tensor by merging 2 dimensions;
+ array<int, 1> one_dim{{7 * 11}};
+ Tensor<float, 1> result = input.reshape(one_dim);
+
+This operation does not move any data in the input tensor, so the resulting
+contents of a reshaped Tensor depend on the data layout of the original Tensor.
+
+For example this is what happens when you ```reshape()``` a 2D ColMajor tensor
+to one dimension:
+
+ Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3);
+ a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
+ Eigen::array<Eigen::DenseIndex, 1> one_dim({3 * 2});
+ Eigen::Tensor<float, 1, Eigen::ColMajor> b = a.reshape(one_dim);
+ cout << "b" << endl << b << endl;
+ =>
+ b
+ 0
+ 300
+ 100
+ 400
+ 200
+ 500
+
+This is what happens when the 2D Tensor is RowMajor:
+
+ Eigen::Tensor<float, 2, Eigen::RowMajor> a(2, 3);
+ a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
+ Eigen::array<Eigen::DenseIndex, 1> one_dim({3 * 2});
+ Eigen::Tensor<float, 1, Eigen::RowMajor> b = a.reshape(one_dim);
+ cout << "b" << endl << b << endl;
+ =>
+ b
+ 0
+ 100
+ 200
+ 300
+ 400
+ 500
+
+The reshape operation is a lvalue. In other words, it can be used on the left
+side of the assignment operator.
+
+The previous example can be rewritten as follow:
+
+ Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3);
+ a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
+ Eigen::array<Eigen::DenseIndex, 2> two_dim({2, 3});
+ Eigen::Tensor<float, 1, Eigen::ColMajor> b;
+ b.reshape(two_dim) = a;
+ cout << "b" << endl << b << endl;
+ =>
+ b
+ 0
+ 300
+ 100
+ 400
+ 200
+ 500
+
+Note that "b" itself was not reshaped but that instead the assignment is done to
+the reshape view of b.
+
+
+### <Operation> shuffle(const Shuffle& shuffle)
+
+Returns a copy of the input tensor whose dimensions have been
+reordered according to the specified permutation. The argument shuffle
+is an array of Index values. Its size is the rank of the input
+tensor. It must contain a permutation of 0, 1, ..., rank - 1. The i-th
+dimension of the output tensor equals to the size of the shuffle[i]-th
+dimension of the input tensor. For example:
+
+ // Shuffle all dimensions to the left by 1.
+ Tensor<float, 3> input(20, 30, 50);
+ // ... set some values in input.
+ Tensor<float, 3> output = input.shuffle({1, 2, 0})
+
+ eigen_assert(output.dimension(0) == 30);
+ eigen_assert(output.dimension(1) == 50);
+ eigen_assert(output.dimension(2) == 20);
+
+Indices into the output tensor are shuffled accordingly to formulate
+indices into the input tensor. For example, one can assert in the above
+code snippet that:
+
+ eigen_assert(output(3, 7, 11) == input(11, 3, 7));
+
+In general, one can assert that
+
+ eigen_assert(output(..., indices[shuffle[i]], ...) ==
+ input(..., indices[i], ...))
+
+The shuffle operation results in a lvalue, which means that it can be assigned
+to. In other words, it can be used on the left side of the assignment operator.
+
+Let's rewrite the previous example to take advantage of this feature:
+
+ // Shuffle all dimensions to the left by 1.
+ Tensor<float, 3> input(20, 30, 50);
+ // ... set some values in input.
+ Tensor<float, 3> output(30, 50, 20);
+ output.shuffle({2, 0, 1}) = input;
+
+
+### <Operation> stride(const Strides& strides)
+
+Returns a view of the input tensor that strides (skips stride-1
+elements) along each of the dimensions. The argument strides is an
+array of Index values. The dimensions of the resulting tensor are
+ceil(input_dimensions[i] / strides[i]).
+
+For example this is what happens when you ```stride()``` a 2D tensor:
+
+ Eigen::Tensor<int, 2> a(4, 3);
+ a.setValues({{0, 100, 200}, {300, 400, 500}, {600, 700, 800}, {900, 1000, 1100}});
+ Eigen::array<Eigen::DenseIndex, 2> strides({3, 2});
+ Eigen::Tensor<int, 2> b = a.stride(strides);
+ cout << "b" << endl << b << endl;
+ =>
+ b
+ 0 200
+ 900 1100
+
+It is possible to assign a tensor to a stride:
+ Tensor<float, 3> input(20, 30, 50);
+ // ... set some values in input.
+ Tensor<float, 3> output(40, 90, 200);
+ output.stride({2, 3, 4}) = input;
+
+
+### <Operation> slice(const StartIndices& offsets, const Sizes& extents)
+
+Returns a sub-tensor of the given tensor. For each dimension i, the slice is
+made of the coefficients stored between offset[i] and offset[i] + extents[i] in
+the input tensor.
+
+ Eigen::Tensor<int, 2> a(4, 3);
+ a.setValues({{0, 100, 200}, {300, 400, 500},
+ {600, 700, 800}, {900, 1000, 1100}});
+ Eigen::array<int, 2> offsets = {1, 0};
+ Eigen::array<int, 2> extents = {2, 2};
+ Eigen::Tensor<int, 1> slice = a.slice(offsets, extents);
+ cout << "a" << endl << a << endl;
+ =>
+ a
+ 0 100 200
+ 300 400 500
+ 600 700 800
+ 900 1000 1100
+ cout << "slice" << endl << slice << endl;
+ =>
+ slice
+ 300 400
+ 600 700
+
+
+### <Operation> chip(const Index offset, const Index dim)
+
+A chip is a special kind of slice. It is the subtensor at the given offset in
+the dimension dim. The returned tensor has one fewer dimension than the input
+tensor: the dimension dim is removed.
+
+For example, a matrix chip would be either a row or a column of the input
+matrix.
+
+ Eigen::Tensor<int, 2> a(4, 3);
+ a.setValues({{0, 100, 200}, {300, 400, 500},
+ {600, 700, 800}, {900, 1000, 1100}});
+ Eigen::Tensor<int, 1> row_3 = a.chip(2, 0);
+ Eigen::Tensor<int, 1> col_2 = a.chip(1, 1);
+ cout << "a" << endl << a << endl;
+ =>
+ a
+ 0 100 200
+ 300 400 500
+ 600 700 800
+ 900 1000 1100
+ cout << "row_3" << endl << row_3 << endl;
+ =>
+ row_3
+ 600 700 800
+ cout << "col_2" << endl << col_2 << endl;
+ =>
+ col_2
+ 100 400 700 1000
+
+It is possible to assign values to a tensor chip since the chip operation is a
+lvalue. For example:
+
+ Eigen::Tensor<int, 1> a(3);
+ a.setValues({{100, 200, 300}});
+ Eigen::Tensor<int, 2> b(2, 3);
+ b.setZero();
+ b.chip(0, 0) = a;
+ cout << "a" << endl << a << endl;
+ =>
+ a
+ 100
+ 200
+ 300
+ cout << "b" << endl << b << endl;
+ =>
+ b
+ 100 200 300
+ 0 0 0
+
+
+### <Operation> reverse(const ReverseDimensions& reverse)
+
+Returns a view of the input tensor that reverses the order of the coefficients
+along a subset of the dimensions. The argument reverse is an array of boolean
+values that indicates whether or not the order of the coefficients should be
+reversed along each of the dimensions. This operation preserves the dimensions
+of the input tensor.
+
+For example this is what happens when you ```reverse()``` the first dimension
+of a 2D tensor:
+
+ Eigen::Tensor<int, 2> a(4, 3);
+ a.setValues({{0, 100, 200}, {300, 400, 500},
+ {600, 700, 800}, {900, 1000, 1100}});
+ Eigen::array<bool, 2> reverse({true, false});
+ Eigen::Tensor<int, 2> b = a.reverse(reverse);
+ cout << "a" << endl << a << endl << "b" << endl << b << endl;
+ =>
+ a
+ 0 100 200
+ 300 400 500
+ 600 700 800
+ 900 1000 1100
+ b
+ 900 1000 1100
+ 600 700 800
+ 300 400 500
+ 0 100 200
+
+
+### <Operation> broadcast(const Broadcast& broadcast)
+
+Returns a view of the input tensor in which the input is replicated one to many
+times.
+The broadcast argument specifies how many copies of the input tensor need to be
+made in each of the dimensions.
+
+ Eigen::Tensor<int, 2> a(2, 3);
+ a.setValues({{0, 100, 200}, {300, 400, 500}});
+ Eigen::array<int, 2> bcast({3, 2});
+ Eigen::Tensor<int, 2> b = a.broadcast(bcast);
+ cout << "a" << endl << a << endl << "b" << endl << b << endl;
+ =>
+ a
+ 0 100 200
+ 300 400 500
+ b
+ 0 100 200 0 100 200
+ 300 400 500 300 400 500
+ 0 100 200 0 100 200
+ 300 400 500 300 400 500
+ 0 100 200 0 100 200
+ 300 400 500 300 400 500
+
+### <Operation> concatenate(const OtherDerived& other, Axis axis)
+
+TODO
+
+### <Operation> pad(const PaddingDimensions& padding)
+
+Returns a view of the input tensor in which the input is padded with zeros.
+
+ Eigen::Tensor<int, 2> a(2, 3);
+ a.setValues({{0, 100, 200}, {300, 400, 500}});
+ Eigen::array<pair<int, int>, 2> paddings;
+ paddings[0] = make_pair(0, 1);
+ paddings[1] = make_pair(2, 3);
+ Eigen::Tensor<int, 2> b = a.pad(paddings);
+ cout << "a" << endl << a << endl << "b" << endl << b << endl;
+ =>
+ a
+ 0 100 200
+ 300 400 500
+ b
+ 0 0 0 0
+ 0 0 0 0
+ 0 100 200 0
+ 300 400 500 0
+ 0 0 0 0
+ 0 0 0 0
+ 0 0 0 0
+
+
+### <Operation> extract_patches(const PatchDims& patch_dims)
+
+Returns a tensor of coefficient patches extracted from the input tensor, where
+each patch is of dimension specified by 'patch_dims'. The returned tensor has
+one greater dimension than the input tensor, which is used to index each patch.
+The patch index in the output tensor depends on the data layout of the input
+tensor: the patch index is the last dimension ColMajor layout, and the first
+dimension in RowMajor layout.
+
+For example, given the following input tensor:
+
+ Eigen::Tensor<float, 2, DataLayout> tensor(3,4);
+ tensor.setValues({{0.0f, 1.0f, 2.0f, 3.0f},
+ {4.0f, 5.0f, 6.0f, 7.0f},
+ {8.0f, 9.0f, 10.0f, 11.0f}});
+
+ cout << "tensor: " << endl << tensor << endl;
+=>
+tensor:
+ 0 1 2 3
+ 4 5 6 7
+ 8 9 10 11
+
+Six 2x2 patches can be extracted and indexed using the following code:
+
+ Eigen::Tensor<float, 3, DataLayout> patch;
+ Eigen::array<ptrdiff_t, 2> patch_dims;
+ patch_dims[0] = 2;
+ patch_dims[1] = 2;
+ patch = tensor.extract_patches(patch_dims);
+ for (int k = 0; k < 6; ++k) {
+ cout << "patch index: " << k << endl;
+ for (int i = 0; i < 2; ++i) {
+ for (int j = 0; j < 2; ++j) {
+ if (DataLayout == ColMajor) {
+ cout << patch(i, j, k) << " ";
+ } else {
+ cout << patch(k, i, j) << " ";
+ }
+ }
+ cout << endl;
+ }
+ }
+
+This code results in the following output when the data layout is ColMajor:
+
+patch index: 0
+0 1
+4 5
+patch index: 1
+4 5
+8 9
+patch index: 2
+1 2
+5 6
+patch index: 3
+5 6
+9 10
+patch index: 4
+2 3
+6 7
+patch index: 5
+6 7
+10 11
+
+This code results in the following output when the data layout is RowMajor:
+(NOTE: the set of patches is the same as in ColMajor, but are indexed differently).
+
+patch index: 0
+0 1
+4 5
+patch index: 1
+1 2
+5 6
+patch index: 2
+2 3
+6 7
+patch index: 3
+4 5
+8 9
+patch index: 4
+5 6
+9 10
+patch index: 5
+6 7
+10 11
+
+### <Operation> extract_image_patches(const Index patch_rows, const Index patch_cols,
+ const Index row_stride, const Index col_stride,
+ const PaddingType padding_type)
+
+Returns a tensor of coefficient image patches extracted from the input tensor,
+which is expected to have dimensions ordered as follows (depending on the data
+layout of the input tensor, and the number of additional dimensions 'N'):
+
+*) ColMajor
+1st dimension: channels (of size d)
+2nd dimension: rows (of size r)
+3rd dimension: columns (of size c)
+4th-Nth dimension: time (for video) or batch (for bulk processing).
+
+*) RowMajor (reverse order of ColMajor)
+1st-Nth dimension: time (for video) or batch (for bulk processing).
+N+1'th dimension: columns (of size c)
+N+2'th dimension: rows (of size r)
+N+3'th dimension: channels (of size d)
+
+The returned tensor has one greater dimension than the input tensor, which is
+used to index each patch. The patch index in the output tensor depends on the
+data layout of the input tensor: the patch index is the 4'th dimension in
+ColMajor layout, and the 4'th from the last dimension in RowMajor layout.
+
+For example, given the following input tensor with the following dimension
+sizes:
+ *) depth: 2
+ *) rows: 3
+ *) columns: 5
+ *) batch: 7
+
+ Tensor<float, 4> tensor(2,3,5,7);
+ Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout();
+
+2x2 image patches can be extracted and indexed using the following code:
+
+*) 2D patch: ColMajor (patch indexed by second-to-last dimension)
+ Tensor<float, 5> twod_patch;
+ twod_patch = tensor.extract_image_patches<2, 2>();
+ // twod_patch.dimension(0) == 2
+ // twod_patch.dimension(1) == 2
+ // twod_patch.dimension(2) == 2
+ // twod_patch.dimension(3) == 3*5
+ // twod_patch.dimension(4) == 7
+
+*) 2D patch: RowMajor (patch indexed by the second dimension)
+ Tensor<float, 5, RowMajor> twod_patch_row_major;
+ twod_patch_row_major = tensor_row_major.extract_image_patches<2, 2>();
+ // twod_patch_row_major.dimension(0) == 7
+ // twod_patch_row_major.dimension(1) == 3*5
+ // twod_patch_row_major.dimension(2) == 2
+ // twod_patch_row_major.dimension(3) == 2
+ // twod_patch_row_major.dimension(4) == 2
+
+## Special Operations
+
+### <Operation> cast<T>()
+
+Returns a tensor of type T with the same dimensions as the original tensor.
+The returned tensor contains the values of the original tensor converted to
+type T.
+
+ Eigen::Tensor<float, 2> a(2, 3);
+ Eigen::Tensor<int, 2> b = a.cast<int>();
+
+This can be useful for example if you need to do element-wise division of
+Tensors of integers. This is not currently supported by the Tensor library
+but you can easily cast the tensors to floats to do the division:
+
+ Eigen::Tensor<int, 2> a(2, 3);
+ a.setValues({{0, 1, 2}, {3, 4, 5}});
+ Eigen::Tensor<int, 2> b =
+ (a.cast<float>() / a.constant(2).cast<float>()).cast<int>();
+ cout << "a" << endl << a << endl << endl;
+ cout << "b" << endl << b << endl << endl;
+ =>
+ a
+ 0 1 2
+ 3 4 5
+
+ b
+ 0 0 1
+ 1 2 2
+
+
+### <Operation> eval()
+
+TODO
+
+
+## Representation of scalar values
+
+Scalar values are often represented by tensors of size 1 and rank 1. It would be
+more logical and user friendly to use tensors of rank 0 instead. For example
+Tensor<T, N>::maximum() currently returns a Tensor<T, 1>. Similarly, the inner
+product of 2 1d tensors (through contractions) returns a 1d tensor. In the
+future these operations might be updated to return 0d tensors instead.
+
+## Limitations
+
+* The number of tensor dimensions is currently limited to 250 when using a
+ compiler that supports cxx11. It is limited to only 5 for older compilers.
+* The IndexList class requires a cxx11 compliant compiler. You can use an
+ array of indices instead if you don't have access to a modern compiler.
+* On GPUs only floating point values are properly tested and optimized for.
+* Complex and integer values are known to be broken on GPUs. If you try to use
+ them you'll most likely end up triggering a static assertion failure such as
+ EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
+
+
diff --git a/unsupported/Eigen/CXX11/src/Tensor/Tensor.h b/unsupported/Eigen/CXX11/src/Tensor/Tensor.h
new file mode 100644
index 000000000..1940a9692
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/Tensor.h
@@ -0,0 +1,527 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_H
+#define EIGEN_CXX11_TENSOR_TENSOR_H
+
+namespace Eigen {
+
+/** \class Tensor
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief The tensor class.
+ *
+ * The %Tensor class is the work-horse for all \em dense tensors within Eigen.
+ *
+ * The %Tensor class encompasses only dynamic-size objects so far.
+ *
+ * The first two template parameters are required:
+ * \tparam Scalar_ \anchor tensor_tparam_scalar Numeric type, e.g. float, double, int or std::complex<float>.
+ * User defined scalar types are supported as well (see \ref user_defined_scalars "here").
+ * \tparam NumIndices_ Number of indices (i.e. rank of the tensor)
+ *
+ * The remaining template parameters are optional -- in most cases you don't have to worry about them.
+ * \tparam Options_ \anchor tensor_tparam_options A combination of either \b #RowMajor or \b #ColMajor, and of either
+ * \b #AutoAlign or \b #DontAlign.
+ * The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
+ * for vectorization. It defaults to aligning tensors. Note that tensors currently do not support any operations that profit from vectorization.
+ * Support for such operations (i.e. adding two tensors etc.) is planned.
+ *
+ * You can access elements of tensors using normal subscripting:
+ *
+ * \code
+ * Eigen::Tensor<double, 4> t(10, 10, 10, 10);
+ * t(0, 1, 2, 3) = 42.0;
+ * \endcode
+ *
+ * This class can be extended with the help of the plugin mechanism described on the page
+ * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TENSOR_PLUGIN.
+ *
+ * <i><b>Some notes:</b></i>
+ *
+ * <dl>
+ * <dt><b>Relation to other parts of Eigen:</b></dt>
+ * <dd>The midterm developement goal for this class is to have a similar hierarchy as Eigen uses for matrices, so that
+ * taking blocks or using tensors in expressions is easily possible, including an interface with the vector/matrix code
+ * by providing .asMatrix() and .asVector() (or similar) methods for rank 2 and 1 tensors. However, currently, the %Tensor
+ * class does not provide any of these features and is only available as a stand-alone class that just allows for
+ * coefficient access. Also, when fixed-size tensors are implemented, the number of template arguments is likely to
+ * change dramatically.</dd>
+ * </dl>
+ *
+ * \ref TopicStorageOrders
+ */
+
+template<typename Scalar_, int NumIndices_, int Options_, typename IndexType_>
+class Tensor : public TensorBase<Tensor<Scalar_, NumIndices_, Options_, IndexType_> >
+{
+ public:
+ typedef Tensor<Scalar_, NumIndices_, Options_, IndexType_> Self;
+ typedef TensorBase<Tensor<Scalar_, NumIndices_, Options_, IndexType_> > Base;
+ typedef typename Eigen::internal::nested<Self>::type Nested;
+ typedef typename internal::traits<Self>::StorageKind StorageKind;
+ typedef typename internal::traits<Self>::Index Index;
+ typedef Scalar_ Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef typename Base::CoeffReturnType CoeffReturnType;
+
+ enum {
+ IsAligned = bool(EIGEN_MAX_ALIGN_BYTES>0) & !(Options_&DontAlign),
+ Layout = Options_ & RowMajor ? RowMajor : ColMajor,
+ CoordAccess = true,
+ RawAccess = true
+ };
+
+ static const int Options = Options_;
+ static const int NumIndices = NumIndices_;
+ typedef DSizes<Index, NumIndices_> Dimensions;
+
+ protected:
+ TensorStorage<Scalar, Dimensions, Options> m_storage;
+
+#ifdef EIGEN_HAS_SFINAE
+ template<typename CustomIndices>
+ struct isOfNormalIndex{
+ static const bool is_array = internal::is_base_of<array<Index, NumIndices>, CustomIndices>::value;
+ static const bool is_int = NumTraits<CustomIndices>::IsInteger;
+ static const bool value = is_array | is_int;
+ };
+#endif
+
+ public:
+ // Metadata
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const { return NumIndices; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(std::size_t n) const { return m_storage.dimensions()[n]; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_storage.dimensions(); }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_storage.size(); }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); }
+
+ // This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
+ // work, because that uses base().coeffRef() - and we don't yet
+ // implement a similar class hierarchy
+ inline Self& base() { return *this; }
+ inline const Self& base() const { return *this; }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes>
+ EIGEN_DEVICE_FUNC inline const Scalar& coeff(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
+ {
+ // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return coeff(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
+ }
+#endif
+
+ // normal indices
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(const array<Index, NumIndices>& indices) const
+ {
+ eigen_internal_assert(checkIndexRange(indices));
+ return m_storage.data()[linearizedIndex(indices)];
+ }
+
+ // custom indices
+#ifdef EIGEN_HAS_SFINAE
+ template<typename CustomIndices,
+ EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) )
+ >
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(CustomIndices& indices) const
+ {
+ return coeff(internal::customIndices2Array<Index,NumIndices>(indices));
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff() const
+ {
+ EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return m_storage.data()[0];
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const
+ {
+ eigen_internal_assert(index >= 0 && index < size());
+ return m_storage.data()[index];
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes>
+ inline Scalar& coeffRef(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
+ {
+ // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return coeffRef(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
+ }
+#endif
+
+ // normal indices
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices)
+ {
+ eigen_internal_assert(checkIndexRange(indices));
+ return m_storage.data()[linearizedIndex(indices)];
+ }
+
+ // custom indices
+#ifdef EIGEN_HAS_SFINAE
+ template<typename CustomIndices,
+ EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) )
+ >
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(CustomIndices& indices)
+ {
+ return coeffRef(internal::customIndices2Array<Index,NumIndices>(indices));
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef()
+ {
+ EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return m_storage.data()[0];
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
+ {
+ eigen_internal_assert(index >= 0 && index < size());
+ return m_storage.data()[index];
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes>
+ inline const Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
+ {
+ // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return this->operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
+ }
+#else
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const
+ {
+ return coeff(array<Index, 2>(i0, i1));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const
+ {
+ return coeff(array<Index, 3>(i0, i1, i2));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const
+ {
+ return coeff(array<Index, 4>(i0, i1, i2, i3));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const
+ {
+ return coeff(array<Index, 5>(i0, i1, i2, i3, i4));
+ }
+#endif
+
+ // custom indices
+#ifdef EIGEN_HAS_SFINAE
+ template<typename CustomIndices,
+ EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) )
+ >
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(CustomIndices& indices) const
+ {
+ return coeff(internal::customIndices2Array<Index,NumIndices>(indices));
+ }
+#endif
+
+ // normal indices
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const
+ {
+ return coeff(indices);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const
+ {
+ eigen_internal_assert(index >= 0 && index < size());
+ return coeff(index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()() const
+ {
+ EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return coeff();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator[](Index index) const
+ {
+ // The bracket operator is only for vectors, use the parenthesis operator instead.
+ EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return coeff(index);
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes>
+ inline Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
+ {
+ // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
+ }
+#else
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1)
+ {
+ return coeffRef(array<Index, 2>(i0, i1));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2)
+ {
+ return coeffRef(array<Index, 3>(i0, i1, i2));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3)
+ {
+ return coeffRef(array<Index, 4>(i0, i1, i2, i3));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4)
+ {
+ return coeffRef(array<Index, 5>(i0, i1, i2, i3, i4));
+ }
+#endif
+
+ // normal indices
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices)
+ {
+ return coeffRef(indices);
+ }
+
+ // custom indices
+#ifdef EIGEN_HAS_SFINAE
+ template<typename CustomIndices,
+ EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) )
+ >
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(CustomIndices& indices)
+ {
+ return coeffRef(internal::customIndices2Array<Index,NumIndices>(indices));
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index index)
+ {
+ eigen_assert(index >= 0 && index < size());
+ return coeffRef(index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()()
+ {
+ EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return coeffRef();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator[](Index index)
+ {
+ // The bracket operator is only for vectors, use the parenthesis operator instead
+ EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return coeffRef(index);
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Tensor()
+ : m_storage()
+ {
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Tensor(const Self& other)
+ : m_storage(other.m_storage)
+ {
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index firstDimension, IndexTypes... otherDimensions)
+ : m_storage(firstDimension, otherDimensions...)
+ {
+ // The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+#else
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit Tensor(Index dim1)
+ : m_storage(dim1, array<Index, 1>(dim1))
+ {
+ EIGEN_STATIC_ASSERT(1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2)
+ : m_storage(dim1*dim2, array<Index, 2>(dim1, dim2))
+ {
+ EIGEN_STATIC_ASSERT(2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3)
+ : m_storage(dim1*dim2*dim3, array<Index, 3>(dim1, dim2, dim3))
+ {
+ EIGEN_STATIC_ASSERT(3 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3, Index dim4)
+ : m_storage(dim1*dim2*dim3*dim4, array<Index, 4>(dim1, dim2, dim3, dim4))
+ {
+ EIGEN_STATIC_ASSERT(4 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3, Index dim4, Index dim5)
+ : m_storage(dim1*dim2*dim3*dim4*dim5, array<Index, 5>(dim1, dim2, dim3, dim4, dim5))
+ {
+ EIGEN_STATIC_ASSERT(5 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+#endif
+
+ /** Normal Dimension */
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit Tensor(const array<Index, NumIndices>& dimensions)
+ : m_storage(internal::array_prod(dimensions), dimensions)
+ {
+ EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Tensor(const TensorBase<OtherDerived, ReadOnlyAccessors>& other)
+ {
+ typedef TensorAssignOp<Tensor, const OtherDerived> Assign;
+ Assign assign(*this, other.derived());
+ resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ }
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Tensor(const TensorBase<OtherDerived, WriteAccessors>& other)
+ {
+ typedef TensorAssignOp<Tensor, const OtherDerived> Assign;
+ Assign assign(*this, other.derived());
+ resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Tensor& operator=(const Tensor& other)
+ {
+ typedef TensorAssignOp<Tensor, const Tensor> Assign;
+ Assign assign(*this, other);
+ resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Tensor& operator=(const OtherDerived& other)
+ {
+ typedef TensorAssignOp<Tensor, const OtherDerived> Assign;
+ Assign assign(*this, other);
+ resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes> EIGEN_DEVICE_FUNC
+ void resize(Index firstDimension, IndexTypes... otherDimensions)
+ {
+ // The number of dimensions used to resize a tensor must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ resize(array<Index, NumIndices>{{firstDimension, otherDimensions...}});
+ }
+#endif
+
+ /** Normal Dimension */
+ EIGEN_DEVICE_FUNC void resize(const array<Index, NumIndices>& dimensions)
+ {
+ int i;
+ Index size = Index(1);
+ for (i = 0; i < NumIndices; i++) {
+ internal::check_rows_cols_for_overflow<Dynamic>::run(size, dimensions[i]);
+ size *= dimensions[i];
+ }
+ #ifdef EIGEN_INITIALIZE_COEFFS
+ bool size_changed = size != this->size();
+ m_storage.resize(size, dimensions);
+ if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
+ #else
+ m_storage.resize(size, dimensions);
+ #endif
+ }
+
+ // Why this overload, DSizes is derived from array ??? //
+ EIGEN_DEVICE_FUNC void resize(const DSizes<Index, NumIndices>& dimensions) {
+ array<Index, NumIndices> dims;
+ for (int i = 0; i < NumIndices; ++i) {
+ dims[i] = dimensions[i];
+ }
+ resize(dims);
+ }
+
+ EIGEN_DEVICE_FUNC
+ void resize()
+ {
+ EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ // Nothing to do: rank 0 tensors have fixed size
+ }
+
+ /** Custom Dimension */
+#ifdef EIGEN_HAS_SFINAE
+ template<typename CustomDimension,
+ EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomDimension>::value) )
+ >
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(CustomDimension& dimensions)
+ {
+ resize(internal::customIndices2Array<Index,NumIndices>(dimensions));
+ }
+#endif
+
+#ifndef EIGEN_EMULATE_CXX11_META_H
+ template <typename std::ptrdiff_t... Indices>
+ EIGEN_DEVICE_FUNC
+ void resize(const Sizes<Indices...>& dimensions) {
+ array<Index, NumIndices> dims;
+ for (int i = 0; i < NumIndices; ++i) {
+ dims[i] = static_cast<Index>(dimensions[i]);
+ }
+ resize(dims);
+ }
+#else
+ template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5>
+ EIGEN_DEVICE_FUNC
+ void resize(const Sizes<V1, V2, V3, V4, V5>& dimensions) {
+ array<Index, NumIndices> dims;
+ for (int i = 0; i < NumIndices; ++i) {
+ dims[i] = static_cast<Index>(dimensions[i]);
+ }
+ resize(dims);
+ }
+#endif
+
+ protected:
+
+ bool checkIndexRange(const array<Index, NumIndices>& indices) const
+ {
+ using internal::array_apply_and_reduce;
+ using internal::array_zip_and_reduce;
+ using internal::greater_equal_zero_op;
+ using internal::logical_and_op;
+ using internal::lesser_op;
+
+ return
+ // check whether the indices are all >= 0
+ array_apply_and_reduce<logical_and_op, greater_equal_zero_op>(indices) &&
+ // check whether the indices fit in the dimensions
+ array_zip_and_reduce<logical_and_op, lesser_op>(indices, m_storage.dimensions());
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index linearizedIndex(const array<Index, NumIndices>& indices) const
+ {
+ if (Options&RowMajor) {
+ return m_storage.dimensions().IndexOfRowMajor(indices);
+ } else {
+ return m_storage.dimensions().IndexOfColMajor(indices);
+ }
+ }
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h b/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h
new file mode 100644
index 000000000..d06f40cd8
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h
@@ -0,0 +1,299 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
+// Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
+#define EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
+
+namespace Eigen {
+namespace internal {
+
+/** \class TensorIndexTuple
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor + Index Tuple class.
+ *
+ *
+ */
+template<typename XprType>
+struct traits<TensorIndexTupleOp<XprType> > : public traits<XprType>
+{
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef Tuple<Index, typename XprTraits::Scalar> Scalar;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename XprType>
+struct eval<TensorIndexTupleOp<XprType>, Eigen::Dense>
+{
+ typedef const TensorIndexTupleOp<XprType>& type;
+};
+
+template<typename XprType>
+struct nested<TensorIndexTupleOp<XprType>, 1,
+ typename eval<TensorIndexTupleOp<XprType> >::type>
+{
+ typedef TensorIndexTupleOp<XprType> type;
+};
+
+} // end namespace internal
+
+template<typename XprType>
+class TensorIndexTupleOp : public TensorBase<TensorIndexTupleOp<XprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorIndexTupleOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename Eigen::internal::nested<TensorIndexTupleOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorIndexTupleOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorIndexTupleOp>::Index Index;
+ typedef Tuple<Index, typename XprType::CoeffReturnType> CoeffReturnType;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIndexTupleOp(const XprType& expr)
+ : m_xpr(expr) {}
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+};
+
+// Eval as rvalue
+template<typename ArgType, typename Device>
+struct TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device>
+{
+ typedef TensorIndexTupleOp<ArgType> XprType;
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+
+ typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
+ static const int NumDims = internal::array_size<Dimensions>::value;
+
+ enum {
+ IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
+ PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/ false,
+ BlockAccess = false,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device) { }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
+ return m_impl.dimensions();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ return CoeffReturnType(index, m_impl.coeff(index));
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, 1);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ protected:
+ TensorEvaluator<ArgType, Device> m_impl;
+};
+
+namespace internal {
+
+/** \class TensorTupleIndex
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Converts to Tensor<Tuple<Index, Scalar> > and reduces to Tensor<Index>.
+ *
+ */
+template<typename ReduceOp, typename Dims, typename XprType>
+struct traits<TensorTupleReducerOp<ReduceOp, Dims, XprType> > : public traits<XprType>
+{
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef Index Scalar;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename ReduceOp, typename Dims, typename XprType>
+struct eval<TensorTupleReducerOp<ReduceOp, Dims, XprType>, Eigen::Dense>
+{
+ typedef const TensorTupleReducerOp<ReduceOp, Dims, XprType>& type;
+};
+
+template<typename ReduceOp, typename Dims, typename XprType>
+struct nested<TensorTupleReducerOp<ReduceOp, Dims, XprType>, 1,
+ typename eval<TensorTupleReducerOp<ReduceOp, Dims, XprType> >::type>
+{
+ typedef TensorTupleReducerOp<ReduceOp, Dims, XprType> type;
+};
+
+} // end namespace internal
+
+template<typename ReduceOp, typename Dims, typename XprType>
+class TensorTupleReducerOp : public TensorBase<TensorTupleReducerOp<ReduceOp, Dims, XprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorTupleReducerOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename Eigen::internal::nested<TensorTupleReducerOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorTupleReducerOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorTupleReducerOp>::Index Index;
+ typedef Index CoeffReturnType;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorTupleReducerOp(const XprType& expr,
+ const ReduceOp& reduce_op,
+ const int return_dim,
+ const Dims& reduce_dims)
+ : m_xpr(expr), m_reduce_op(reduce_op), m_return_dim(return_dim), m_reduce_dims(reduce_dims) {}
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ const ReduceOp& reduce_op() const { return m_reduce_op; }
+
+ EIGEN_DEVICE_FUNC
+ const Dims& reduce_dims() const { return m_reduce_dims; }
+
+ EIGEN_DEVICE_FUNC
+ int return_dim() const { return m_return_dim; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const ReduceOp m_reduce_op;
+ const int m_return_dim;
+ const Dims m_reduce_dims;
+};
+
+// Eval as rvalue
+template<typename ReduceOp, typename Dims, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorTupleReducerOp<ReduceOp, Dims, ArgType>, Device>
+{
+ typedef TensorTupleReducerOp<ReduceOp, Dims, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename TensorIndexTupleOp<ArgType>::CoeffReturnType TupleType;
+ typedef typename TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device>::Dimensions Dimensions;
+ typedef typename TensorEvaluator<const TensorIndexTupleOp<ArgType> , Device>::Dimensions InputDimensions;
+ static const int NumDims = internal::array_size<InputDimensions>::value;
+ typedef array<Index, NumDims> StrideDims;
+
+ enum {
+ IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
+ PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/ false,
+ BlockAccess = false,
+ Layout = TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_orig_impl(op.expression(), device),
+ m_impl(op.expression().index_tuples().reduce(op.reduce_dims(), op.reduce_op()), device),
+ m_return_dim(op.return_dim()) {
+
+ gen_strides(m_orig_impl.dimensions(), m_strides);
+ if (Layout == static_cast<int>(ColMajor)) {
+ const Index total_size = internal::array_prod(m_orig_impl.dimensions());
+ m_stride_mod = (m_return_dim < NumDims - 1) ? m_strides[m_return_dim + 1] : total_size;
+ } else {
+ const Index total_size = internal::array_prod(m_orig_impl.dimensions());
+ m_stride_mod = (m_return_dim > 0) ? m_strides[m_return_dim - 1] : total_size;
+ }
+ m_stride_div = m_strides[m_return_dim];
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
+ return m_impl.dimensions();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
+ const TupleType v = m_impl.coeff(index);
+ return (m_return_dim < 0) ? v.first : (v.first % m_stride_mod) / m_stride_div;
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ const double compute_cost = 1.0 +
+ (m_return_dim < 0 ? 0.0 : (TensorOpCost::ModCost<Index>() + TensorOpCost::DivCost<Index>()));
+ return m_orig_impl.costPerCoeff(vectorized) +
+ m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost);
+ }
+
+ private:
+ EIGEN_DEVICE_FUNC void gen_strides(const InputDimensions& dims, StrideDims& strides) {
+ if (m_return_dim < 0) {
+ return; // Won't be using the strides.
+ }
+ eigen_assert(m_return_dim < NumDims &&
+ "Asking to convert index to a dimension outside of the rank");
+
+ // Calculate m_stride_div and m_stride_mod, which are used to
+ // calculate the value of an index w.r.t. the m_return_dim.
+ if (Layout == static_cast<int>(ColMajor)) {
+ strides[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ strides[i] = strides[i-1] * dims[i-1];
+ }
+ } else {
+ strides[NumDims-1] = 1;
+ for (int i = NumDims - 2; i >= 0; --i) {
+ strides[i] = strides[i+1] * dims[i+1];
+ }
+ }
+ }
+
+ protected:
+ TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device> m_orig_impl;
+ TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device> m_impl;
+ const int m_return_dim;
+ StrideDims m_strides;
+ Index m_stride_mod;
+ Index m_stride_div;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h b/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h
new file mode 100644
index 000000000..166be200c
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h
@@ -0,0 +1,181 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
+#define EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
+
+namespace Eigen {
+
+/** \class TensorAssign
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief The tensor assignment class.
+ *
+ * This class is represents the assignment of the values resulting from the evaluation of
+ * the rhs expression to the memory locations denoted by the lhs expression.
+ */
+namespace internal {
+template<typename LhsXprType, typename RhsXprType>
+struct traits<TensorAssignOp<LhsXprType, RhsXprType> >
+{
+ typedef typename LhsXprType::Scalar Scalar;
+ typedef typename traits<LhsXprType>::StorageKind StorageKind;
+ typedef typename promote_index_type<typename traits<LhsXprType>::Index,
+ typename traits<RhsXprType>::Index>::type Index;
+ typedef typename LhsXprType::Nested LhsNested;
+ typedef typename RhsXprType::Nested RhsNested;
+ typedef typename remove_reference<LhsNested>::type _LhsNested;
+ typedef typename remove_reference<RhsNested>::type _RhsNested;
+ static const std::size_t NumDimensions = internal::traits<LhsXprType>::NumDimensions;
+ static const int Layout = internal::traits<LhsXprType>::Layout;
+
+ enum {
+ Flags = 0
+ };
+};
+
+template<typename LhsXprType, typename RhsXprType>
+struct eval<TensorAssignOp<LhsXprType, RhsXprType>, Eigen::Dense>
+{
+ typedef const TensorAssignOp<LhsXprType, RhsXprType>& type;
+};
+
+template<typename LhsXprType, typename RhsXprType>
+struct nested<TensorAssignOp<LhsXprType, RhsXprType>, 1, typename eval<TensorAssignOp<LhsXprType, RhsXprType> >::type>
+{
+ typedef TensorAssignOp<LhsXprType, RhsXprType> type;
+};
+
+} // end namespace internal
+
+
+
+template<typename LhsXprType, typename RhsXprType>
+class TensorAssignOp : public TensorBase<TensorAssignOp<LhsXprType, RhsXprType> >
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorAssignOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename LhsXprType::CoeffReturnType CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorAssignOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorAssignOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorAssignOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorAssignOp(LhsXprType& lhs, const RhsXprType& rhs)
+ : m_lhs_xpr(lhs), m_rhs_xpr(rhs) {}
+
+ /** \returns the nested expressions */
+ EIGEN_DEVICE_FUNC
+ typename internal::remove_all<typename LhsXprType::Nested>::type&
+ lhsExpression() const { return *((typename internal::remove_all<typename LhsXprType::Nested>::type*)&m_lhs_xpr); }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename RhsXprType::Nested>::type&
+ rhsExpression() const { return m_rhs_xpr; }
+
+ protected:
+ typename internal::remove_all<typename LhsXprType::Nested>::type& m_lhs_xpr;
+ const typename internal::remove_all<typename RhsXprType::Nested>::type& m_rhs_xpr;
+};
+
+
+template<typename LeftArgType, typename RightArgType, typename Device>
+struct TensorEvaluator<const TensorAssignOp<LeftArgType, RightArgType>, Device>
+{
+ typedef TensorAssignOp<LeftArgType, RightArgType> XprType;
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ typedef typename TensorEvaluator<RightArgType, Device>::Dimensions Dimensions;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = TensorEvaluator<LeftArgType, Device>::IsAligned & TensorEvaluator<RightArgType, Device>::IsAligned,
+ PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<LeftArgType, Device>::Layout,
+ RawAccess = TensorEvaluator<LeftArgType, Device>::RawAccess
+ };
+
+ EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) :
+ m_leftImpl(op.lhsExpression(), device),
+ m_rightImpl(op.rhsExpression(), device)
+ {
+ EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ }
+
+ EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
+ {
+ // The dimensions of the lhs and the rhs tensors should be equal to prevent
+ // overflows and ensure the result is fully initialized.
+ // TODO: use left impl instead if right impl dimensions are known at compile time.
+ return m_rightImpl.dimensions();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
+ eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions()));
+ m_leftImpl.evalSubExprsIfNeeded(NULL);
+ // If the lhs provides raw access to its storage area (i.e. if m_leftImpl.data() returns a non
+ // null value), attempt to evaluate the rhs expression in place. Returns true iff in place
+ // evaluation isn't supported and the caller still needs to manually assign the values generated
+ // by the rhs to the lhs.
+ return m_rightImpl.evalSubExprsIfNeeded(m_leftImpl.data());
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_leftImpl.cleanup();
+ m_rightImpl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) {
+ m_leftImpl.coeffRef(i) = m_rightImpl.coeff(i);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) {
+ const int LhsStoreMode = TensorEvaluator<LeftArgType, Device>::IsAligned ? Aligned : Unaligned;
+ const int RhsLoadMode = TensorEvaluator<RightArgType, Device>::IsAligned ? Aligned : Unaligned;
+ m_leftImpl.template writePacket<LhsStoreMode>(i, m_rightImpl.template packet<RhsLoadMode>(i));
+ }
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
+ {
+ return m_leftImpl.coeff(index);
+ }
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const
+ {
+ return m_leftImpl.template packet<LoadMode>(index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ // We assume that evalPacket or evalScalar is called to perform the
+ // assignment and account for the cost of the write here, but reduce left
+ // cost by one load because we are using m_leftImpl.coeffRef.
+ TensorOpCost left = m_leftImpl.costPerCoeff(vectorized);
+ return m_rightImpl.costPerCoeff(vectorized) +
+ TensorOpCost(
+ numext::maxi(0.0, left.bytes_loaded() - sizeof(CoeffReturnType)),
+ left.bytes_stored(), left.compute_cycles()) +
+ TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize);
+ }
+
+ /// required by sycl in order to extract the accessor
+ const TensorEvaluator<LeftArgType, Device>& left_impl() const { return m_leftImpl; }
+ /// required by sycl in order to extract the accessor
+ const TensorEvaluator<RightArgType, Device>& right_impl() const { return m_rightImpl; }
+
+ EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return m_leftImpl.data(); }
+
+ private:
+ TensorEvaluator<LeftArgType, Device> m_leftImpl;
+ TensorEvaluator<RightArgType, Device> m_rightImpl;
+};
+
+}
+
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h b/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
new file mode 100644
index 000000000..7a45a5cf4
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
@@ -0,0 +1,1010 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_BASE_H
+#define EIGEN_CXX11_TENSOR_TENSOR_BASE_H
+
+// clang-format off
+
+namespace Eigen {
+
+/** \class TensorBase
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief The tensor base class.
+ *
+ * This class is the common parent of the Tensor and TensorMap class, thus
+ * making it possible to use either class interchangably in expressions.
+ */
+
+template<typename Derived>
+class TensorBase<Derived, ReadOnlyAccessors>
+{
+ public:
+ typedef internal::traits<Derived> DerivedTraits;
+ typedef typename DerivedTraits::Scalar Scalar;
+ typedef typename DerivedTraits::Index Index;
+ typedef typename internal::remove_const<Scalar>::type CoeffReturnType;
+ static const int NumDimensions = DerivedTraits::NumDimensions;
+
+ // Generic nullary operation support.
+ template <typename CustomNullaryOp> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<CustomNullaryOp, const Derived>
+ nullaryExpr(const CustomNullaryOp& func) const {
+ return TensorCwiseNullaryOp<CustomNullaryOp, const Derived>(derived(), func);
+ }
+
+ // Coefficient-wise nullary operators
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived>
+ constant(const Scalar& value) const {
+ return nullaryExpr(internal::scalar_constant_op<Scalar>(value));
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<internal::UniformRandomGenerator<Scalar>, const Derived>
+ random() const {
+ return nullaryExpr(internal::UniformRandomGenerator<Scalar>());
+ }
+ template <typename RandomGenerator> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<RandomGenerator, const Derived>
+ random(const RandomGenerator& gen = RandomGenerator()) const {
+ return nullaryExpr(gen);
+ }
+
+ // Tensor generation
+ template <typename Generator> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorGeneratorOp<Generator, const Derived>
+ generate(const Generator& generator) const {
+ return TensorGeneratorOp<Generator, const Derived>(derived(), generator);
+ }
+
+ // Generic unary operation support.
+ template <typename CustomUnaryOp> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<CustomUnaryOp, const Derived>
+ unaryExpr(const CustomUnaryOp& func) const {
+ return TensorCwiseUnaryOp<CustomUnaryOp, const Derived>(derived(), func);
+ }
+
+ // Coefficient-wise unary operators
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const Derived>
+ operator-() const {
+ return unaryExpr(internal::scalar_opposite_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived>
+ sqrt() const {
+ return unaryExpr(internal::scalar_sqrt_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sign_op<Scalar>, const Derived>
+ sign() const {
+ return unaryExpr(internal::scalar_sign_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_rsqrt_op<Scalar>, const Derived>
+ rsqrt() const {
+ return unaryExpr(internal::scalar_rsqrt_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_square_op<Scalar>, const Derived>
+ square() const {
+ return unaryExpr(internal::scalar_square_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_cube_op<Scalar>, const Derived>
+ cube() const {
+ return unaryExpr(internal::scalar_cube_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived>
+ inverse() const {
+ return unaryExpr(internal::scalar_inverse_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_tanh_op<Scalar>, const Derived>
+ tanh() const {
+ return unaryExpr(internal::scalar_tanh_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_lgamma_op<Scalar>, const Derived>
+ lgamma() const {
+ return unaryExpr(internal::scalar_lgamma_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_digamma_op<Scalar>, const Derived>
+ digamma() const {
+ return unaryExpr(internal::scalar_digamma_op<Scalar>());
+ }
+
+ // igamma(a = this, x = other)
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_igamma_op<Scalar>, const Derived, const OtherDerived>
+ igamma(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_igamma_op<Scalar>());
+ }
+
+ // igammac(a = this, x = other)
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_igammac_op<Scalar>, const Derived, const OtherDerived>
+ igammac(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_igammac_op<Scalar>());
+ }
+
+ // zeta(x = this, q = other)
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_zeta_op<Scalar>, const Derived, const OtherDerived>
+ zeta(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_zeta_op<Scalar>());
+ }
+
+ // polygamma(n = this, x = other)
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_polygamma_op<Scalar>, const Derived, const OtherDerived>
+ polygamma(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_polygamma_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_erf_op<Scalar>, const Derived>
+ erf() const {
+ return unaryExpr(internal::scalar_erf_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_erfc_op<Scalar>, const Derived>
+ erfc() const {
+ return unaryExpr(internal::scalar_erfc_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sigmoid_op<Scalar>, const Derived>
+ sigmoid() const {
+ return unaryExpr(internal::scalar_sigmoid_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_exp_op<Scalar>, const Derived>
+ exp() const {
+ return unaryExpr(internal::scalar_exp_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_log_op<Scalar>, const Derived>
+ log() const {
+ return unaryExpr(internal::scalar_log_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_log1p_op<Scalar>, const Derived>
+ log1p() const {
+ return unaryExpr(internal::scalar_log1p_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived>
+ abs() const {
+ return unaryExpr(internal::scalar_abs_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Derived>
+ conjugate() const {
+ return unaryExpr(internal::scalar_conjugate_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_pow_op<Scalar,Scalar> >, const Derived>
+ pow(Scalar exponent) const {
+ return unaryExpr(internal::bind2nd_op<internal::scalar_pow_op<Scalar,Scalar> >(exponent));
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_real_op<Scalar>, const Derived>
+ real() const {
+ return unaryExpr(internal::scalar_real_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_imag_op<Scalar>, const Derived>
+ imag() const {
+ return unaryExpr(internal::scalar_imag_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_sum_op<Scalar,Scalar> >, const Derived>
+ operator+ (Scalar rhs) const {
+ return unaryExpr(internal::bind2nd_op<internal::scalar_sum_op<Scalar,Scalar> >(rhs));
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE friend
+ const TensorCwiseUnaryOp<internal::bind1st_op<internal::scalar_sum_op<Scalar> >, const Derived>
+ operator+ (Scalar lhs, const Derived& rhs) {
+ return rhs.unaryExpr(internal::bind1st_op<internal::scalar_sum_op<Scalar> >(lhs));
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_difference_op<Scalar,Scalar> >, const Derived>
+ operator- (Scalar rhs) const {
+ EIGEN_STATIC_ASSERT((NumTraits<Scalar>::IsSigned || internal::is_same<Scalar, const std::complex<float> >::value), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return unaryExpr(internal::bind2nd_op<internal::scalar_difference_op<Scalar,Scalar> >(rhs));
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE friend
+ const TensorCwiseUnaryOp<internal::bind1st_op<internal::scalar_difference_op<Scalar> >, const Derived>
+ operator- (Scalar lhs, const Derived& rhs) {
+ return rhs.unaryExpr(internal::bind1st_op<internal::scalar_difference_op<Scalar> >(lhs));
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_product_op<Scalar,Scalar> >, const Derived>
+ operator* (Scalar rhs) const {
+ return unaryExpr(internal::bind2nd_op<internal::scalar_product_op<Scalar,Scalar> >(rhs));
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE friend
+ const TensorCwiseUnaryOp<internal::bind1st_op<internal::scalar_product_op<Scalar> >, const Derived>
+ operator* (Scalar lhs, const Derived& rhs) {
+ return rhs.unaryExpr(internal::bind1st_op<internal::scalar_product_op<Scalar> >(lhs));
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_quotient_op<Scalar,Scalar> >, const Derived>
+ operator/ (Scalar rhs) const {
+ return unaryExpr(internal::bind2nd_op<internal::scalar_quotient_op<Scalar,Scalar> >(rhs));
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE friend
+ const TensorCwiseUnaryOp<internal::bind1st_op<internal::scalar_quotient_op<Scalar> >, const Derived>
+ operator/ (Scalar lhs, const Derived& rhs) {
+ return rhs.unaryExpr(internal::bind1st_op<internal::scalar_quotient_op<Scalar> >(lhs));
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_mod_op<Scalar>, const Derived>
+ operator% (Scalar rhs) const {
+ EIGEN_STATIC_ASSERT(NumTraits<Scalar>::IsInteger, YOU_MADE_A_PROGRAMMING_MISTAKE_TRY_MOD);
+ return unaryExpr(internal::scalar_mod_op<Scalar>(rhs));
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
+ cwiseMax(Scalar threshold) const {
+ return cwiseMax(constant(threshold));
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
+ cwiseMin(Scalar threshold) const {
+ return cwiseMin(constant(threshold));
+ }
+
+ template <typename NewType> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorConversionOp<NewType, const Derived>
+ cast() const {
+ return TensorConversionOp<NewType, const Derived>(derived());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_round_op<Scalar>, const Derived>
+ round() const {
+ return unaryExpr(internal::scalar_round_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_ceil_op<Scalar>, const Derived>
+ ceil() const {
+ return unaryExpr(internal::scalar_ceil_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_floor_op<Scalar>, const Derived>
+ floor() const {
+ return unaryExpr(internal::scalar_floor_op<Scalar>());
+ }
+
+ // Generic binary operation support.
+ template <typename CustomBinaryOp, typename OtherDerived> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived>
+ binaryExpr(const OtherDerived& other, const CustomBinaryOp& func) const {
+ return TensorCwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived>(derived(), other, func);
+ }
+
+ // Coefficient-wise binary operators.
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_sum_op<Scalar>, const Derived, const OtherDerived>
+ operator+(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_sum_op<Scalar>());
+ }
+
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_difference_op<Scalar>, const Derived, const OtherDerived>
+ operator-(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_difference_op<Scalar>());
+ }
+
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_product_op<Scalar>, const Derived, const OtherDerived>
+ operator*(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_product_op<Scalar>());
+ }
+
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived>
+ operator/(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_quotient_op<Scalar>());
+ }
+
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived>
+ cwiseMax(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_max_op<Scalar>());
+ }
+
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived>
+ cwiseMin(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_min_op<Scalar>());
+ }
+
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_boolean_and_op, const Derived, const OtherDerived>
+ operator&&(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_boolean_and_op());
+ }
+
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_boolean_or_op, const Derived, const OtherDerived>
+ operator||(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_boolean_or_op());
+ }
+
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_boolean_xor_op, const Derived, const OtherDerived>
+ operator^(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_boolean_xor_op());
+ }
+
+ // Comparisons and tests.
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LT>, const Derived, const OtherDerived>
+ operator<(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LT>());
+ }
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LE>, const Derived, const OtherDerived>
+ operator<=(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LE>());
+ }
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GT>, const Derived, const OtherDerived>
+ operator>(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GT>());
+ }
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GE>, const Derived, const OtherDerived>
+ operator>=(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GE>());
+ }
+
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ>, const Derived, const OtherDerived>
+ operator==(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ>());
+ }
+
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_NEQ>, const Derived, const OtherDerived>
+ operator!=(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_NEQ>());
+ }
+
+ // comparisons and tests for Scalars
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LT>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
+ operator<(Scalar threshold) const {
+ return operator<(constant(threshold));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LE>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
+ operator<=(Scalar threshold) const {
+ return operator<=(constant(threshold));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GT>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
+ operator>(Scalar threshold) const {
+ return operator>(constant(threshold));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GE>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
+ operator>=(Scalar threshold) const {
+ return operator>=(constant(threshold));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
+ operator==(Scalar threshold) const {
+ return operator==(constant(threshold));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_NEQ>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
+ operator!=(Scalar threshold) const {
+ return operator!=(constant(threshold));
+ }
+
+ // Checks
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_isnan_op<Scalar>, const Derived>
+ (isnan)() const {
+ return unaryExpr(internal::scalar_isnan_op<Scalar>());
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_isinf_op<Scalar>, const Derived>
+ (isinf)() const {
+ return unaryExpr(internal::scalar_isinf_op<Scalar>());
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_isfinite_op<Scalar>, const Derived>
+ (isfinite)() const {
+ return unaryExpr(internal::scalar_isfinite_op<Scalar>());
+ }
+
+ // Coefficient-wise ternary operators.
+ template<typename ThenDerived, typename ElseDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorSelectOp<const Derived, const ThenDerived, const ElseDerived>
+ select(const ThenDerived& thenTensor, const ElseDerived& elseTensor) const {
+ return TensorSelectOp<const Derived, const ThenDerived, const ElseDerived>(derived(), thenTensor.derived(), elseTensor.derived());
+ }
+
+ // Contractions.
+ typedef Eigen::IndexPair<Index> DimensionPair;
+
+ template<typename OtherDerived, typename Dimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorContractionOp<const Dimensions, const Derived, const OtherDerived>
+ contract(const OtherDerived& other, const Dimensions& dims) const {
+ return TensorContractionOp<const Dimensions, const Derived, const OtherDerived>(derived(), other.derived(), dims);
+ }
+
+ // Convolutions.
+ template<typename KernelDerived, typename Dimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorConvolutionOp<const Dimensions, const Derived, const KernelDerived>
+ convolve(const KernelDerived& kernel, const Dimensions& dims) const {
+ return TensorConvolutionOp<const Dimensions, const Derived, const KernelDerived>(derived(), kernel.derived(), dims);
+ }
+
+ // Fourier transforms
+ template <int FFTDataType, int FFTDirection, typename FFT> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorFFTOp<const FFT, const Derived, FFTDataType, FFTDirection>
+ fft(const FFT& fft) const {
+ return TensorFFTOp<const FFT, const Derived, FFTDataType, FFTDirection>(derived(), fft);
+ }
+
+ // Scan.
+ typedef TensorScanOp<internal::SumReducer<CoeffReturnType>, const Derived> TensorScanSumOp;
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorScanSumOp
+ cumsum(const Index& axis, bool exclusive = false) const {
+ return TensorScanSumOp(derived(), axis, exclusive);
+ }
+
+ typedef TensorScanOp<internal::ProdReducer<CoeffReturnType>, const Derived> TensorScanProdOp;
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorScanProdOp
+ cumprod(const Index& axis, bool exclusive = false) const {
+ return TensorScanProdOp(derived(), axis, exclusive);
+ }
+
+ template <typename Reducer>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorScanOp<Reducer, const Derived>
+ scan(const Index& axis, const Reducer& reducer, bool exclusive = false) const {
+ return TensorScanOp<Reducer, const Derived>(derived(), axis, exclusive, reducer);
+ }
+
+ // Reductions.
+ template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorReductionOp<internal::SumReducer<CoeffReturnType>, const Dims, const Derived>
+ sum(const Dims& dims) const {
+ return TensorReductionOp<internal::SumReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::SumReducer<CoeffReturnType>());
+ }
+
+ const TensorReductionOp<internal::SumReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>
+ sum() const {
+ DimensionList<Index, NumDimensions> in_dims;
+ return TensorReductionOp<internal::SumReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::SumReducer<CoeffReturnType>());
+ }
+
+ template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const Dims, const Derived>
+ mean(const Dims& dims) const {
+ return TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::MeanReducer<CoeffReturnType>());
+ }
+
+ const TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>
+ mean() const {
+ DimensionList<Index, NumDimensions> in_dims;
+ return TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MeanReducer<CoeffReturnType>());
+ }
+
+ template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const Dims, const Derived>
+ prod(const Dims& dims) const {
+ return TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::ProdReducer<CoeffReturnType>());
+ }
+
+ const TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>
+ prod() const {
+ DimensionList<Index, NumDimensions> in_dims;
+ return TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::ProdReducer<CoeffReturnType>());
+ }
+
+ template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorReductionOp<internal::MaxReducer<CoeffReturnType>, const Dims, const Derived>
+ maximum(const Dims& dims) const {
+ return TensorReductionOp<internal::MaxReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::MaxReducer<CoeffReturnType>());
+ }
+
+ const TensorReductionOp<internal::MaxReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>
+ maximum() const {
+ DimensionList<Index, NumDimensions> in_dims;
+ return TensorReductionOp<internal::MaxReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MaxReducer<CoeffReturnType>());
+ }
+
+ template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorReductionOp<internal::MinReducer<CoeffReturnType>, const Dims, const Derived>
+ minimum(const Dims& dims) const {
+ return TensorReductionOp<internal::MinReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::MinReducer<CoeffReturnType>());
+ }
+
+ const TensorReductionOp<internal::MinReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>
+ minimum() const {
+ DimensionList<Index, NumDimensions> in_dims;
+ return TensorReductionOp<internal::MinReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MinReducer<CoeffReturnType>());
+ }
+
+ template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorReductionOp<internal::AndReducer, const Dims, const TensorConversionOp<bool, const Derived> >
+ all(const Dims& dims) const {
+ return cast<bool>().reduce(dims, internal::AndReducer());
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorReductionOp<internal::AndReducer, const DimensionList<Index, NumDimensions>, const TensorConversionOp<bool, const Derived> >
+ all() const {
+ DimensionList<Index, NumDimensions> in_dims;
+ return cast<bool>().reduce(in_dims, internal::AndReducer());
+ }
+
+ template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorReductionOp<internal::OrReducer, const Dims, const TensorConversionOp<bool, const Derived> >
+ any(const Dims& dims) const {
+ return cast<bool>().reduce(dims, internal::OrReducer());
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorReductionOp<internal::OrReducer, const DimensionList<Index, NumDimensions>, const TensorConversionOp<bool, const Derived> >
+ any() const {
+ DimensionList<Index, NumDimensions> in_dims;
+ return cast<bool>().reduce(in_dims, internal::OrReducer());
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorTupleReducerOp<
+ internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
+ const array<Index, NumDimensions>, const Derived>
+ argmax() const {
+ array<Index, NumDimensions> in_dims;
+ for (int d = 0; d < NumDimensions; ++d) in_dims[d] = d;
+ return TensorTupleReducerOp<
+ internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
+ const array<Index, NumDimensions>,
+ const Derived>(derived(), internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >(), -1, in_dims);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorTupleReducerOp<
+ internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
+ const array<Index, NumDimensions>, const Derived>
+ argmin() const {
+ array<Index, NumDimensions> in_dims;
+ for (int d = 0; d < NumDimensions; ++d) in_dims[d] = d;
+ return TensorTupleReducerOp<
+ internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
+ const array<Index, NumDimensions>,
+ const Derived>(derived(), internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >(), -1, in_dims);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorTupleReducerOp<
+ internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
+ const array<Index, 1>, const Derived>
+ argmax(const int return_dim) const {
+ array<Index, 1> in_dims;
+ in_dims[0] = return_dim;
+ return TensorTupleReducerOp<
+ internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
+ const array<Index, 1>,
+ const Derived>(derived(), internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >(), return_dim, in_dims);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorTupleReducerOp<
+ internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
+ const array<Index, 1>, const Derived>
+ argmin(const int return_dim) const {
+ array<Index, 1> in_dims;
+ in_dims[0] = return_dim;
+ return TensorTupleReducerOp<
+ internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
+ const array<Index, 1>,
+ const Derived>(derived(), internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >(), return_dim, in_dims);
+ }
+
+ template <typename Reducer, typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorReductionOp<Reducer, const Dims, const Derived>
+ reduce(const Dims& dims, const Reducer& reducer) const {
+ return TensorReductionOp<Reducer, const Dims, const Derived>(derived(), dims, reducer);
+ }
+
+ template <typename Broadcast> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorBroadcastingOp<const Broadcast, const Derived>
+ broadcast(const Broadcast& broadcast) const {
+ return TensorBroadcastingOp<const Broadcast, const Derived>(derived(), broadcast);
+ }
+
+ template <typename Axis, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorConcatenationOp<Axis, const Derived, const OtherDerived>
+ concatenate(const OtherDerived& other, Axis axis) const {
+ return TensorConcatenationOp<Axis, const Derived, const OtherDerived>(derived(), other.derived(), axis);
+ }
+
+ template <typename PatchDims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorPatchOp<const PatchDims, const Derived>
+ extract_patches(const PatchDims& patch_dims) const {
+ return TensorPatchOp<const PatchDims, const Derived>(derived(), patch_dims);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorImagePatchOp<Dynamic, Dynamic, const Derived>
+ extract_image_patches(const Index patch_rows = 1, const Index patch_cols = 1,
+ const Index row_stride = 1, const Index col_stride = 1,
+ const Index in_row_stride = 1, const Index in_col_stride = 1,
+ const PaddingType padding_type = PADDING_SAME, const Scalar padding_value = Scalar(0)) const {
+ return TensorImagePatchOp<Dynamic, Dynamic, const Derived>(derived(), patch_rows, patch_cols, row_stride, col_stride,
+ in_row_stride, in_col_stride, 1, 1, padding_type, padding_value);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorImagePatchOp<Dynamic, Dynamic, const Derived>
+ extract_image_patches(const Index patch_rows, const Index patch_cols,
+ const Index row_stride, const Index col_stride,
+ const Index in_row_stride, const Index in_col_stride,
+ const Index row_inflate_stride, const Index col_inflate_stride,
+ const Index padding_top, const Index padding_bottom,
+ const Index padding_left,const Index padding_right,
+ const Scalar padding_value) const {
+ return TensorImagePatchOp<Dynamic, Dynamic, const Derived>(derived(), patch_rows, patch_cols, row_stride, col_stride,
+ in_row_stride, in_col_stride, row_inflate_stride, col_inflate_stride,
+ padding_top, padding_bottom, padding_left, padding_right, padding_value);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived>
+ extract_volume_patches(const Index patch_planes, const Index patch_rows, const Index patch_cols,
+ const Index plane_stride = 1, const Index row_stride = 1, const Index col_stride = 1,
+ const PaddingType padding_type = PADDING_SAME, const Scalar padding_value = Scalar(0)) const {
+ return TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived>(derived(), patch_planes, patch_rows, patch_cols, plane_stride, row_stride, col_stride, 1, 1, 1, 1, 1, 1, padding_type, padding_value);
+ }
+
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived>
+ extract_volume_patches(const Index patch_planes, const Index patch_rows, const Index patch_cols,
+ const Index plane_stride, const Index row_stride, const Index col_stride,
+ const Index plane_inflate_stride, const Index row_inflate_stride, const Index col_inflate_stride,
+ const Index padding_top_z, const Index padding_bottom_z,
+ const Index padding_top, const Index padding_bottom,
+ const Index padding_left, const Index padding_right, const Scalar padding_value = Scalar(0)) const {
+ return TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived>(derived(), patch_planes, patch_rows, patch_cols, plane_stride, row_stride, col_stride, 1, 1, 1, plane_inflate_stride, row_inflate_stride, col_inflate_stride, padding_top_z, padding_bottom_z, padding_top, padding_bottom, padding_left, padding_right, padding_value);
+ }
+
+ // Morphing operators.
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorLayoutSwapOp<const Derived>
+ swap_layout() const {
+ return TensorLayoutSwapOp<const Derived>(derived());
+ }
+ template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorReshapingOp<const NewDimensions, const Derived>
+ reshape(const NewDimensions& newDimensions) const {
+ return TensorReshapingOp<const NewDimensions, const Derived>(derived(), newDimensions);
+ }
+ template <typename StartIndices, typename Sizes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorSlicingOp<const StartIndices, const Sizes, const Derived>
+ slice(const StartIndices& startIndices, const Sizes& sizes) const {
+ return TensorSlicingOp<const StartIndices, const Sizes, const Derived>(derived(), startIndices, sizes);
+ }
+ template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, const Derived>
+ stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) const {
+ return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides,
+ const Derived>(derived(), startIndices, stopIndices, strides);
+ }
+ template <Index DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorChippingOp<DimId, const Derived>
+ chip(const Index offset) const {
+ return TensorChippingOp<DimId, const Derived>(derived(), offset, DimId);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorChippingOp<Dynamic, const Derived>
+ chip(const Index offset, const Index dim) const {
+ return TensorChippingOp<Dynamic, const Derived>(derived(), offset, dim);
+ }
+ template <typename ReverseDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorReverseOp<const ReverseDimensions, const Derived>
+ reverse(const ReverseDimensions& rev) const {
+ return TensorReverseOp<const ReverseDimensions, const Derived>(derived(), rev);
+ }
+ template <typename PaddingDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorPaddingOp<const PaddingDimensions, const Derived>
+ pad(const PaddingDimensions& padding) const {
+ return TensorPaddingOp<const PaddingDimensions, const Derived>(derived(), padding, internal::scalar_cast_op<int, Scalar>()(0));
+ }
+ template <typename PaddingDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorPaddingOp<const PaddingDimensions, const Derived>
+ pad(const PaddingDimensions& padding, const Scalar padding_value) const {
+ return TensorPaddingOp<const PaddingDimensions, const Derived>(derived(), padding, padding_value);
+ }
+ template <typename Shuffle> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorShufflingOp<const Shuffle, const Derived>
+ shuffle(const Shuffle& shuffle) const {
+ return TensorShufflingOp<const Shuffle, const Derived>(derived(), shuffle);
+ }
+ template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorStridingOp<const Strides, const Derived>
+ stride(const Strides& strides) const {
+ return TensorStridingOp<const Strides, const Derived>(derived(), strides);
+ }
+ template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorInflationOp<const Strides, const Derived>
+ inflate(const Strides& strides) const {
+ return TensorInflationOp<const Strides, const Derived>(derived(), strides);
+ }
+
+ // Returns a tensor containing index/value tuples
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorIndexTupleOp<const Derived>
+ index_tuples() const {
+ return TensorIndexTupleOp<const Derived>(derived());
+ }
+
+ // Support for custom unary and binary operations
+ template <typename CustomUnaryFunc>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCustomUnaryOp<const CustomUnaryFunc, const Derived> customOp(const CustomUnaryFunc& op) const {
+ return TensorCustomUnaryOp<const CustomUnaryFunc, const Derived>(derived(), op);
+ }
+ template <typename OtherDerived, typename CustomBinaryFunc>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCustomBinaryOp<const CustomBinaryFunc, const Derived, const OtherDerived> customOp(const OtherDerived& other, const CustomBinaryFunc& op) const {
+ return TensorCustomBinaryOp<const CustomBinaryFunc, const Derived, const OtherDerived>(derived(), other, op);
+ }
+
+ // Force the evaluation of the expression.
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorForcedEvalOp<const Derived> eval() const {
+ return TensorForcedEvalOp<const Derived>(derived());
+ }
+
+ protected:
+ template <typename Scalar, int NumIndices, int Options, typename IndexType> friend class Tensor;
+ template <typename Scalar, typename Dimensions, int Option, typename IndexTypes> friend class TensorFixedSize;
+ template <typename OtherDerived, int AccessLevel> friend class TensorBase;
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Derived& derived() const { return *static_cast<const Derived*>(this); }
+};
+
+template<typename Derived, int AccessLevel = internal::accessors_level<Derived>::value>
+class TensorBase : public TensorBase<Derived, ReadOnlyAccessors> {
+ public:
+ typedef internal::traits<Derived> DerivedTraits;
+ typedef typename DerivedTraits::Scalar Scalar;
+ typedef typename DerivedTraits::Index Index;
+ typedef Scalar CoeffReturnType;
+ static const int NumDimensions = DerivedTraits::NumDimensions;
+
+ template <typename Scalar, int NumIndices, int Options, typename IndexType> friend class Tensor;
+ template <typename Scalar, typename Dimensions, int Option, typename IndexTypes> friend class TensorFixedSize;
+ template <typename OtherDerived, int OtherAccessLevel> friend class TensorBase;
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Derived& setZero() {
+ return setConstant(Scalar(0));
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Derived& setConstant(const Scalar& val) {
+ return derived() = this->constant(val);
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Derived& setRandom() {
+ return derived() = this->random();
+ }
+ template <typename RandomGenerator> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Derived& setRandom() {
+ return derived() = this->template random<RandomGenerator>();
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Derived& setValues(
+ const typename internal::Initializer<Derived, NumDimensions>::InitList& vals) {
+ TensorEvaluator<Derived, DefaultDevice> eval(derived(), DefaultDevice());
+ internal::initialize_tensor<Derived, NumDimensions>(eval, vals);
+ return derived();
+ }
+#endif // EIGEN_HAS_VARIADIC_TEMPLATES
+
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Derived& operator+=(const OtherDerived& other) {
+ return derived() = derived() + other.derived();
+ }
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Derived& operator-=(const OtherDerived& other) {
+ return derived() = derived() - other.derived();
+ }
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Derived& operator*=(const OtherDerived& other) {
+ return derived() = derived() * other.derived();
+ }
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Derived& operator/=(const OtherDerived& other) {
+ return derived() = derived() / other.derived();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorLayoutSwapOp<const Derived>
+ swap_layout() const {
+ return TensorLayoutSwapOp<const Derived>(derived());
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ TensorLayoutSwapOp<Derived>
+ swap_layout() {
+ return TensorLayoutSwapOp<Derived>(derived());
+ }
+
+ template <typename Axis, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorConcatenationOp<const Axis, const Derived, const OtherDerived>
+ concatenate(const OtherDerived& other, const Axis& axis) const {
+ return TensorConcatenationOp<const Axis, const Derived, const OtherDerived>(derived(), other, axis);
+ }
+ template <typename Axis, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ TensorConcatenationOp<const Axis, Derived, OtherDerived>
+ concatenate(const OtherDerived& other, const Axis& axis) {
+ return TensorConcatenationOp<const Axis, Derived, OtherDerived>(derived(), other, axis);
+ }
+
+ template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorReshapingOp<const NewDimensions, const Derived>
+ reshape(const NewDimensions& newDimensions) const {
+ return TensorReshapingOp<const NewDimensions, const Derived>(derived(), newDimensions);
+ }
+ template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ TensorReshapingOp<const NewDimensions, Derived>
+ reshape(const NewDimensions& newDimensions) {
+ return TensorReshapingOp<const NewDimensions, Derived>(derived(), newDimensions);
+ }
+
+ template <typename StartIndices, typename Sizes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorSlicingOp<const StartIndices, const Sizes, const Derived>
+ slice(const StartIndices& startIndices, const Sizes& sizes) const {
+ return TensorSlicingOp<const StartIndices, const Sizes, const Derived>(derived(), startIndices, sizes);
+ }
+ template <typename StartIndices, typename Sizes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ TensorSlicingOp<const StartIndices, const Sizes, Derived>
+ slice(const StartIndices& startIndices, const Sizes& sizes) {
+ return TensorSlicingOp<const StartIndices, const Sizes, Derived>(derived(), startIndices, sizes);
+ }
+
+ template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, const Derived>
+ stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) const {
+ return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides,
+ const Derived>(derived(), startIndices, stopIndices, strides);
+ }
+ template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, Derived>
+ stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) {
+ return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides,
+ Derived>(derived(), startIndices, stopIndices, strides);
+ }
+
+ template <DenseIndex DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorChippingOp<DimId, const Derived>
+ chip(const Index offset) const {
+ return TensorChippingOp<DimId, const Derived>(derived(), offset, DimId);
+ }
+ template <Index DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ TensorChippingOp<DimId, Derived>
+ chip(const Index offset) {
+ return TensorChippingOp<DimId, Derived>(derived(), offset, DimId);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorChippingOp<Dynamic, const Derived>
+ chip(const Index offset, const Index dim) const {
+ return TensorChippingOp<Dynamic, const Derived>(derived(), offset, dim);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ TensorChippingOp<Dynamic, Derived>
+ chip(const Index offset, const Index dim) {
+ return TensorChippingOp<Dynamic, Derived>(derived(), offset, dim);
+ }
+
+ template <typename ReverseDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorReverseOp<const ReverseDimensions, const Derived>
+ reverse(const ReverseDimensions& rev) const {
+ return TensorReverseOp<const ReverseDimensions, const Derived>(derived(), rev);
+ }
+ template <typename ReverseDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ TensorReverseOp<const ReverseDimensions, Derived>
+ reverse(const ReverseDimensions& rev) {
+ return TensorReverseOp<const ReverseDimensions, Derived>(derived(), rev);
+ }
+
+ template <typename Shuffle> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorShufflingOp<const Shuffle, const Derived>
+ shuffle(const Shuffle& shuffle) const {
+ return TensorShufflingOp<const Shuffle, const Derived>(derived(), shuffle);
+ }
+ template <typename Shuffle> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ TensorShufflingOp<const Shuffle, Derived>
+ shuffle(const Shuffle& shuffle) {
+ return TensorShufflingOp<const Shuffle, Derived>(derived(), shuffle);
+ }
+
+ template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorStridingOp<const Strides, const Derived>
+ stride(const Strides& strides) const {
+ return TensorStridingOp<const Strides, const Derived>(derived(), strides);
+ }
+ template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ TensorStridingOp<const Strides, Derived>
+ stride(const Strides& strides) {
+ return TensorStridingOp<const Strides, Derived>(derived(), strides);
+ }
+
+ // Select the device on which to evaluate the expression.
+ template <typename DeviceType>
+ TensorDevice<Derived, DeviceType> device(const DeviceType& device) {
+ return TensorDevice<Derived, DeviceType>(device, derived());
+ }
+
+ protected:
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Derived& derived() { return *static_cast<Derived*>(this); }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Derived& derived() const { return *static_cast<const Derived*>(this); }
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_BASE_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h b/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h
new file mode 100644
index 000000000..4cfe300eb
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h
@@ -0,0 +1,392 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
+#define EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
+
+namespace Eigen {
+
+/** \class TensorBroadcasting
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor broadcasting class.
+ *
+ *
+ */
+namespace internal {
+template<typename Broadcast, typename XprType>
+struct traits<TensorBroadcastingOp<Broadcast, XprType> > : public traits<XprType>
+{
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename Broadcast, typename XprType>
+struct eval<TensorBroadcastingOp<Broadcast, XprType>, Eigen::Dense>
+{
+ typedef const TensorBroadcastingOp<Broadcast, XprType>& type;
+};
+
+template<typename Broadcast, typename XprType>
+struct nested<TensorBroadcastingOp<Broadcast, XprType>, 1, typename eval<TensorBroadcastingOp<Broadcast, XprType> >::type>
+{
+ typedef TensorBroadcastingOp<Broadcast, XprType> type;
+};
+
+template <typename Dims>
+struct is_input_scalar {
+ static const bool value = false;
+};
+template <>
+struct is_input_scalar<Sizes<> > {
+ static const bool value = true;
+};
+#ifndef EIGEN_EMULATE_CXX11_META_H
+template <typename std::size_t... Indices>
+struct is_input_scalar<Sizes<Indices...> > {
+ static const bool value = (Sizes<Indices...>::total_size == 1);
+};
+#endif
+
+} // end namespace internal
+
+
+
+template<typename Broadcast, typename XprType>
+class TensorBroadcastingOp : public TensorBase<TensorBroadcastingOp<Broadcast, XprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorBroadcastingOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorBroadcastingOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorBroadcastingOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorBroadcastingOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBroadcastingOp(const XprType& expr, const Broadcast& broadcast)
+ : m_xpr(expr), m_broadcast(broadcast) {}
+
+ EIGEN_DEVICE_FUNC
+ const Broadcast& broadcast() const { return m_broadcast; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const Broadcast m_broadcast;
+};
+
+
+// Eval as rvalue
+template<typename Broadcast, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
+{
+ typedef TensorBroadcastingOp<Broadcast, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = true,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_broadcast(op.broadcast()),m_impl(op.expression(), device)
+ {
+ // The broadcasting op doesn't change the rank of the tensor. One can't broadcast a scalar
+ // and store the result in a scalar. Instead one should reshape the scalar into a a N-D
+ // tensor with N >= 1 of 1 element first and then broadcast.
+ EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ const InputDimensions& input_dims = m_impl.dimensions();
+ const Broadcast& broadcast = op.broadcast();
+ for (int i = 0; i < NumDims; ++i) {
+ eigen_assert(input_dims[i] > 0);
+ m_dimensions[i] = input_dims[i] * broadcast[i];
+ }
+
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_inputStrides[0] = 1;
+ m_outputStrides[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
+ m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
+ }
+ } else {
+ m_inputStrides[NumDims-1] = 1;
+ m_outputStrides[NumDims-1] = 1;
+ for (int i = NumDims-2; i >= 0; --i) {
+ m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
+ m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffReturnType coeff(Index index) const
+ {
+ if (internal::is_input_scalar<typename internal::remove_all<InputDimensions>::type>::value) {
+ return m_impl.coeff(0);
+ }
+
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ return coeffColMajor(index);
+ } else {
+ return coeffRowMajor(index);
+ }
+ }
+
+ // TODO: attempt to speed this up. The integer divisions and modulo are slow
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffColMajor(Index index) const
+ {
+ Index inputIndex = 0;
+ for (int i = NumDims - 1; i > 0; --i) {
+ const Index idx = index / m_outputStrides[i];
+ if (internal::index_statically_eq<Broadcast>(i, 1)) {
+ eigen_assert(idx < m_impl.dimensions()[i]);
+ inputIndex += idx * m_inputStrides[i];
+ } else {
+ if (internal::index_statically_eq<InputDimensions>(i, 1)) {
+ eigen_assert(idx % m_impl.dimensions()[i] == 0);
+ } else {
+ inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
+ }
+ }
+ index -= idx * m_outputStrides[i];
+ }
+ if (internal::index_statically_eq<Broadcast>(0, 1)) {
+ eigen_assert(index < m_impl.dimensions()[0]);
+ inputIndex += index;
+ } else {
+ if (internal::index_statically_eq<InputDimensions>(0, 1)) {
+ eigen_assert(index % m_impl.dimensions()[0] == 0);
+ } else {
+ inputIndex += (index % m_impl.dimensions()[0]);
+ }
+ }
+ return m_impl.coeff(inputIndex);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffRowMajor(Index index) const
+ {
+ Index inputIndex = 0;
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const Index idx = index / m_outputStrides[i];
+ if (internal::index_statically_eq<Broadcast>(i, 1)) {
+ eigen_assert(idx < m_impl.dimensions()[i]);
+ inputIndex += idx * m_inputStrides[i];
+ } else {
+ if (internal::index_statically_eq<InputDimensions>(i, 1)) {
+ eigen_assert(idx % m_impl.dimensions()[i] == 0);
+ } else {
+ inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
+ }
+ }
+ index -= idx * m_outputStrides[i];
+ }
+ if (internal::index_statically_eq<Broadcast>(NumDims-1, 1)) {
+ eigen_assert(index < m_impl.dimensions()[NumDims-1]);
+ inputIndex += index;
+ } else {
+ if (internal::index_statically_eq<InputDimensions>(NumDims-1, 1)) {
+ eigen_assert(index % m_impl.dimensions()[NumDims-1] == 0);
+ } else {
+ inputIndex += (index % m_impl.dimensions()[NumDims-1]);
+ }
+ }
+ return m_impl.coeff(inputIndex);
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketReturnType packet(Index index) const
+ {
+ if (internal::is_input_scalar<typename internal::remove_all<InputDimensions>::type>::value) {
+ return internal::pset1<PacketReturnType>(m_impl.coeff(0));
+ }
+
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ return packetColMajor<LoadMode>(index);
+ } else {
+ return packetRowMajor<LoadMode>(index);
+ }
+ }
+
+ // Ignore the LoadMode and always use unaligned loads since we can't guarantee
+ // the alignment at compile time.
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
+
+ const Index originalIndex = index;
+
+ Index inputIndex = 0;
+ for (int i = NumDims - 1; i > 0; --i) {
+ const Index idx = index / m_outputStrides[i];
+ if (internal::index_statically_eq<Broadcast>(i, 1)) {
+ eigen_assert(idx < m_impl.dimensions()[i]);
+ inputIndex += idx * m_inputStrides[i];
+ } else {
+ if (internal::index_statically_eq<InputDimensions>(i, 1)) {
+ eigen_assert(idx % m_impl.dimensions()[i] == 0);
+ } else {
+ inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
+ }
+ }
+ index -= idx * m_outputStrides[i];
+ }
+ Index innermostLoc;
+ if (internal::index_statically_eq<Broadcast>(0, 1)) {
+ eigen_assert(index < m_impl.dimensions()[0]);
+ innermostLoc = index;
+ } else {
+ if (internal::index_statically_eq<InputDimensions>(0, 1)) {
+ eigen_assert(index % m_impl.dimensions()[0] == 0);
+ innermostLoc = 0;
+ } else {
+ innermostLoc = index % m_impl.dimensions()[0];
+ }
+ }
+ inputIndex += innermostLoc;
+
+ // Todo: this could be extended to the second dimension if we're not
+ // broadcasting alongside the first dimension, and so on.
+ if (innermostLoc + PacketSize <= m_impl.dimensions()[0]) {
+ return m_impl.template packet<Unaligned>(inputIndex);
+ } else {
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
+ values[0] = m_impl.coeff(inputIndex);
+ for (int i = 1; i < PacketSize; ++i) {
+ values[i] = coeffColMajor(originalIndex+i);
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
+
+ const Index originalIndex = index;
+
+ Index inputIndex = 0;
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const Index idx = index / m_outputStrides[i];
+ if (internal::index_statically_eq<Broadcast>(i, 1)) {
+ eigen_assert(idx < m_impl.dimensions()[i]);
+ inputIndex += idx * m_inputStrides[i];
+ } else {
+ if (internal::index_statically_eq<InputDimensions>(i, 1)) {
+ eigen_assert(idx % m_impl.dimensions()[i] == 0);
+ } else {
+ inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
+ }
+ }
+ index -= idx * m_outputStrides[i];
+ }
+ Index innermostLoc;
+ if (internal::index_statically_eq<Broadcast>(NumDims-1, 1)) {
+ eigen_assert(index < m_impl.dimensions()[NumDims-1]);
+ innermostLoc = index;
+ } else {
+ if (internal::index_statically_eq<InputDimensions>(NumDims-1, 1)) {
+ eigen_assert(index % m_impl.dimensions()[NumDims-1] == 0);
+ innermostLoc = 0;
+ } else {
+ innermostLoc = index % m_impl.dimensions()[NumDims-1];
+ }
+ }
+ inputIndex += innermostLoc;
+
+ // Todo: this could be extended to the second dimension if we're not
+ // broadcasting alongside the first dimension, and so on.
+ if (innermostLoc + PacketSize <= m_impl.dimensions()[NumDims-1]) {
+ return m_impl.template packet<Unaligned>(inputIndex);
+ } else {
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
+ values[0] = m_impl.coeff(inputIndex);
+ for (int i = 1; i < PacketSize; ++i) {
+ values[i] = coeffRowMajor(originalIndex+i);
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ double compute_cost = TensorOpCost::AddCost<Index>();
+ if (NumDims > 0) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ compute_cost += TensorOpCost::DivCost<Index>();
+ if (internal::index_statically_eq<Broadcast>(i, 1)) {
+ compute_cost +=
+ TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
+ } else {
+ if (!internal::index_statically_eq<InputDimensions>(i, 1)) {
+ compute_cost += TensorOpCost::MulCost<Index>() +
+ TensorOpCost::ModCost<Index>() +
+ TensorOpCost::AddCost<Index>();
+ }
+ }
+ compute_cost +=
+ TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
+ }
+ }
+ return m_impl.costPerCoeff(vectorized) +
+ TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
+
+ Broadcast functor() const { return m_broadcast; }
+
+ protected:
+ const Broadcast m_broadcast;
+ Dimensions m_dimensions;
+ array<Index, NumDims> m_outputStrides;
+ array<Index, NumDims> m_inputStrides;
+ TensorEvaluator<ArgType, Device> m_impl;
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h b/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h
new file mode 100644
index 000000000..1ba7ef170
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h
@@ -0,0 +1,384 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
+#define EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
+
+namespace Eigen {
+
+/** \class TensorKChippingReshaping
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief A chip is a thin slice, corresponding to a column or a row in a 2-d tensor.
+ *
+ *
+ */
+
+namespace internal {
+template<DenseIndex DimId, typename XprType>
+struct traits<TensorChippingOp<DimId, XprType> > : public traits<XprType>
+{
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions - 1;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<DenseIndex DimId, typename XprType>
+struct eval<TensorChippingOp<DimId, XprType>, Eigen::Dense>
+{
+ typedef const TensorChippingOp<DimId, XprType>& type;
+};
+
+template<DenseIndex DimId, typename XprType>
+struct nested<TensorChippingOp<DimId, XprType>, 1, typename eval<TensorChippingOp<DimId, XprType> >::type>
+{
+ typedef TensorChippingOp<DimId, XprType> type;
+};
+
+template <DenseIndex DimId>
+struct DimensionId
+{
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) {
+ eigen_assert(dim == DimId);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const {
+ return DimId;
+ }
+};
+template <>
+struct DimensionId<Dynamic>
+{
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) : actual_dim(dim) {
+ eigen_assert(dim >= 0);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const {
+ return actual_dim;
+ }
+ private:
+ const DenseIndex actual_dim;
+};
+
+
+} // end namespace internal
+
+
+
+template<DenseIndex DimId, typename XprType>
+class TensorChippingOp : public TensorBase<TensorChippingOp<DimId, XprType> >
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorChippingOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorChippingOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorChippingOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorChippingOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp(const XprType& expr, const Index offset, const Index dim)
+ : m_xpr(expr), m_offset(offset), m_dim(dim) {
+ }
+
+ EIGEN_DEVICE_FUNC
+ const Index offset() const { return m_offset; }
+ EIGEN_DEVICE_FUNC
+ const Index dim() const { return m_dim.actualDim(); }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorChippingOp& operator = (const TensorChippingOp& other)
+ {
+ typedef TensorAssignOp<TensorChippingOp, const TensorChippingOp> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorChippingOp& operator = (const OtherDerived& other)
+ {
+ typedef TensorAssignOp<TensorChippingOp, const OtherDerived> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const Index m_offset;
+ const internal::DimensionId<DimId> m_dim;
+};
+
+
+// Eval as rvalue
+template<DenseIndex DimId, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
+{
+ typedef TensorChippingOp<DimId, ArgType> XprType;
+ static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
+ static const int NumDims = NumInputDims-1;
+ typedef typename XprType::Index Index;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+
+ enum {
+ // Alignment can't be guaranteed at compile time since it depends on the
+ // slice offsets.
+ IsAligned = false,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device), m_dim(op.dim()), m_device(device)
+ {
+ EIGEN_STATIC_ASSERT((NumInputDims >= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ eigen_assert(NumInputDims > m_dim.actualDim());
+
+ const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
+ eigen_assert(op.offset() < input_dims[m_dim.actualDim()]);
+
+ int j = 0;
+ for (int i = 0; i < NumInputDims; ++i) {
+ if (i != m_dim.actualDim()) {
+ m_dimensions[j] = input_dims[i];
+ ++j;
+ }
+ }
+
+ m_stride = 1;
+ m_inputStride = 1;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = 0; i < m_dim.actualDim(); ++i) {
+ m_stride *= input_dims[i];
+ m_inputStride *= input_dims[i];
+ }
+ } else {
+ for (int i = NumInputDims-1; i > m_dim.actualDim(); --i) {
+ m_stride *= input_dims[i];
+ m_inputStride *= input_dims[i];
+ }
+ }
+ m_inputStride *= input_dims[m_dim.actualDim()];
+ m_inputOffset = m_stride * op.offset();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ return m_impl.coeff(srcCoeff(index));
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
+
+ if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) ||
+ (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims-1)) {
+ // m_stride is equal to 1, so let's avoid the integer division.
+ eigen_assert(m_stride == 1);
+ Index inputIndex = index * m_inputStride + m_inputOffset;
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
+ for (int i = 0; i < PacketSize; ++i) {
+ values[i] = m_impl.coeff(inputIndex);
+ inputIndex += m_inputStride;
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumInputDims - 1) ||
+ (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) {
+ // m_stride is aways greater than index, so let's avoid the integer division.
+ eigen_assert(m_stride > index);
+ return m_impl.template packet<LoadMode>(index + m_inputOffset);
+ } else {
+ const Index idx = index / m_stride;
+ const Index rem = index - idx * m_stride;
+ if (rem + PacketSize <= m_stride) {
+ Index inputIndex = idx * m_inputStride + m_inputOffset + rem;
+ return m_impl.template packet<LoadMode>(inputIndex);
+ } else {
+ // Cross the stride boundary. Fallback to slow path.
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
+ for (int i = 0; i < PacketSize; ++i) {
+ values[i] = coeff(index);
+ ++index;
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ double cost = 0;
+ if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) &&
+ m_dim.actualDim() == 0) ||
+ (static_cast<int>(Layout) == static_cast<int>(RowMajor) &&
+ m_dim.actualDim() == NumInputDims - 1)) {
+ cost += TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
+ } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) &&
+ m_dim.actualDim() == NumInputDims - 1) ||
+ (static_cast<int>(Layout) == static_cast<int>(RowMajor) &&
+ m_dim.actualDim() == 0)) {
+ cost += TensorOpCost::AddCost<Index>();
+ } else {
+ cost += 3 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>() +
+ 3 * TensorOpCost::AddCost<Index>();
+ }
+
+ return m_impl.costPerCoeff(vectorized) +
+ TensorOpCost(0, 0, cost, vectorized, PacketSize);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const {
+ CoeffReturnType* result = const_cast<CoeffReturnType*>(m_impl.data());
+ if (((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumDims) ||
+ (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) &&
+ result) {
+ return result + m_inputOffset;
+ } else {
+ return NULL;
+ }
+ }
+
+ protected:
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
+ {
+ Index inputIndex;
+ if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) ||
+ (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims-1)) {
+ // m_stride is equal to 1, so let's avoid the integer division.
+ eigen_assert(m_stride == 1);
+ inputIndex = index * m_inputStride + m_inputOffset;
+ } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumInputDims-1) ||
+ (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) {
+ // m_stride is aways greater than index, so let's avoid the integer division.
+ eigen_assert(m_stride > index);
+ inputIndex = index + m_inputOffset;
+ } else {
+ const Index idx = index / m_stride;
+ inputIndex = idx * m_inputStride + m_inputOffset;
+ index -= idx * m_stride;
+ inputIndex += index;
+ }
+ return inputIndex;
+ }
+
+ Dimensions m_dimensions;
+ Index m_stride;
+ Index m_inputOffset;
+ Index m_inputStride;
+ TensorEvaluator<ArgType, Device> m_impl;
+ const internal::DimensionId<DimId> m_dim;
+ const Device& m_device;
+};
+
+
+// Eval as lvalue
+template<DenseIndex DimId, typename ArgType, typename Device>
+struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device>
+ : public TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
+{
+ typedef TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> Base;
+ typedef TensorChippingOp<DimId, ArgType> XprType;
+ static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
+ static const int NumDims = NumInputDims-1;
+ typedef typename XprType::Index Index;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : Base(op, device)
+ { }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
+ {
+ return this->m_impl.coeffRef(this->srcCoeff(index));
+ }
+
+ template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ void writePacket(Index index, const PacketReturnType& x)
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+
+ if ((static_cast<int>(this->Layout) == static_cast<int>(ColMajor) && this->m_dim.actualDim() == 0) ||
+ (static_cast<int>(this->Layout) == static_cast<int>(RowMajor) && this->m_dim.actualDim() == NumInputDims-1)) {
+ // m_stride is equal to 1, so let's avoid the integer division.
+ eigen_assert(this->m_stride == 1);
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
+ internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
+ Index inputIndex = index * this->m_inputStride + this->m_inputOffset;
+ for (int i = 0; i < PacketSize; ++i) {
+ this->m_impl.coeffRef(inputIndex) = values[i];
+ inputIndex += this->m_inputStride;
+ }
+ } else if ((static_cast<int>(this->Layout) == static_cast<int>(ColMajor) && this->m_dim.actualDim() == NumInputDims-1) ||
+ (static_cast<int>(this->Layout) == static_cast<int>(RowMajor) && this->m_dim.actualDim() == 0)) {
+ // m_stride is aways greater than index, so let's avoid the integer division.
+ eigen_assert(this->m_stride > index);
+ this->m_impl.template writePacket<StoreMode>(index + this->m_inputOffset, x);
+ } else {
+ const Index idx = index / this->m_stride;
+ const Index rem = index - idx * this->m_stride;
+ if (rem + PacketSize <= this->m_stride) {
+ const Index inputIndex = idx * this->m_inputStride + this->m_inputOffset + rem;
+ this->m_impl.template writePacket<StoreMode>(inputIndex, x);
+ } else {
+ // Cross stride boundary. Fallback to slow path.
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
+ internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
+ for (int i = 0; i < PacketSize; ++i) {
+ this->coeffRef(index) = values[i];
+ ++index;
+ }
+ }
+ }
+ }
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h b/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h
new file mode 100644
index 000000000..59bf90d93
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h
@@ -0,0 +1,361 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H
+#define EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H
+
+namespace Eigen {
+
+/** \class TensorConcatenationOp
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor concatenation class.
+ *
+ *
+ */
+namespace internal {
+template<typename Axis, typename LhsXprType, typename RhsXprType>
+struct traits<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> >
+{
+ // Type promotion to handle the case where the types of the lhs and the rhs are different.
+ typedef typename promote_storage_type<typename LhsXprType::Scalar,
+ typename RhsXprType::Scalar>::ret Scalar;
+ typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind,
+ typename traits<RhsXprType>::StorageKind>::ret StorageKind;
+ typedef typename promote_index_type<typename traits<LhsXprType>::Index,
+ typename traits<RhsXprType>::Index>::type Index;
+ typedef typename LhsXprType::Nested LhsNested;
+ typedef typename RhsXprType::Nested RhsNested;
+ typedef typename remove_reference<LhsNested>::type _LhsNested;
+ typedef typename remove_reference<RhsNested>::type _RhsNested;
+ static const int NumDimensions = traits<LhsXprType>::NumDimensions;
+ static const int Layout = traits<LhsXprType>::Layout;
+ enum { Flags = 0 };
+};
+
+template<typename Axis, typename LhsXprType, typename RhsXprType>
+struct eval<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, Eigen::Dense>
+{
+ typedef const TensorConcatenationOp<Axis, LhsXprType, RhsXprType>& type;
+};
+
+template<typename Axis, typename LhsXprType, typename RhsXprType>
+struct nested<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, 1, typename eval<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> >::type>
+{
+ typedef TensorConcatenationOp<Axis, LhsXprType, RhsXprType> type;
+};
+
+} // end namespace internal
+
+
+template<typename Axis, typename LhsXprType, typename RhsXprType>
+class TensorConcatenationOp : public TensorBase<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, WriteAccessors>
+{
+ public:
+ typedef typename internal::traits<TensorConcatenationOp>::Scalar Scalar;
+ typedef typename internal::traits<TensorConcatenationOp>::StorageKind StorageKind;
+ typedef typename internal::traits<TensorConcatenationOp>::Index Index;
+ typedef typename internal::nested<TensorConcatenationOp>::type Nested;
+ typedef typename internal::promote_storage_type<typename LhsXprType::CoeffReturnType,
+ typename RhsXprType::CoeffReturnType>::ret CoeffReturnType;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConcatenationOp(const LhsXprType& lhs, const RhsXprType& rhs, Axis axis)
+ : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_axis(axis) {}
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename LhsXprType::Nested>::type&
+ lhsExpression() const { return m_lhs_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename RhsXprType::Nested>::type&
+ rhsExpression() const { return m_rhs_xpr; }
+
+ EIGEN_DEVICE_FUNC const Axis& axis() const { return m_axis; }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorConcatenationOp& operator = (const TensorConcatenationOp& other)
+ {
+ typedef TensorAssignOp<TensorConcatenationOp, const TensorConcatenationOp> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorConcatenationOp& operator = (const OtherDerived& other)
+ {
+ typedef TensorAssignOp<TensorConcatenationOp, const OtherDerived> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ protected:
+ typename LhsXprType::Nested m_lhs_xpr;
+ typename RhsXprType::Nested m_rhs_xpr;
+ const Axis m_axis;
+};
+
+
+// Eval as rvalue
+template<typename Axis, typename LeftArgType, typename RightArgType, typename Device>
+struct TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device>
+{
+ typedef TensorConcatenationOp<Axis, LeftArgType, RightArgType> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumDims = internal::array_size<typename TensorEvaluator<LeftArgType, Device>::Dimensions>::value;
+ static const int RightNumDims = internal::array_size<typename TensorEvaluator<RightArgType, Device>::Dimensions>::value;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ enum {
+ IsAligned = false,
+ PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<LeftArgType, Device>::Layout,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_leftImpl(op.lhsExpression(), device), m_rightImpl(op.rhsExpression(), device), m_axis(op.axis())
+ {
+ EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout) || NumDims == 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ EIGEN_STATIC_ASSERT((NumDims == RightNumDims), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
+
+ eigen_assert(0 <= m_axis && m_axis < NumDims);
+ const Dimensions& lhs_dims = m_leftImpl.dimensions();
+ const Dimensions& rhs_dims = m_rightImpl.dimensions();
+ {
+ int i = 0;
+ for (; i < m_axis; ++i) {
+ eigen_assert(lhs_dims[i] > 0);
+ eigen_assert(lhs_dims[i] == rhs_dims[i]);
+ m_dimensions[i] = lhs_dims[i];
+ }
+ eigen_assert(lhs_dims[i] > 0); // Now i == m_axis.
+ eigen_assert(rhs_dims[i] > 0);
+ m_dimensions[i] = lhs_dims[i] + rhs_dims[i];
+ for (++i; i < NumDims; ++i) {
+ eigen_assert(lhs_dims[i] > 0);
+ eigen_assert(lhs_dims[i] == rhs_dims[i]);
+ m_dimensions[i] = lhs_dims[i];
+ }
+ }
+
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_leftStrides[0] = 1;
+ m_rightStrides[0] = 1;
+ m_outputStrides[0] = 1;
+
+ for (int j = 1; j < NumDims; ++j) {
+ m_leftStrides[j] = m_leftStrides[j-1] * lhs_dims[j-1];
+ m_rightStrides[j] = m_rightStrides[j-1] * rhs_dims[j-1];
+ m_outputStrides[j] = m_outputStrides[j-1] * m_dimensions[j-1];
+ }
+ } else {
+ m_leftStrides[NumDims - 1] = 1;
+ m_rightStrides[NumDims - 1] = 1;
+ m_outputStrides[NumDims - 1] = 1;
+
+ for (int j = NumDims - 2; j >= 0; --j) {
+ m_leftStrides[j] = m_leftStrides[j+1] * lhs_dims[j+1];
+ m_rightStrides[j] = m_rightStrides[j+1] * rhs_dims[j+1];
+ m_outputStrides[j] = m_outputStrides[j+1] * m_dimensions[j+1];
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ // TODO(phli): Add short-circuit memcpy evaluation if underlying data are linear?
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/)
+ {
+ m_leftImpl.evalSubExprsIfNeeded(NULL);
+ m_rightImpl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup()
+ {
+ m_leftImpl.cleanup();
+ m_rightImpl.cleanup();
+ }
+
+ // TODO(phli): attempt to speed this up. The integer divisions and modulo are slow.
+ // See CL/76180724 comments for more ideas.
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ // Collect dimension-wise indices (subs).
+ array<Index, NumDims> subs;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ subs[i] = index / m_outputStrides[i];
+ index -= subs[i] * m_outputStrides[i];
+ }
+ subs[0] = index;
+ } else {
+ for (int i = 0; i < NumDims - 1; ++i) {
+ subs[i] = index / m_outputStrides[i];
+ index -= subs[i] * m_outputStrides[i];
+ }
+ subs[NumDims - 1] = index;
+ }
+
+ const Dimensions& left_dims = m_leftImpl.dimensions();
+ if (subs[m_axis] < left_dims[m_axis]) {
+ Index left_index;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ left_index = subs[0];
+ for (int i = 1; i < NumDims; ++i) {
+ left_index += (subs[i] % left_dims[i]) * m_leftStrides[i];
+ }
+ } else {
+ left_index = subs[NumDims - 1];
+ for (int i = NumDims - 2; i >= 0; --i) {
+ left_index += (subs[i] % left_dims[i]) * m_leftStrides[i];
+ }
+ }
+ return m_leftImpl.coeff(left_index);
+ } else {
+ subs[m_axis] -= left_dims[m_axis];
+ const Dimensions& right_dims = m_rightImpl.dimensions();
+ Index right_index;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ right_index = subs[0];
+ for (int i = 1; i < NumDims; ++i) {
+ right_index += (subs[i] % right_dims[i]) * m_rightStrides[i];
+ }
+ } else {
+ right_index = subs[NumDims - 1];
+ for (int i = NumDims - 2; i >= 0; --i) {
+ right_index += (subs[i] % right_dims[i]) * m_rightStrides[i];
+ }
+ }
+ return m_rightImpl.coeff(right_index);
+ }
+ }
+
+ // TODO(phli): Add a real vectorization.
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
+ EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index + packetSize - 1 < dimensions().TotalSize());
+
+ EIGEN_ALIGN_MAX CoeffReturnType values[packetSize];
+ for (int i = 0; i < packetSize; ++i) {
+ values[i] = coeff(index+i);
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ const double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() +
+ 2 * TensorOpCost::MulCost<Index>() +
+ TensorOpCost::DivCost<Index>() +
+ TensorOpCost::ModCost<Index>());
+ const double lhs_size = m_leftImpl.dimensions().TotalSize();
+ const double rhs_size = m_rightImpl.dimensions().TotalSize();
+ return (lhs_size / (lhs_size + rhs_size)) *
+ m_leftImpl.costPerCoeff(vectorized) +
+ (rhs_size / (lhs_size + rhs_size)) *
+ m_rightImpl.costPerCoeff(vectorized) +
+ TensorOpCost(0, 0, compute_cost);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ protected:
+ Dimensions m_dimensions;
+ array<Index, NumDims> m_outputStrides;
+ array<Index, NumDims> m_leftStrides;
+ array<Index, NumDims> m_rightStrides;
+ TensorEvaluator<LeftArgType, Device> m_leftImpl;
+ TensorEvaluator<RightArgType, Device> m_rightImpl;
+ const Axis m_axis;
+};
+
+// Eval as lvalue
+template<typename Axis, typename LeftArgType, typename RightArgType, typename Device>
+ struct TensorEvaluator<TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device>
+ : public TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device>
+{
+ typedef TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device> Base;
+ typedef TensorConcatenationOp<Axis, LeftArgType, RightArgType> XprType;
+ typedef typename Base::Dimensions Dimensions;
+ enum {
+ IsAligned = false,
+ PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<LeftArgType, Device>::Layout,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(XprType& op, const Device& device)
+ : Base(op, device)
+ {
+ EIGEN_STATIC_ASSERT((static_cast<int>(Layout) == static_cast<int>(ColMajor)), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ }
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
+ {
+ // Collect dimension-wise indices (subs).
+ array<Index, Base::NumDims> subs;
+ for (int i = Base::NumDims - 1; i > 0; --i) {
+ subs[i] = index / this->m_outputStrides[i];
+ index -= subs[i] * this->m_outputStrides[i];
+ }
+ subs[0] = index;
+
+ const Dimensions& left_dims = this->m_leftImpl.dimensions();
+ if (subs[this->m_axis] < left_dims[this->m_axis]) {
+ Index left_index = subs[0];
+ for (int i = 1; i < Base::NumDims; ++i) {
+ left_index += (subs[i] % left_dims[i]) * this->m_leftStrides[i];
+ }
+ return this->m_leftImpl.coeffRef(left_index);
+ } else {
+ subs[this->m_axis] -= left_dims[this->m_axis];
+ const Dimensions& right_dims = this->m_rightImpl.dimensions();
+ Index right_index = subs[0];
+ for (int i = 1; i < Base::NumDims; ++i) {
+ right_index += (subs[i] % right_dims[i]) * this->m_rightStrides[i];
+ }
+ return this->m_rightImpl.coeffRef(right_index);
+ }
+ }
+
+ template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ void writePacket(Index index, const PacketReturnType& x)
+ {
+ const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
+ EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index + packetSize - 1 < this->dimensions().TotalSize());
+
+ EIGEN_ALIGN_MAX CoeffReturnType values[packetSize];
+ internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
+ for (int i = 0; i < packetSize; ++i) {
+ coeffRef(index+i) = values[i];
+ }
+ }
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h b/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h
new file mode 100644
index 000000000..20b29e5fd
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h
@@ -0,0 +1,628 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
+#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
+
+namespace Eigen {
+
+/** \class TensorContraction
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor contraction class.
+ *
+ *
+ */
+namespace internal {
+
+template<typename Dimensions, typename LhsXprType, typename RhsXprType>
+struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType> >
+{
+ // Type promotion to handle the case where the types of the lhs and the rhs are different.
+ typedef typename gebp_traits<typename remove_const<typename LhsXprType::Scalar>::type,
+ typename remove_const<typename RhsXprType::Scalar>::type>::ResScalar Scalar;
+
+ typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind,
+ typename traits<RhsXprType>::StorageKind>::ret StorageKind;
+ typedef typename promote_index_type<typename traits<LhsXprType>::Index,
+ typename traits<RhsXprType>::Index>::type Index;
+ typedef typename LhsXprType::Nested LhsNested;
+ typedef typename RhsXprType::Nested RhsNested;
+ typedef typename remove_reference<LhsNested>::type _LhsNested;
+ typedef typename remove_reference<RhsNested>::type _RhsNested;
+
+ // From NumDims below.
+ static const int NumDimensions = traits<RhsXprType>::NumDimensions + traits<RhsXprType>::NumDimensions - 2 * array_size<Dimensions>::value;
+ static const int Layout = traits<LhsXprType>::Layout;
+
+ enum {
+ Flags = 0
+ };
+};
+
+template<typename Dimensions, typename LhsXprType, typename RhsXprType>
+struct eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType>, Eigen::Dense>
+{
+ typedef const TensorContractionOp<Dimensions, LhsXprType, RhsXprType>& type;
+};
+
+template<typename Dimensions, typename LhsXprType, typename RhsXprType>
+struct nested<TensorContractionOp<Dimensions, LhsXprType, RhsXprType>, 1, typename eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType> >::type>
+{
+ typedef TensorContractionOp<Dimensions, LhsXprType, RhsXprType> type;
+};
+
+template<typename Indices_, typename LeftArgType_, typename RightArgType_, typename Device_>
+struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_, RightArgType_>, Device_> > {
+ typedef Indices_ Indices;
+ typedef LeftArgType_ LeftArgType;
+ typedef RightArgType_ RightArgType;
+ typedef Device_ Device;
+
+ // From NumDims below.
+ static const int NumDimensions = traits<LeftArgType_>::NumDimensions + traits<RightArgType_>::NumDimensions - 2 * array_size<Indices_>::value;
+};
+
+} // end namespace internal
+
+template<typename Indices, typename LhsXprType, typename RhsXprType>
+class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXprType, RhsXprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorContractionOp>::Scalar Scalar;
+ typedef typename internal::gebp_traits<typename LhsXprType::CoeffReturnType,
+ typename RhsXprType::CoeffReturnType>::ResScalar CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorContractionOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorContractionOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorContractionOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionOp(
+ const LhsXprType& lhs, const RhsXprType& rhs, const Indices& dims)
+ : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_indices(dims) {}
+
+ EIGEN_DEVICE_FUNC
+ const Indices& indices() const { return m_indices; }
+
+ /** \returns the nested expressions */
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename LhsXprType::Nested>::type&
+ lhsExpression() const { return m_lhs_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename RhsXprType::Nested>::type&
+ rhsExpression() const { return m_rhs_xpr; }
+
+ protected:
+ typename LhsXprType::Nested m_lhs_xpr;
+ typename RhsXprType::Nested m_rhs_xpr;
+ const Indices m_indices;
+};
+
+
+template<typename Derived>
+struct TensorContractionEvaluatorBase
+{
+ typedef typename internal::traits<Derived>::Indices Indices;
+ typedef typename internal::traits<Derived>::LeftArgType LeftArgType;
+ typedef typename internal::traits<Derived>::RightArgType RightArgType;
+ typedef typename internal::traits<Derived>::Device Device;
+
+ typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
+ typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
+ typedef typename XprType::Index Index;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+
+ enum {
+ IsAligned = true,
+ PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1),
+ Layout = TensorEvaluator<LeftArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = true
+ };
+
+ // Most of the code is assuming that both input tensors are ColMajor. If the
+ // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
+ // If we want to compute A * B = C, where A is LHS and B is RHS, the code
+ // will pretend B is LHS and A is RHS.
+ typedef typename internal::conditional<
+ static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
+ typedef typename internal::conditional<
+ static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
+
+ static const int LDims =
+ internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
+ static const int RDims =
+ internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
+ static const int ContractDims = internal::array_size<Indices>::value;
+ static const int NumDims = LDims + RDims - 2 * ContractDims;
+
+ typedef array<Index, ContractDims> contract_t;
+ typedef array<Index, LDims - ContractDims> left_nocontract_t;
+ typedef array<Index, RDims - ContractDims> right_nocontract_t;
+
+ typedef DSizes<Index, NumDims> Dimensions;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ TensorContractionEvaluatorBase(const XprType& op, const Device& device)
+ : m_leftImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(),
+ op.lhsExpression(), op.rhsExpression()), device),
+ m_rightImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(),
+ op.rhsExpression(), op.lhsExpression()), device),
+ m_device(device),
+ m_result(NULL) {
+ EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) ==
+ static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)),
+ YOU_MADE_A_PROGRAMMING_MISTAKE);
+
+
+ DSizes<Index, LDims> eval_left_dims;
+ DSizes<Index, RDims> eval_right_dims;
+ array<IndexPair<Index>, ContractDims> eval_op_indices;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ // For ColMajor, we keep using the existing dimensions
+ for (int i = 0; i < LDims; i++) {
+ eval_left_dims[i] = m_leftImpl.dimensions()[i];
+ }
+ for (int i = 0; i < RDims; i++) {
+ eval_right_dims[i] = m_rightImpl.dimensions()[i];
+ }
+ // We keep the pairs of contracting indices.
+ for (int i = 0; i < ContractDims; i++) {
+ eval_op_indices[i].first = op.indices()[i].first;
+ eval_op_indices[i].second = op.indices()[i].second;
+ }
+ } else {
+ // For RowMajor, we need to reverse the existing dimensions
+ for (int i = 0; i < LDims; i++) {
+ eval_left_dims[i] = m_leftImpl.dimensions()[LDims - i - 1];
+ }
+ for (int i = 0; i < RDims; i++) {
+ eval_right_dims[i] = m_rightImpl.dimensions()[RDims - i - 1];
+ }
+ // We need to flip all the pairs of contracting indices as well as
+ // reversing the dimensions.
+ for (int i = 0; i < ContractDims; i++) {
+ eval_op_indices[i].first = LDims - 1 - op.indices()[ContractDims - 1 - i].second;
+ eval_op_indices[i].second = RDims - 1 - op.indices()[ContractDims - 1 - i].first;
+ }
+ }
+
+ // Check for duplicate axes and make sure the first index in eval_op_indices
+ // is increasing. Using O(n^2) sorting is OK since ContractDims is small
+ for (int i = 0; i < ContractDims; i++) {
+ for (int j = i + 1; j < ContractDims; j++) {
+ eigen_assert(eval_op_indices[j].first != eval_op_indices[i].first &&
+ eval_op_indices[j].second != eval_op_indices[i].second &&
+ "contraction axes should be unique");
+ if (eval_op_indices[j].first < eval_op_indices[i].first) {
+ numext::swap(eval_op_indices[j], eval_op_indices[i]);
+ }
+ }
+ }
+
+ array<Index, LDims> lhs_strides;
+ lhs_strides[0] = 1;
+ for (int i = 0; i < LDims-1; ++i) {
+ lhs_strides[i+1] = lhs_strides[i] * eval_left_dims[i];
+ }
+
+ array<Index, RDims> rhs_strides;
+ rhs_strides[0] = 1;
+ for (int i = 0; i < RDims-1; ++i) {
+ rhs_strides[i+1] = rhs_strides[i] * eval_right_dims[i];
+ }
+
+ if (m_i_strides.size() > 0) m_i_strides[0] = 1;
+ if (m_j_strides.size() > 0) m_j_strides[0] = 1;
+ if (m_k_strides.size() > 0) m_k_strides[0] = 1;
+
+ m_i_size = 1;
+ m_j_size = 1;
+ m_k_size = 1;
+
+ // To compute the dimension, we simply concatenate the non-contracting
+ // dimensions of the left and then the right tensor. Additionally, we also
+ // compute the strides corresponding to the left non-contracting
+ // dimensions and right non-contracting dimensions.
+ m_lhs_inner_dim_contiguous = true;
+ int dim_idx = 0;
+ unsigned int nocontract_idx = 0;
+
+ for (int i = 0; i < LDims; i++) {
+ // find if we are contracting on index i of left tensor
+ bool contracting = false;
+ for (int j = 0; j < ContractDims; j++) {
+ if (eval_op_indices[j].first == i) {
+ contracting = true;
+ break;
+ }
+ }
+ if (!contracting) {
+ // add dimension size to output dimensions
+ m_dimensions[dim_idx] = eval_left_dims[i];
+ m_left_nocontract_strides[nocontract_idx] = lhs_strides[i];
+ if (dim_idx != i) {
+ m_lhs_inner_dim_contiguous = false;
+ }
+ if (nocontract_idx+1 < internal::array_size<left_nocontract_t>::value) {
+ m_i_strides[nocontract_idx+1] =
+ m_i_strides[nocontract_idx] * eval_left_dims[i];
+ } else {
+ m_i_size = m_i_strides[nocontract_idx] * eval_left_dims[i];
+ }
+ dim_idx++;
+ nocontract_idx++;
+ }
+ }
+
+ nocontract_idx = 0;
+ for (int i = 0; i < RDims; i++) {
+ bool contracting = false;
+ // find if we are contracting on index i of right tensor
+ for (int j = 0; j < ContractDims; j++) {
+ if (eval_op_indices[j].second == i) {
+ contracting = true;
+ break;
+ }
+ }
+ if (!contracting) {
+ m_dimensions[dim_idx] = eval_right_dims[i];
+ if (nocontract_idx+1 < internal::array_size<right_nocontract_t>::value) {
+ m_j_strides[nocontract_idx+1] =
+ m_j_strides[nocontract_idx] * eval_right_dims[i];
+ } else {
+ m_j_size = m_j_strides[nocontract_idx] * eval_right_dims[i];
+ }
+ m_right_nocontract_strides[nocontract_idx] = rhs_strides[i];
+ dim_idx++;
+ nocontract_idx++;
+ }
+ }
+
+ // Now compute the strides corresponding to the contracting dimensions. We
+ // assumed above that non-contracting axes are represented in the same order
+ // in the matrix as they are in the tensor. This is not the case for
+ // contracting axes. As the contracting axes must be of the same size in
+ // each tensor, we'll only look at the first tensor here.
+ m_rhs_inner_dim_contiguous = true;
+ m_rhs_inner_dim_reordered = false;
+ for (int i = 0; i < ContractDims; i++) {
+ Index left = eval_op_indices[i].first;
+ Index right = eval_op_indices[i].second;
+
+ Index size = eval_left_dims[left];
+ eigen_assert(size == eval_right_dims[right] &&
+ "Contraction axes must be same size");
+
+ if (i+1 < static_cast<int>(internal::array_size<contract_t>::value)) {
+ m_k_strides[i+1] = m_k_strides[i] * size;
+ } else {
+ m_k_size = m_k_strides[i] * size;
+ }
+ m_left_contracting_strides[i] = lhs_strides[left];
+ m_right_contracting_strides[i] = rhs_strides[right];
+
+ if (i > 0 && right < eval_op_indices[i-1].second) {
+ m_rhs_inner_dim_reordered = true;
+ }
+ if (right != i) {
+ m_rhs_inner_dim_contiguous = false;
+ }
+ }
+
+ // If the layout is RowMajor, we need to reverse the m_dimensions
+ if (static_cast<int>(Layout) == static_cast<int>(RowMajor)) {
+ for (int i = 0, j = NumDims - 1; i < j; i++, j--) {
+ numext::swap(m_dimensions[i], m_dimensions[j]);
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
+ m_leftImpl.evalSubExprsIfNeeded(NULL);
+ m_rightImpl.evalSubExprsIfNeeded(NULL);
+ if (data) {
+ evalTo(data);
+ return false;
+ } else {
+ m_result = static_cast<Scalar *>(m_device.allocate(dimensions().TotalSize() * sizeof(Scalar)));
+ evalTo(m_result);
+ return true;
+ }
+ }
+
+ EIGEN_DEVICE_FUNC void evalTo(Scalar* buffer) const {
+ if (this->m_lhs_inner_dim_contiguous) {
+ if (this->m_rhs_inner_dim_contiguous) {
+ if (this->m_rhs_inner_dim_reordered) {
+ static_cast<const Derived*>(this)->template evalProduct<true, true, true, Unaligned>(buffer);
+ }
+ else {
+ static_cast<const Derived*>(this)->template evalProduct<true, true, false, Unaligned>(buffer);
+ }
+ }
+ else {
+ if (this->m_rhs_inner_dim_reordered) {
+ static_cast<const Derived*>(this)->template evalProduct<true, false, true, Unaligned>(buffer);
+ }
+ else {
+ static_cast<const Derived*>(this)->template evalProduct<true, false, false, Unaligned>(buffer);
+ }
+ }
+ }
+ else {
+ if (this->m_rhs_inner_dim_contiguous) {
+ if (this->m_rhs_inner_dim_reordered) {
+ static_cast<const Derived*>(this)->template evalProduct<false, true, true, Unaligned>(buffer);
+ }
+ else {
+ static_cast<const Derived*>(this)->template evalProduct<false, true, false, Unaligned>(buffer);
+ }
+ }
+ else {
+ if (this->m_rhs_inner_dim_reordered) {
+ static_cast<const Derived*>(this)->template evalProduct<false, false, true, Unaligned>(buffer);
+ }
+ else {
+ static_cast<const Derived*>(this)->template evalProduct<false, false, false, Unaligned>(buffer);
+ }
+ }
+ }
+ }
+
+ template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
+ EIGEN_DEVICE_FUNC void evalGemv(Scalar* buffer) const {
+ const Index rows = m_i_size;
+ const Index cols = m_k_size;
+
+ typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
+ typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
+ typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
+ typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
+ const Index lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size;
+ const Index rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size;
+ const int lhs_alignment = LeftEvaluator::IsAligned ? Aligned : Unaligned;
+ const int rhs_alignment = RightEvaluator::IsAligned ? Aligned : Unaligned;
+ typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
+ LeftEvaluator, left_nocontract_t,
+ contract_t, lhs_packet_size,
+ lhs_inner_dim_contiguous,
+ false, lhs_alignment> LhsMapper;
+
+ typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
+ RightEvaluator, right_nocontract_t,
+ contract_t, rhs_packet_size,
+ rhs_inner_dim_contiguous,
+ rhs_inner_dim_reordered, rhs_alignment> RhsMapper;
+
+ LhsMapper lhs(m_leftImpl, m_left_nocontract_strides, m_i_strides,
+ m_left_contracting_strides, m_k_strides);
+ RhsMapper rhs(m_rightImpl, m_right_nocontract_strides, m_j_strides,
+ m_right_contracting_strides, m_k_strides);
+
+ const Scalar alpha(1);
+ const Index resIncr(1);
+
+ // zero out the result buffer (which must be of size at least rows * sizeof(Scalar)
+ m_device.memset(buffer, 0, rows * sizeof(Scalar));
+
+ internal::general_matrix_vector_product<Index,LhsScalar,LhsMapper,ColMajor,false,RhsScalar,RhsMapper,false>::run(
+ rows, cols, lhs, rhs,
+ buffer, resIncr, alpha);
+ }
+
+ template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
+ EIGEN_DEVICE_FUNC void evalGemm(Scalar* buffer) const {
+ // columns in left side, rows in right side
+ const Index k = this->m_k_size;
+
+ // rows in left side
+ const Index m = this->m_i_size;
+
+ // columns in right side
+ const Index n = this->m_j_size;
+
+ // zero out the result buffer (which must be of size at least m * n * sizeof(Scalar)
+ this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
+
+ // define mr, nr, and all of my data mapper types
+ typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
+ typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
+ typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
+
+ const Index nr = Traits::nr;
+ const Index mr = Traits::mr;
+
+ typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
+ typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
+
+ const Index lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size;
+ const Index rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size;
+
+ typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
+ LeftEvaluator, left_nocontract_t,
+ contract_t, lhs_packet_size,
+ lhs_inner_dim_contiguous,
+ false, Unaligned> LhsMapper;
+
+ typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
+ RightEvaluator, right_nocontract_t,
+ contract_t, rhs_packet_size,
+ rhs_inner_dim_contiguous,
+ rhs_inner_dim_reordered, Unaligned> RhsMapper;
+
+ typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
+
+ // Declare GEBP packing and kernel structs
+ internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, mr, Traits::LhsProgress, ColMajor> pack_lhs;
+ internal::gemm_pack_rhs<RhsScalar, Index, typename RhsMapper::SubMapper, nr, ColMajor> pack_rhs;
+
+ internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper, mr, nr, false, false> gebp;
+
+ // initialize data mappers
+ LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
+ this->m_left_contracting_strides, this->m_k_strides);
+
+ RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
+ this->m_right_contracting_strides, this->m_k_strides);
+
+ OutputMapper output(buffer, m);
+
+ // Sizes of the blocks to load in cache. See the Goto paper for details.
+ internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index, internal::ShardByCol> blocking(k, m, n, 1);
+ const Index kc = blocking.kc();
+ const Index mc = numext::mini(m, blocking.mc());
+ const Index nc = numext::mini(n, blocking.nc());
+ const Index sizeA = mc * kc;
+ const Index sizeB = kc * nc;
+
+ LhsScalar* blockA = static_cast<LhsScalar *>(this->m_device.allocate(sizeA * sizeof(LhsScalar)));
+ RhsScalar* blockB = static_cast<RhsScalar *>(this->m_device.allocate(sizeB * sizeof(RhsScalar)));
+
+ for(Index i2=0; i2<m; i2+=mc)
+ {
+ const Index actual_mc = numext::mini(i2+mc,m)-i2;
+ for (Index k2 = 0; k2 < k; k2 += kc) {
+ // make sure we don't overshoot right edge of left matrix, then pack vertical panel
+ const Index actual_kc = numext::mini(k2 + kc, k) - k2;
+ pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc, 0, 0);
+
+ // series of horizontal blocks
+ for (Index j2 = 0; j2 < n; j2 += nc) {
+ // make sure we don't overshoot right edge of right matrix, then pack block
+ const Index actual_nc = numext::mini(j2 + nc, n) - j2;
+ pack_rhs(blockB, rhs.getSubMapper(k2, j2), actual_kc, actual_nc, 0, 0);
+
+ // call gebp (matrix kernel)
+ // The parameters here are copied from Eigen's GEMM implementation
+ gebp(output.getSubMapper(i2, j2), blockA, blockB, actual_mc, actual_kc, actual_nc, Scalar(1), -1, -1, 0, 0);
+ }
+ }
+ }
+
+ this->m_device.deallocate(blockA);
+ this->m_device.deallocate(blockB);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_leftImpl.cleanup();
+ m_rightImpl.cleanup();
+
+ if (m_result != NULL) {
+ m_device.deallocate(m_result);
+ m_result = NULL;
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
+ return m_result[index];
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const {
+ return TensorOpCost(sizeof(CoeffReturnType), 0, 0);
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const {
+ return internal::ploadt<PacketReturnType, LoadMode>(m_result + index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const { return m_result; }
+
+ protected:
+ // Prevent assignment
+ TensorContractionEvaluatorBase& operator = (const TensorContractionEvaluatorBase&);
+ Dimensions m_dimensions;
+
+ contract_t m_k_strides;
+ contract_t m_left_contracting_strides;
+ contract_t m_right_contracting_strides;
+
+ bool m_lhs_inner_dim_contiguous;
+ bool m_rhs_inner_dim_contiguous;
+ bool m_rhs_inner_dim_reordered;
+
+ left_nocontract_t m_i_strides;
+ right_nocontract_t m_j_strides;
+ left_nocontract_t m_left_nocontract_strides;
+ right_nocontract_t m_right_nocontract_strides;
+
+ Index m_i_size;
+ Index m_j_size;
+ Index m_k_size;
+
+ TensorEvaluator<EvalLeftArgType, Device> m_leftImpl;
+ TensorEvaluator<EvalRightArgType, Device> m_rightImpl;
+ const Device& m_device;
+ Scalar* m_result;
+};
+
+
+// evaluator for default device
+template<typename Indices, typename LeftArgType, typename RightArgType, typename Device>
+struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> :
+ public TensorContractionEvaluatorBase<
+ TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> > {
+ typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
+ typedef TensorContractionEvaluatorBase<Self> Base;
+
+ typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
+ typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
+ typedef typename XprType::Index Index;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+
+ enum {
+ Layout = TensorEvaluator<LeftArgType, Device>::Layout
+ };
+
+ // Most of the code is assuming that both input tensors are ColMajor. If the
+ // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
+ // If we want to compute A * B = C, where A is LHS and B is RHS, the code
+ // will pretend B is LHS and A is RHS.
+ typedef typename internal::conditional<
+ static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
+ typedef typename internal::conditional<
+ static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
+
+ static const int LDims =
+ internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
+ static const int RDims =
+ internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
+ static const int ContractDims = internal::array_size<Indices>::value;
+
+ typedef array<Index, ContractDims> contract_t;
+ typedef array<Index, LDims - ContractDims> left_nocontract_t;
+ typedef array<Index, RDims - ContractDims> right_nocontract_t;
+
+ static const int NumDims = LDims + RDims - 2 * ContractDims;
+
+ // Could we use NumDimensions here?
+ typedef DSizes<Index, NumDims> Dimensions;
+
+ EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) :
+ Base(op, device) { }
+
+ template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
+ EIGEN_DEVICE_FUNC void evalProduct(Scalar* buffer) const {
+ if (this->m_j_size == 1) {
+ this->template evalGemv<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
+ return;
+ }
+
+ this->template evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
+ }
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h b/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h
new file mode 100644
index 000000000..5cf7b4f71
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h
@@ -0,0 +1,56 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_BLOCKING_H
+#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_BLOCKING_H
+
+
+namespace Eigen {
+namespace internal {
+
+enum {
+ ShardByRow = 0,
+ ShardByCol = 1
+};
+
+
+// Default Blocking Strategy
+template <typename LhsMapper, typename RhsMapper, typename Index, int ShardingType=ShardByCol>
+class TensorContractionBlocking {
+ public:
+
+ typedef typename LhsMapper::Scalar LhsScalar;
+ typedef typename RhsMapper::Scalar RhsScalar;
+
+ EIGEN_DEVICE_FUNC TensorContractionBlocking(Index k, Index m, Index n, Index num_threads = 1) :
+ kc_(k), mc_(m), nc_(n)
+ {
+ if (ShardingType == ShardByCol) {
+ computeProductBlockingSizes<LhsScalar, RhsScalar, 1>(kc_, mc_, nc_, num_threads);
+ }
+ else {
+ computeProductBlockingSizes<LhsScalar, RhsScalar, 1>(kc_, nc_, mc_, num_threads);
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index kc() const { return kc_; }
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index mc() const { return mc_; }
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index nc() const { return nc_; }
+
+ private:
+ Index kc_;
+ Index mc_;
+ Index nc_;
+};
+
+
+} // end namespace internal
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_BLOCKING_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h b/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h
new file mode 100644
index 000000000..d65dbb40f
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h
@@ -0,0 +1,1391 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014-2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
+// Copyright (C) 2015 Navdeep Jaitly <ndjaitly@google.com>
+// Copyright (C) 2014 Eric Martin <eric@ericmart.in>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_CUDA_H
+#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_CUDA_H
+
+#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
+
+namespace Eigen {
+
+template<typename Scalar, typename Index, typename LhsMapper,
+ typename RhsMapper, typename OutputMapper, bool needs_edge_check>
+__device__ EIGEN_STRONG_INLINE void
+EigenContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs,
+ const OutputMapper output, Scalar* lhs_shmem, Scalar* rhs_shmem,
+ const Index m_size, const Index n_size, const Index k_size) {
+
+ const Index m_block_idx = blockIdx.x;
+ const Index n_block_idx = blockIdx.y;
+
+ const Index base_m = 64 * m_block_idx;
+ const Index base_n = 64 * n_block_idx;
+
+ // declare and initialize 64 registers for output 8x8 block
+
+ // prefetch registers
+ Scalar lhs_pf0;
+ Scalar lhs_pf1;
+ Scalar lhs_pf2;
+ Scalar lhs_pf3;
+ Scalar lhs_pf4;
+ Scalar lhs_pf5;
+ Scalar lhs_pf6;
+ Scalar lhs_pf7;
+
+ Scalar rhs_pf0;
+ Scalar rhs_pf1;
+ Scalar rhs_pf2;
+ Scalar rhs_pf3;
+ Scalar rhs_pf4;
+ Scalar rhs_pf5;
+ Scalar rhs_pf6;
+ Scalar rhs_pf7;
+
+ // shared memory is formatted
+ // (contract idx in block, nocontract idx in block, block idx)
+ // where block idx is column major. This transposition limits the number of
+ // bank conflicts when reading the LHS. The core idea is that since the contracting
+ // index is shared by both sides, then the contracting index should be in threadIdx.x.
+
+ // On the LHS, we pad each row inside of each block with an extra element. This makes
+ // each block 8 rows of 9 elements, which is 72 elements. This gives no bank conflicts
+ // on writes and very few 2-way conflicts on reads. There is an 8x8 grid of these blocks.
+
+ // On the RHS we just add 8 padding elements to the end of each block. This gives no bank
+ // conflicts on writes and also none on reads.
+
+ // storage indices
+ const Index lhs_store_idx_base = threadIdx.y * 72 + threadIdx.x * 9 + threadIdx.z;
+ const Index rhs_store_idx_base = threadIdx.y * 72 + threadIdx.z * 8 + threadIdx.x;
+
+ const Index lhs_store_idx_0 = lhs_store_idx_base + 576 * 0;
+ const Index lhs_store_idx_1 = lhs_store_idx_base + 576 * 1;
+ const Index lhs_store_idx_2 = lhs_store_idx_base + 576 * 2;
+ const Index lhs_store_idx_3 = lhs_store_idx_base + 576 * 3;
+ const Index lhs_store_idx_4 = lhs_store_idx_base + 576 * 4;
+ const Index lhs_store_idx_5 = lhs_store_idx_base + 576 * 5;
+ const Index lhs_store_idx_6 = lhs_store_idx_base + 576 * 6;
+ const Index lhs_store_idx_7 = lhs_store_idx_base + 576 * 7;
+
+ const Index rhs_store_idx_0 = rhs_store_idx_base + 576 * 0;
+ const Index rhs_store_idx_1 = rhs_store_idx_base + 576 * 1;
+ const Index rhs_store_idx_2 = rhs_store_idx_base + 576 * 2;
+ const Index rhs_store_idx_3 = rhs_store_idx_base + 576 * 3;
+ const Index rhs_store_idx_4 = rhs_store_idx_base + 576 * 4;
+ const Index rhs_store_idx_5 = rhs_store_idx_base + 576 * 5;
+ const Index rhs_store_idx_6 = rhs_store_idx_base + 576 * 6;
+ const Index rhs_store_idx_7 = rhs_store_idx_base + 576 * 7;
+
+ // in the loading code, the following variables are important:
+ // threadIdx.x: the vertical position in an 8x8 block
+ // threadIdx.y: the vertical index of the 8x8 block in the grid
+ // threadIdx.z: the horizontal position in an 8x8 block
+ // k: the horizontal index of the 8x8 block in the grid
+ //
+ // The k parameter is implicit (it was the loop counter for a loop that went
+ // from 0 to <8, but now that loop is unrolled in the below code.
+
+ const Index load_idx_vert = threadIdx.x + 8 * threadIdx.y;
+ const Index lhs_vert = base_m + load_idx_vert;
+
+#define prefetchIntoRegisters(base_k) \
+ { \
+ lhs_pf0 = conv(0); \
+ lhs_pf1 = conv(0); \
+ lhs_pf2 = conv(0); \
+ lhs_pf3 = conv(0); \
+ lhs_pf4 = conv(0); \
+ lhs_pf5 = conv(0); \
+ lhs_pf6 = conv(0); \
+ lhs_pf7 = conv(0); \
+ \
+ rhs_pf0 = conv(0); \
+ rhs_pf1 = conv(0); \
+ rhs_pf2 = conv(0); \
+ rhs_pf3 = conv(0); \
+ rhs_pf4 = conv(0); \
+ rhs_pf5 = conv(0); \
+ rhs_pf6 = conv(0); \
+ rhs_pf7 = conv(0); \
+ \
+ if (!needs_edge_check || lhs_vert < m_size) { \
+ const Index lhs_horiz_0 = base_k + threadIdx.z + 0 * 8; \
+ const Index lhs_horiz_1 = base_k + threadIdx.z + 1 * 8; \
+ const Index lhs_horiz_2 = base_k + threadIdx.z + 2 * 8; \
+ const Index lhs_horiz_3 = base_k + threadIdx.z + 3 * 8; \
+ const Index lhs_horiz_4 = base_k + threadIdx.z + 4 * 8; \
+ const Index lhs_horiz_5 = base_k + threadIdx.z + 5 * 8; \
+ const Index lhs_horiz_6 = base_k + threadIdx.z + 6 * 8; \
+ const Index lhs_horiz_7 = base_k + threadIdx.z + 7 * 8; \
+ \
+ if (!needs_edge_check || lhs_horiz_7 < k_size) { \
+ lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \
+ lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \
+ lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \
+ lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \
+ lhs_pf4 = lhs(lhs_vert, lhs_horiz_4); \
+ lhs_pf5 = lhs(lhs_vert, lhs_horiz_5); \
+ lhs_pf6 = lhs(lhs_vert, lhs_horiz_6); \
+ lhs_pf7 = lhs(lhs_vert, lhs_horiz_7); \
+ } else if (lhs_horiz_6 < k_size) { \
+ lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \
+ lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \
+ lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \
+ lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \
+ lhs_pf4 = lhs(lhs_vert, lhs_horiz_4); \
+ lhs_pf5 = lhs(lhs_vert, lhs_horiz_5); \
+ lhs_pf6 = lhs(lhs_vert, lhs_horiz_6); \
+ } else if (lhs_horiz_5 < k_size) { \
+ lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \
+ lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \
+ lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \
+ lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \
+ lhs_pf4 = lhs(lhs_vert, lhs_horiz_4); \
+ lhs_pf5 = lhs(lhs_vert, lhs_horiz_5); \
+ } else if (lhs_horiz_4 < k_size) { \
+ lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \
+ lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \
+ lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \
+ lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \
+ lhs_pf4 = lhs(lhs_vert, lhs_horiz_4); \
+ } else if (lhs_horiz_3 < k_size) { \
+ lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \
+ lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \
+ lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \
+ lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \
+ } else if (lhs_horiz_2 < k_size) { \
+ lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \
+ lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \
+ lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \
+ } else if (lhs_horiz_1 < k_size) { \
+ lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \
+ lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \
+ } else if (lhs_horiz_0 < k_size) { \
+ lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \
+ } \
+ } \
+ \
+ const Index rhs_vert = base_k + load_idx_vert; \
+ if (!needs_edge_check || rhs_vert < k_size) { \
+ const Index rhs_horiz_0 = base_n + threadIdx.z + 0 * 8; \
+ const Index rhs_horiz_1 = base_n + threadIdx.z + 1 * 8; \
+ const Index rhs_horiz_2 = base_n + threadIdx.z + 2 * 8; \
+ const Index rhs_horiz_3 = base_n + threadIdx.z + 3 * 8; \
+ const Index rhs_horiz_4 = base_n + threadIdx.z + 4 * 8; \
+ const Index rhs_horiz_5 = base_n + threadIdx.z + 5 * 8; \
+ const Index rhs_horiz_6 = base_n + threadIdx.z + 6 * 8; \
+ const Index rhs_horiz_7 = base_n + threadIdx.z + 7 * 8; \
+ \
+ if (rhs_horiz_7 < n_size) { \
+ rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \
+ rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \
+ rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \
+ rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \
+ rhs_pf4 = rhs(rhs_vert, rhs_horiz_4); \
+ rhs_pf5 = rhs(rhs_vert, rhs_horiz_5); \
+ rhs_pf6 = rhs(rhs_vert, rhs_horiz_6); \
+ rhs_pf7 = rhs(rhs_vert, rhs_horiz_7); \
+ } else if (rhs_horiz_6 < n_size) { \
+ rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \
+ rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \
+ rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \
+ rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \
+ rhs_pf4 = rhs(rhs_vert, rhs_horiz_4); \
+ rhs_pf5 = rhs(rhs_vert, rhs_horiz_5); \
+ rhs_pf6 = rhs(rhs_vert, rhs_horiz_6); \
+ } else if (rhs_horiz_5 < n_size) { \
+ rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \
+ rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \
+ rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \
+ rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \
+ rhs_pf4 = rhs(rhs_vert, rhs_horiz_4); \
+ rhs_pf5 = rhs(rhs_vert, rhs_horiz_5); \
+ } else if (rhs_horiz_4 < n_size) { \
+ rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \
+ rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \
+ rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \
+ rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \
+ rhs_pf4 = rhs(rhs_vert, rhs_horiz_4); \
+ } else if (rhs_horiz_3 < n_size) { \
+ rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \
+ rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \
+ rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \
+ rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \
+ } else if (rhs_horiz_2 < n_size) { \
+ rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \
+ rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \
+ rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \
+ } else if (rhs_horiz_1 < n_size) { \
+ rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \
+ rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \
+ } else if (rhs_horiz_0 < n_size) { \
+ rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \
+ } \
+ } \
+ } \
+
+#define writeRegToShmem(_) \
+ lhs_shmem[lhs_store_idx_0] = lhs_pf0; \
+ rhs_shmem[rhs_store_idx_0] = rhs_pf0; \
+ \
+ lhs_shmem[lhs_store_idx_1] = lhs_pf1; \
+ rhs_shmem[rhs_store_idx_1] = rhs_pf1; \
+ \
+ lhs_shmem[lhs_store_idx_2] = lhs_pf2; \
+ rhs_shmem[rhs_store_idx_2] = rhs_pf2; \
+ \
+ lhs_shmem[lhs_store_idx_3] = lhs_pf3; \
+ rhs_shmem[rhs_store_idx_3] = rhs_pf3; \
+ \
+ lhs_shmem[lhs_store_idx_4] = lhs_pf4; \
+ rhs_shmem[rhs_store_idx_4] = rhs_pf4; \
+ \
+ lhs_shmem[lhs_store_idx_5] = lhs_pf5; \
+ rhs_shmem[rhs_store_idx_5] = rhs_pf5; \
+ \
+ lhs_shmem[lhs_store_idx_6] = lhs_pf6; \
+ rhs_shmem[rhs_store_idx_6] = rhs_pf6; \
+ \
+ lhs_shmem[lhs_store_idx_7] = lhs_pf7; \
+ rhs_shmem[rhs_store_idx_7] = rhs_pf7; \
+
+ // declare and initialize result array
+#define res(i, j) _res_##i##j
+#define initResultRow(i) \
+ Scalar res(i, 0) = conv(0); \
+ Scalar res(i, 1) = conv(0); \
+ Scalar res(i, 2) = conv(0); \
+ Scalar res(i, 3) = conv(0); \
+ Scalar res(i, 4) = conv(0); \
+ Scalar res(i, 5) = conv(0); \
+ Scalar res(i, 6) = conv(0); \
+ Scalar res(i, 7) = conv(0); \
+
+ internal::scalar_cast_op<int, Scalar> conv;
+ initResultRow(0);
+ initResultRow(1);
+ initResultRow(2);
+ initResultRow(3);
+ initResultRow(4);
+ initResultRow(5);
+ initResultRow(6);
+ initResultRow(7);
+#undef initResultRow
+
+ for (Index base_k = 0; base_k < k_size; base_k += 64) {
+ // wait for previous iteration to finish with shmem. Despite common sense,
+ // the code is a bit faster with this here then at bottom of loop
+ __syncthreads();
+
+ prefetchIntoRegisters(base_k);
+ writeRegToShmem();
+
+ #undef prefetchIntoRegisters
+ #undef writeRegToShmem
+
+ // wait for shared mem packing to be done before starting computation
+ __syncthreads();
+
+ // compute 8x8 matrix product by outer product. This involves packing one column
+ // of LHS and one row of RHS into registers (takes 16 registers).
+
+#define lcol(i) _lcol##i
+ Scalar lcol(0);
+ Scalar lcol(1);
+ Scalar lcol(2);
+ Scalar lcol(3);
+ Scalar lcol(4);
+ Scalar lcol(5);
+ Scalar lcol(6);
+ Scalar lcol(7);
+
+#define rrow(j) _rrow##j
+ Scalar rrow(0);
+ Scalar rrow(1);
+ Scalar rrow(2);
+ Scalar rrow(3);
+ Scalar rrow(4);
+ Scalar rrow(5);
+ Scalar rrow(6);
+ Scalar rrow(7);
+
+ // Now x corresponds to k, y to m, and z to n
+ const Scalar* lhs_block = &lhs_shmem[threadIdx.x + 9 * threadIdx.y];
+ const Scalar* rhs_block = &rhs_shmem[threadIdx.x + 8 * threadIdx.z];
+
+#define lhs_element(i, j) lhs_block[72 * ((i) + 8 * (j))]
+#define rhs_element(i, j) rhs_block[72 * ((i) + 8 * (j))]
+
+#define loadData(i, j) \
+ lcol(0) = lhs_element(0, j); \
+ rrow(0) = rhs_element(i, 0); \
+ lcol(1) = lhs_element(1, j); \
+ rrow(1) = rhs_element(i, 1); \
+ lcol(2) = lhs_element(2, j); \
+ rrow(2) = rhs_element(i, 2); \
+ lcol(3) = lhs_element(3, j); \
+ rrow(3) = rhs_element(i, 3); \
+ lcol(4) = lhs_element(4, j); \
+ rrow(4) = rhs_element(i, 4); \
+ lcol(5) = lhs_element(5, j); \
+ rrow(5) = rhs_element(i, 5); \
+ lcol(6) = lhs_element(6, j); \
+ rrow(6) = rhs_element(i, 6); \
+ lcol(7) = lhs_element(7, j); \
+ rrow(7) = rhs_element(i, 7); \
+
+#define computeCol(j) \
+ res(0, j) += lcol(0) * rrow(j); \
+ res(1, j) += lcol(1) * rrow(j); \
+ res(2, j) += lcol(2) * rrow(j); \
+ res(3, j) += lcol(3) * rrow(j); \
+ res(4, j) += lcol(4) * rrow(j); \
+ res(5, j) += lcol(5) * rrow(j); \
+ res(6, j) += lcol(6) * rrow(j); \
+ res(7, j) += lcol(7) * rrow(j); \
+
+#define computePass(i) \
+ loadData(i, i); \
+ \
+ computeCol(0); \
+ computeCol(1); \
+ computeCol(2); \
+ computeCol(3); \
+ computeCol(4); \
+ computeCol(5); \
+ computeCol(6); \
+ computeCol(7); \
+
+ computePass(0);
+ computePass(1);
+ computePass(2);
+ computePass(3);
+ computePass(4);
+ computePass(5);
+ computePass(6);
+ computePass(7);
+
+#undef lcol
+#undef rrow
+#undef lhs_element
+#undef rhs_element
+#undef loadData
+#undef computeCol
+#undef computePass
+ } // end loop over k
+
+ // we've now iterated over all of the large (ie width 64) k blocks and
+ // accumulated results in registers. At this point thread (x, y, z) contains
+ // the sum across all big k blocks of the product of little k block of index (x, y)
+ // with block of index (y, z). To compute the final output, we need to reduce
+ // the 8 threads over y by summation.
+#define shuffleInc(i, j, mask) res(i, j) += __shfl_xor(res(i, j), mask)
+
+#define reduceRow(i, mask) \
+ shuffleInc(i, 0, mask); \
+ shuffleInc(i, 1, mask); \
+ shuffleInc(i, 2, mask); \
+ shuffleInc(i, 3, mask); \
+ shuffleInc(i, 4, mask); \
+ shuffleInc(i, 5, mask); \
+ shuffleInc(i, 6, mask); \
+ shuffleInc(i, 7, mask); \
+
+#define reduceMatrix(mask) \
+ reduceRow(0, mask); \
+ reduceRow(1, mask); \
+ reduceRow(2, mask); \
+ reduceRow(3, mask); \
+ reduceRow(4, mask); \
+ reduceRow(5, mask); \
+ reduceRow(6, mask); \
+ reduceRow(7, mask); \
+
+ // actually perform the reduction, now each thread of index (_, y, z)
+ // contains the correct values in its registers that belong in the output
+ // block
+ reduceMatrix(1);
+ reduceMatrix(2);
+ reduceMatrix(4);
+
+#undef shuffleInc
+#undef reduceRow
+#undef reduceMatrix
+
+ // now we need to copy the 64 values into main memory. We can't split work
+ // among threads because all variables are in registers. There's 2 ways
+ // to do this:
+ // (1) have 1 thread do 64 writes from registers into global memory
+ // (2) have 1 thread do 64 writes into shared memory, and then 8 threads
+ // each do 8 writes into global memory. We can just overwrite the shared
+ // memory from the problem we just solved.
+ // (2) is slightly faster than (1) due to less branching and more ILP
+
+ // TODO: won't yield much gain, but could just use currently unused shared mem
+ // and then we won't have to sync
+ // wait for shared mem to be out of use
+ __syncthreads();
+
+#define writeResultShmem(i, j) \
+ lhs_shmem[i + 8 * threadIdx.y + 64 * threadIdx.z + 512 * j] = res(i, j); \
+
+#define writeRow(i) \
+ writeResultShmem(i, 0); \
+ writeResultShmem(i, 1); \
+ writeResultShmem(i, 2); \
+ writeResultShmem(i, 3); \
+ writeResultShmem(i, 4); \
+ writeResultShmem(i, 5); \
+ writeResultShmem(i, 6); \
+ writeResultShmem(i, 7); \
+
+ if (threadIdx.x == 0) {
+ writeRow(0);
+ writeRow(1);
+ writeRow(2);
+ writeRow(3);
+ writeRow(4);
+ writeRow(5);
+ writeRow(6);
+ writeRow(7);
+ }
+#undef writeResultShmem
+#undef writeRow
+
+ const int max_i_write = numext::mini((int)((m_size - base_m - threadIdx.y + 7) / 8), 8);
+ const int max_j_write = numext::mini((int)((n_size - base_n - threadIdx.z + 7) / 8), 8);
+
+ if (threadIdx.x < max_i_write) {
+ if (max_j_write == 8) {
+ // TODO: can i trade bank conflicts for coalesced writes?
+ Scalar val0 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 0];
+ Scalar val1 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 1];
+ Scalar val2 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 2];
+ Scalar val3 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 3];
+ Scalar val4 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 4];
+ Scalar val5 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 5];
+ Scalar val6 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 6];
+ Scalar val7 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 7];
+
+ output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 0) = val0;
+ output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 1) = val1;
+ output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 2) = val2;
+ output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 3) = val3;
+ output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 4) = val4;
+ output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 5) = val5;
+ output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 6) = val6;
+ output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 7) = val7;
+ } else {
+#pragma unroll 7
+ for (int j = 0; j < max_j_write; j++) {
+ Scalar val = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * j];
+ output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * j) = val;
+ }
+ }
+ }
+#undef res
+}
+
+
+template<typename Scalar, typename Index, typename LhsMapper,
+ typename RhsMapper, typename OutputMapper>
+__global__ void
+__launch_bounds__(512)
+EigenContractionKernel(const LhsMapper lhs, const RhsMapper rhs,
+ const OutputMapper output,
+ const Index m_size, const Index n_size, const Index k_size) {
+ __shared__ Scalar lhs_shmem[72 * 64];
+ __shared__ Scalar rhs_shmem[72 * 64];
+
+ const Index m_block_idx = blockIdx.x;
+ const Index n_block_idx = blockIdx.y;
+
+ const Index base_m = 64 * m_block_idx;
+ const Index base_n = 64 * n_block_idx;
+
+ if (base_m + 63 < m_size && base_n + 63 < n_size) {
+ EigenContractionKernelInternal<Scalar, Index, LhsMapper, RhsMapper, OutputMapper, false>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size);
+ } else {
+ EigenContractionKernelInternal<Scalar, Index, LhsMapper, RhsMapper, OutputMapper, true>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size);
+ }
+}
+
+
+template<typename Index, typename LhsMapper,
+ typename RhsMapper, typename OutputMapper, bool CHECK_LHS_BOUNDARY,
+ bool CHECK_RHS_BOUNDARY>
+__device__ EIGEN_STRONG_INLINE void
+EigenFloatContractionKernelInternal16x16(const LhsMapper lhs, const RhsMapper rhs,
+ const OutputMapper output, float2 lhs_shmem2[][16],
+ float2 rhs_shmem2[][8], const Index m_size,
+ const Index n_size, const Index k_size,
+ const Index base_m, const Index base_n) {
+ typedef float Scalar;
+
+ // prefetch registers
+ float4 lhs_pf0, rhs_pf0;
+
+ float4 results[4];
+ for (int i=0; i < 4; i++) {
+ results[i].x = results[i].y = results[i].z = results[i].w = 0;
+ }
+
+
+#define prefetch_lhs(reg, row, col) \
+ if (!CHECK_LHS_BOUNDARY) { \
+ if (col < k_size) { \
+ reg =lhs.loadPacket<Unaligned>(row, col); \
+ } \
+ } else { \
+ if (col < k_size) { \
+ if (row + 3 < m_size) { \
+ reg =lhs.loadPacket<Unaligned>(row, col); \
+ } else if (row + 2 < m_size) { \
+ reg.x =lhs(row + 0, col); \
+ reg.y =lhs(row + 1, col); \
+ reg.z =lhs(row + 2, col); \
+ } else if (row + 1 < m_size) { \
+ reg.x =lhs(row + 0, col); \
+ reg.y =lhs(row + 1, col); \
+ } else if (row < m_size) { \
+ reg.x =lhs(row + 0, col); \
+ } \
+ } \
+ } \
+
+
+ Index lhs_vert = base_m+threadIdx.x*4;
+
+ for (Index k = 0; k < k_size; k += 16) {
+ lhs_pf0 = internal::pset1<float4>(0);
+ rhs_pf0 = internal::pset1<float4>(0);
+
+ Index lhs_horiz = threadIdx.y+k;
+ prefetch_lhs(lhs_pf0, lhs_vert, lhs_horiz)
+
+ Index rhs_vert = k+(threadIdx.x%4)*4;
+ Index rhs_horiz0 = (threadIdx.x>>2)+threadIdx.y*4+base_n;
+
+ if (!CHECK_RHS_BOUNDARY) {
+ if ((rhs_vert + 3) < k_size) {
+ // just CHECK_RHS_BOUNDARY
+ rhs_pf0 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz0);
+ } else if (rhs_vert + 2 < k_size) {
+ // just CHECK_RHS_BOUNDARY
+ rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
+ rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
+ rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0);
+ } else if (rhs_vert + 1 < k_size) {
+ rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
+ rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
+ } else if (rhs_vert < k_size) {
+ rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
+ }
+ } else {
+ if (rhs_horiz0 < n_size) {
+ if ((rhs_vert + 3) < k_size) {
+ rhs_pf0 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz0);
+ } else if ((rhs_vert + 2) < k_size) {
+ rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
+ rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
+ rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0);
+ } else if ((rhs_vert + 1) < k_size) {
+ rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
+ rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
+ } else if (rhs_vert < k_size) {
+ rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
+ }
+ }
+ }
+ float x1, x2 ;
+ // the following can be a bitwise operation..... some day.
+ if((threadIdx.x%8) < 4) {
+ x1 = rhs_pf0.y;
+ x2 = rhs_pf0.w;
+ } else {
+ x1 = rhs_pf0.x;
+ x2 = rhs_pf0.z;
+ }
+ x1 = __shfl_xor(x1, 4);
+ x2 = __shfl_xor(x2, 4);
+ if((threadIdx.x%8) < 4) {
+ rhs_pf0.y = x1;
+ rhs_pf0.w = x2;
+ } else {
+ rhs_pf0.x = x1;
+ rhs_pf0.z = x2;
+ }
+
+ // We have 64 features.
+ // Row 0 -> times (0, 4, 8, 12, 1, 5, 9, 13) for features 0, 1.
+ // Row 1 -> times (0, 4, 8, 12, 1, 5, 9, 13) for features 2, 3.
+ // ...
+ // Row 31 -> times (0, 4, 8, 12, 1, 5, 9, 13) for features 62, 63
+ // Row 32 -> times (2, 6, 10, 14, 3, 7, 11, 15) for features 0, 1
+ // ...
+ rhs_shmem2[(threadIdx.x>>3)+ threadIdx.y*2][threadIdx.x%8] = make_float2(rhs_pf0.x, rhs_pf0.y);
+ rhs_shmem2[(threadIdx.x>>3)+ threadIdx.y*2+32][threadIdx.x%8] = make_float2(rhs_pf0.z, rhs_pf0.w);
+
+ // Row 0 (time 0) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61)
+ // Row 1 (time 1) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61)
+ // ...
+ // Row 15 (time 15) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61)
+ // Row 16 (time 0) -> features (2, 3), (6, 7), .. (30, 31), (34, 35), .. (62, 63)
+ // ...
+
+ lhs_shmem2[threadIdx.y][threadIdx.x] = make_float2(lhs_pf0.x, lhs_pf0.y);
+ lhs_shmem2[threadIdx.y+16][threadIdx.x] = make_float2(lhs_pf0.z, lhs_pf0.w);
+
+
+#define add_vals(fl1, fl2, fr1, fr2)\
+ results[0].x += fl1.x * fr1.x;\
+ results[0].y += fl1.y * fr1.x;\
+ results[0].z += fl2.x * fr1.x;\
+ results[0].w += fl2.y * fr1.x;\
+\
+ results[1].x += fl1.x * fr1.y;\
+ results[1].y += fl1.y * fr1.y;\
+ results[1].z += fl2.x * fr1.y;\
+ results[1].w += fl2.y * fr1.y;\
+\
+ results[2].x += fl1.x * fr2.x;\
+ results[2].y += fl1.y * fr2.x;\
+ results[2].z += fl2.x * fr2.x;\
+ results[2].w += fl2.y * fr2.x;\
+\
+ results[3].x += fl1.x * fr2.y;\
+ results[3].y += fl1.y * fr2.y;\
+ results[3].z += fl2.x * fr2.y;\
+ results[3].w += fl2.y * fr2.y;\
+
+ __syncthreads();
+
+ // Do the multiplies.
+ #pragma unroll
+ for (int koff = 0; koff < 16; koff ++) {
+ // 32 x threads.
+ float2 fl1 = lhs_shmem2[koff][threadIdx.x];
+ float2 fl2 = lhs_shmem2[koff + 16][threadIdx.x];
+
+ int start_feature = threadIdx.y * 4;
+ float2 fr1 = rhs_shmem2[(start_feature>>1) + 32*((koff%4)/2)][koff/4 + (koff%2)*4];
+ float2 fr2 = rhs_shmem2[(start_feature>>1) + 1 + 32*((koff%4)/2)][koff/4 + (koff%2)*4];
+
+ add_vals(fl1, fl2, fr1, fr2)
+ }
+ __syncthreads();
+ }
+
+#undef prefetch_lhs
+#undef add_vals
+
+ Index horiz_base = threadIdx.y*4+base_n;
+ if (!CHECK_LHS_BOUNDARY && !CHECK_RHS_BOUNDARY) {
+ for (int i = 0; i < 4; i++) {
+ output(lhs_vert, horiz_base + i) = results[i].x;
+ output(lhs_vert + 1, horiz_base + i) = results[i].y;
+ output(lhs_vert + 2, horiz_base + i) = results[i].z;
+ output(lhs_vert + 3, horiz_base + i) = results[i].w;
+ }
+ } else if (!CHECK_RHS_BOUNDARY) {
+ // CHECK LHS
+ if (lhs_vert + 3 < m_size) {
+ for (int i = 0; i < 4; i++) {
+ output(lhs_vert, horiz_base + i) = results[i].x;
+ output(lhs_vert + 1, horiz_base + i) = results[i].y;
+ output(lhs_vert + 2, horiz_base + i) = results[i].z;
+ output(lhs_vert + 3, horiz_base + i) = results[i].w;
+ }
+ } else if (lhs_vert + 2 < m_size) {
+ for (int i = 0; i < 4; i++) {
+ output(lhs_vert, horiz_base + i) = results[i].x;
+ output(lhs_vert + 1, horiz_base + i) = results[i].y;
+ output(lhs_vert + 2, horiz_base + i) = results[i].z;
+ }
+ } else if (lhs_vert + 1 < m_size) {
+ for (int i = 0; i < 4; i++) {
+ output(lhs_vert, horiz_base + i) = results[i].x;
+ output(lhs_vert + 1, horiz_base + i) = results[i].y;
+ }
+ } else if (lhs_vert < m_size) {
+ for (int i = 0; i < 4; i++) {
+ output(lhs_vert, horiz_base + i) = results[i].x;
+ }
+ }
+ } else if (!CHECK_LHS_BOUNDARY) {
+ // CHECK RHS
+ /*
+ int ncols_rem = fminf(n_size- horiz_base, 4);
+ for (int i = 0; i < ncols_rem; i++) {
+ output(lhs_vert, horiz_base + i) = results[i].x;
+ output(lhs_vert + 1, horiz_base + i) = results[i].y;
+ output(lhs_vert + 2, horiz_base + i) = results[i].z;
+ output(lhs_vert + 3, horiz_base + i) = results[i].w;
+ }*/
+ for (int i = 0; i < 4; i++) {
+ if (horiz_base+i < n_size) {
+ output(lhs_vert, horiz_base + i) = results[i].x;
+ output(lhs_vert + 1, horiz_base + i) = results[i].y;
+ output(lhs_vert + 2, horiz_base + i) = results[i].z;
+ output(lhs_vert + 3, horiz_base + i) = results[i].w;
+ }
+ }
+ } else {
+ // CHECK both boundaries.
+ for (int i = 0; i < 4; i++) {
+ if (horiz_base+i < n_size) {
+ if (lhs_vert < m_size)
+ output(lhs_vert, horiz_base + i) = results[i].x;
+ if (lhs_vert + 1 < m_size)
+ output(lhs_vert + 1, horiz_base + i) = results[i].y;
+ if (lhs_vert + 2 < m_size)
+ output(lhs_vert + 2, horiz_base + i) = results[i].z;
+ if (lhs_vert + 3 < m_size)
+ output(lhs_vert + 3, horiz_base + i) = results[i].w;
+ }
+ }
+ }
+}
+
+
+template<typename Index, typename LhsMapper,
+ typename RhsMapper, typename OutputMapper, bool CHECK_LHS_BOUNDARY,
+ bool CHECK_RHS_BOUNDARY>
+__device__ EIGEN_STRONG_INLINE void
+EigenFloatContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs,
+ const OutputMapper output, float2 lhs_shmem2[][32],
+ float2 rhs_shmem2[][8], const Index m_size,
+ const Index n_size, const Index k_size,
+ const Index base_m, const Index base_n) {
+ typedef float Scalar;
+
+ // prefetch registers
+ float4 lhs_pf0, lhs_pf1, lhs_pf2, lhs_pf3;
+ float4 rhs_pf0, rhs_pf1;
+
+ float4 results[8];
+ for (int i=0; i < 8; i++) {
+ results[i].x = results[i].y = results[i].z = results[i].w = 0;
+ }
+
+
+ Index lhs_vert = base_m+threadIdx.x*4+(threadIdx.y%4)*32;
+ for (Index k = 0; k < k_size; k += 32) {
+ lhs_pf0 = internal::pset1<float4>(0);
+ lhs_pf1 = internal::pset1<float4>(0);
+ lhs_pf2 = internal::pset1<float4>(0);
+ lhs_pf3 = internal::pset1<float4>(0);
+
+ rhs_pf0 = internal::pset1<float4>(0);
+ rhs_pf1 = internal::pset1<float4>(0);
+
+ if (!CHECK_LHS_BOUNDARY) {
+ if ((threadIdx.y/4+k+24) < k_size) {
+ lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
+ lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
+ lhs_pf2 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+16));
+ lhs_pf3 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+24));
+ } else if ((threadIdx.y/4+k+16) < k_size) {
+ lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
+ lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
+ lhs_pf2 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+16));
+ } else if ((threadIdx.y/4+k+8) < k_size) {
+ lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
+ lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
+ } else if ((threadIdx.y/4+k) < k_size) {
+ lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
+ }
+ } else {
+ // just CHECK_LHS_BOUNDARY
+ if (lhs_vert + 3 < m_size) {
+ if ((threadIdx.y/4+k+24) < k_size) {
+ lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
+ lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
+ lhs_pf2 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+16));
+ lhs_pf3 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+24));
+ } else if ((threadIdx.y/4+k+16) < k_size) {
+ lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
+ lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
+ lhs_pf2 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+16));
+ } else if ((threadIdx.y/4+k+8) < k_size) {
+ lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
+ lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
+ } else if ((threadIdx.y/4+k) < k_size) {
+ lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
+ }
+ } else if (lhs_vert + 2 < m_size) {
+ if ((threadIdx.y/4+k+24) < k_size) {
+ lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
+ lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k));
+ lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k));
+ lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
+ lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8));
+ lhs_pf1.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+8));
+ lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16));
+ lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16));
+ lhs_pf2.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+16));
+ lhs_pf3.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+24));
+ lhs_pf3.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+24));
+ lhs_pf3.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+24));
+ } else if ((threadIdx.y/4+k+16) < k_size) {
+ lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
+ lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k));
+ lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k));
+ lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
+ lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8));
+ lhs_pf1.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+8));
+ lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16));
+ lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16));
+ lhs_pf2.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+16));
+ } else if ((threadIdx.y/4+k+8) < k_size) {
+ lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
+ lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k));
+ lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k));
+ lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
+ lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8));
+ lhs_pf1.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+8));
+ } else if ((threadIdx.y/4+k) < k_size) {
+ lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
+ lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k));
+ lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k));
+ }
+ } else if (lhs_vert + 1 < m_size) {
+ if ((threadIdx.y/4+k+24) < k_size) {
+ lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
+ lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k));
+ lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
+ lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8));
+ lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16));
+ lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16));
+ lhs_pf3.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+24));
+ lhs_pf3.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+24));
+ } else if ((threadIdx.y/4+k+16) < k_size) {
+ lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
+ lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k));
+ lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
+ lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8));
+ lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16));
+ lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16));
+ } else if ((threadIdx.y/4+k+8) < k_size) {
+ lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
+ lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k));
+ lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
+ lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8));
+ } else if ((threadIdx.y/4+k) < k_size) {
+ lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
+ lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k));
+ }
+ } else if (lhs_vert < m_size) {
+ if ((threadIdx.y/4+k+24) < k_size) {
+ lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
+ lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
+ lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16));
+ lhs_pf3.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+24));
+ } else if ((threadIdx.y/4+k+16) < k_size) {
+ lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
+ lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
+ lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16));
+ } else if ((threadIdx.y/4+k+8) < k_size) {
+ lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
+ lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
+ } else if ((threadIdx.y/4+k) < k_size) {
+ lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
+ }
+ }
+ }
+ __syncthreads();
+ Index rhs_vert = k+threadIdx.x*4;
+ Index rhs_horiz0 = threadIdx.y*2+base_n;
+ Index rhs_horiz1 = threadIdx.y*2+1+base_n;
+ if (!CHECK_RHS_BOUNDARY) {
+ if ((rhs_vert + 3) < k_size) {
+ // just CHECK_RHS_BOUNDARY
+ rhs_pf0 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz0);
+ rhs_pf1 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz1);
+ } else if (rhs_vert + 2 < k_size) {
+ // just CHECK_RHS_BOUNDARY
+ rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
+ rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
+ rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0);
+ rhs_pf1.x = rhs(rhs_vert, rhs_horiz1);
+ rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1);
+ rhs_pf1.z = rhs(rhs_vert + 2, rhs_horiz1);
+ } else if (rhs_vert + 1 < k_size) {
+ rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
+ rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
+ rhs_pf1.x = rhs(rhs_vert, rhs_horiz1);
+ rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1);
+ } else if (rhs_vert < k_size) {
+ rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
+ rhs_pf1.x = rhs(rhs_vert, rhs_horiz1);
+ }
+ } else {
+ if (rhs_horiz1 < n_size) {
+ if ((rhs_vert + 3) < k_size) {
+ // just CHECK_RHS_BOUNDARY
+ rhs_pf0 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz0);
+ rhs_pf1 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz1);
+ } else if (rhs_vert + 2 < k_size) {
+ // just CHECK_RHS_BOUNDARY
+ rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
+ rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
+ rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0);
+ rhs_pf1.x = rhs(rhs_vert, rhs_horiz1);
+ rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1);
+ rhs_pf1.z = rhs(rhs_vert + 2, rhs_horiz1);
+ } else if (k+threadIdx.x*4 + 1 < k_size) {
+ rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
+ rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
+ rhs_pf1.x = rhs(rhs_vert, rhs_horiz1);
+ rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1);
+ } else if (k+threadIdx.x*4 < k_size) {
+ rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
+ rhs_pf1.x = rhs(rhs_vert, rhs_horiz1);
+ }
+ } else if (rhs_horiz0 < n_size) {
+ if ((rhs_vert + 3) < k_size) {
+ // just CHECK_RHS_BOUNDARY
+ rhs_pf0 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz0);
+ } else if ((rhs_vert + 2) < k_size) {
+ // just CHECK_RHS_BOUNDARY
+ rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
+ rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
+ rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0);
+ } else if ((rhs_vert + 1) < k_size) {
+ rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
+ rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
+ } else if (rhs_vert < k_size) {
+ rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
+ }
+ }
+ }
+ __syncthreads();
+ // Loaded. Do computation
+ // Row 0 -> times (0, 4, 8, .. 28) for features 0, 1.
+ // Row 1 -> times (0, 4, 8, .. 28) for features 2, 3.
+ // ..
+ // Row 31 -> times (0, 4, 8, .. 28) for features 62, 63
+ rhs_shmem2[threadIdx.y][threadIdx.x] = make_float2(rhs_pf0.x, rhs_pf1.x);
+ // Row 32 -> times (1, 5, 9, .. 29) for features 0, 1.
+ // Row 33 -> times (1, 5, 9, .. 29) for features 2, 3.
+ // ..
+ rhs_shmem2[threadIdx.y+32][threadIdx.x] = make_float2(rhs_pf0.y, rhs_pf1.y);
+ // Row 64 -> times (2, 6, 10, .. 30) for features 0, 1.
+ // Row 65 -> times (2, 6, 10, .. 30) for features 2, 3.
+ rhs_shmem2[threadIdx.y+64][threadIdx.x] = make_float2(rhs_pf0.z, rhs_pf1.z);
+ // Row 96 -> times (3, 7, 11, .. 31) for features 0, 1.
+ // Row 97 -> times (3, 7, 11, .. 31) for features 2, 3.
+ rhs_shmem2[threadIdx.y+96][threadIdx.x] = make_float2(rhs_pf0.w, rhs_pf1.w);
+
+ // LHS.
+ // Row 0 (time 0) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61) .. (124, 125)
+ // Row 1 (time 1) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61) .. (124, 125)
+ // ...
+ // Row 8 (time 0) -> features (2, 3), (6, 7), .. (30, 31), (34, 35), .. (62, 63) .. (126, 127)
+ // Row 15 (time 7) -> features (2, 3), (6, 7), .. (30, 31), (34, 35), .. (62, 63) .. (126, 127)
+
+
+#define add_vals(a_feat1, a_feat2, f1, f2, f3, f4)\
+ results[0].x += a_feat1.x * f1.x;\
+ results[1].x += a_feat1.x * f1.y;\
+ results[2].x += a_feat1.x * f2.x;\
+ results[3].x += a_feat1.x * f2.y;\
+ results[4].x += a_feat1.x * f3.x;\
+ results[5].x += a_feat1.x * f3.y;\
+ results[6].x += a_feat1.x * f4.x;\
+ results[7].x += a_feat1.x * f4.y;\
+\
+ results[0].y += a_feat1.y * f1.x;\
+ results[1].y += a_feat1.y * f1.y;\
+ results[2].y += a_feat1.y * f2.x;\
+ results[3].y += a_feat1.y * f2.y;\
+ results[4].y += a_feat1.y * f3.x;\
+ results[5].y += a_feat1.y * f3.y;\
+ results[6].y += a_feat1.y * f4.x;\
+ results[7].y += a_feat1.y * f4.y;\
+\
+ results[0].z += a_feat2.x * f1.x;\
+ results[1].z += a_feat2.x * f1.y;\
+ results[2].z += a_feat2.x * f2.x;\
+ results[3].z += a_feat2.x * f2.y;\
+ results[4].z += a_feat2.x * f3.x;\
+ results[5].z += a_feat2.x * f3.y;\
+ results[6].z += a_feat2.x * f4.x;\
+ results[7].z += a_feat2.x * f4.y;\
+\
+ results[0].w += a_feat2.y * f1.x;\
+ results[1].w += a_feat2.y * f1.y;\
+ results[2].w += a_feat2.y * f2.x;\
+ results[3].w += a_feat2.y * f2.y;\
+ results[4].w += a_feat2.y * f3.x;\
+ results[5].w += a_feat2.y * f3.y;\
+ results[6].w += a_feat2.y * f4.x;\
+ results[7].w += a_feat2.y * f4.y;\
+
+ lhs_shmem2[threadIdx.y/4][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf0.x, lhs_pf0.y);
+ lhs_shmem2[threadIdx.y/4+8][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf1.x, lhs_pf1.y);
+ lhs_shmem2[threadIdx.y/4+16][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf2.x, lhs_pf2.y);
+ lhs_shmem2[threadIdx.y/4+24][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf3.x, lhs_pf3.y);
+
+ lhs_shmem2[threadIdx.y/4 + 32][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf0.z, lhs_pf0.w);
+ lhs_shmem2[threadIdx.y/4 + 40][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf1.z, lhs_pf1.w);
+ lhs_shmem2[threadIdx.y/4 + 48][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf2.z, lhs_pf2.w);
+ lhs_shmem2[threadIdx.y/4 + 56][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf3.z, lhs_pf3.w);
+
+ __syncthreads();
+
+ // Do the multiplies.
+ #pragma unroll
+ for (int koff = 0; koff < 32; koff ++) {
+ float2 a3 = lhs_shmem2[koff][threadIdx.x + (threadIdx.y % 4) * 8];
+ float2 a4 = lhs_shmem2[koff + 32][threadIdx.x + (threadIdx.y % 4) * 8];
+
+ // first feature is at (threadIdx.y/4) * 8 last is at start + 8.
+ int start_feature = (threadIdx.y / 4) * 8;
+
+ float2 br1 = rhs_shmem2[start_feature/2 + (koff % 4) * 32][koff/4];
+ float2 br2 = rhs_shmem2[start_feature/2 + 1 + (koff % 4) * 32][koff/4];
+ float2 br3 = rhs_shmem2[start_feature/2 + 2 + (koff % 4) * 32][koff/4];
+ float2 br4 = rhs_shmem2[start_feature/2 + 3 + (koff % 4) * 32][koff/4];
+
+ add_vals(a3, a4, br1, br2, br3, br4)
+ }
+ __syncthreads();
+ } // end loop over k
+
+
+ __syncthreads();
+ Index horiz_base = (threadIdx.y/4)*8+base_n;
+ if (!CHECK_LHS_BOUNDARY && !CHECK_RHS_BOUNDARY) {
+ for (int i = 0; i < 8; i++) {
+ output(lhs_vert, horiz_base + i) = results[i].x;
+ output(lhs_vert + 1, horiz_base + i) = results[i].y;
+ output(lhs_vert + 2, horiz_base + i) = results[i].z;
+ output(lhs_vert + 3, horiz_base + i) = results[i].w;
+ }
+ } else if (!CHECK_RHS_BOUNDARY) {
+ if (lhs_vert + 3 < m_size) {
+ for (int i = 0; i < 8; i++) {
+ output(lhs_vert, horiz_base + i) = results[i].x;
+ output(lhs_vert + 1, horiz_base + i) = results[i].y;
+ output(lhs_vert + 2, horiz_base + i) = results[i].z;
+ output(lhs_vert + 3, horiz_base + i) = results[i].w;
+ }
+ } else if (lhs_vert + 2 < m_size) {
+ for (int i = 0; i < 8; i++) {
+ output(lhs_vert, horiz_base + i) = results[i].x;
+ output(lhs_vert + 1, horiz_base + i) = results[i].y;
+ output(lhs_vert + 2, horiz_base + i) = results[i].z;
+ }
+ } else if (lhs_vert + 1 < m_size) {
+ for (int i = 0; i < 8; i++) {
+ output(lhs_vert, horiz_base + i) = results[i].x;
+ output(lhs_vert + 1, horiz_base + i) = results[i].y;
+ }
+ } else if (lhs_vert < m_size) {
+ for (int i = 0; i < 8; i++) {
+ output(lhs_vert, horiz_base + i) = results[i].x;
+ }
+ }
+ } else if (!CHECK_LHS_BOUNDARY) {
+ // CHECK BOUNDARY_B
+ for (int i = 0; i < 8; i++) {
+ if (horiz_base + i < n_size) {
+ output(lhs_vert, horiz_base + i) = results[i].x;
+ output(lhs_vert + 1, horiz_base + i) = results[i].y;
+ output(lhs_vert + 2, horiz_base + i) = results[i].z;
+ output(lhs_vert + 3, horiz_base + i) = results[i].w;
+ }
+ }
+ } else {
+ // CHECK both boundaries.
+ for (int i = 0; i < 8; i++) {
+ if (horiz_base + i < n_size) {
+ if (lhs_vert < m_size)
+ output(lhs_vert, horiz_base + i) = results[i].x;
+ if (lhs_vert + 1 < m_size)
+ output(lhs_vert + 1, horiz_base + i) = results[i].y;
+ if (lhs_vert + 2 < m_size)
+ output(lhs_vert + 2, horiz_base + i) = results[i].z;
+ if (lhs_vert + 3 < m_size)
+ output(lhs_vert + 3, horiz_base + i) = results[i].w;
+ }
+ }
+ }
+}
+
+
+template<typename Index, typename LhsMapper,
+ typename RhsMapper, typename OutputMapper>
+__global__ void
+__launch_bounds__(256)
+EigenFloatContractionKernel(const LhsMapper lhs, const RhsMapper rhs,
+ const OutputMapper output,
+ const Index m_size, const Index n_size, const Index k_size) {
+ __shared__ float2 lhs_shmem[64*32];
+ __shared__ float2 rhs_shmem[128*8];
+
+ typedef float2 LHS_MEM[64][32];
+ typedef float2 RHS_MEM[128][8];
+
+ typedef float2 LHS_MEM16x16[32][16];
+ typedef float2 RHS_MEM16x16[64][8];
+
+ const Index m_block_idx = blockIdx.x;
+ const Index n_block_idx = blockIdx.y;
+
+ const Index base_m = 128 * m_block_idx;
+ const Index base_n = 64 * n_block_idx;
+
+ bool check_rhs = (base_n + 63) >= n_size;
+ bool check_lhs128 = (base_m + 127) >= m_size;
+
+ if (!check_rhs) {
+ if (!check_lhs128) {
+ // >= 128 rows left
+ EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, false, false>(
+ lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n);
+ } else {
+ EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, true, false>(
+ lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n);
+ }
+ } else {
+ if (!check_lhs128) {
+ // >= 128 rows left
+ EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, false, true>(
+ lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n);
+ } else {
+ EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, true, true>(
+ lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n);
+ }
+ }
+}
+
+template<typename Index, typename LhsMapper,
+ typename RhsMapper, typename OutputMapper>
+__global__ void
+__launch_bounds__(256)
+EigenFloatContractionKernel16x16(const LhsMapper lhs, const RhsMapper rhs,
+ const OutputMapper output,
+ const Index m_size, const Index n_size, const Index k_size) {
+ __shared__ float2 lhs_shmem[32][16];
+ __shared__ float2 rhs_shmem[64][8];
+
+ const Index m_block_idx = blockIdx.x;
+ const Index n_block_idx = blockIdx.y;
+
+ const Index base_m = 64 * m_block_idx;
+ const Index base_n = 64 * n_block_idx;
+
+ if (base_m + 63 < m_size) {
+ if (base_n + 63 < n_size) {
+ EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, false, false>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n);
+ } else {
+ EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, false, true>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n);
+ }
+ } else {
+ if (base_n + 63 < n_size) {
+ EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, true, false>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n);
+ } else {
+ EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, true, true>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n);
+ }
+ }
+}
+
+
+template<typename Indices, typename LeftArgType, typename RightArgType>
+struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, GpuDevice> :
+ public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, GpuDevice> > {
+
+ typedef GpuDevice Device;
+
+ typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
+ typedef TensorContractionEvaluatorBase<Self> Base;
+
+ typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
+ typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
+ typedef typename XprType::Index Index;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, GpuDevice>::type PacketReturnType;
+
+ enum {
+ Layout = TensorEvaluator<LeftArgType, Device>::Layout,
+ };
+
+ // Most of the code is assuming that both input tensors are ColMajor. If the
+ // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
+ // If we want to compute A * B = C, where A is LHS and B is RHS, the code
+ // will pretend B is LHS and A is RHS.
+ typedef typename internal::conditional<
+ static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
+ typedef typename internal::conditional<
+ static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
+
+ static const int LDims =
+ internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
+ static const int RDims =
+ internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
+ static const int ContractDims = internal::array_size<Indices>::value;
+
+ typedef array<Index, LDims> left_dim_mapper_t;
+ typedef array<Index, RDims> right_dim_mapper_t;
+
+ typedef array<Index, ContractDims> contract_t;
+ typedef array<Index, LDims - ContractDims> left_nocontract_t;
+ typedef array<Index, RDims - ContractDims> right_nocontract_t;
+
+ static const int NumDims = LDims + RDims - 2 * ContractDims;
+
+ typedef DSizes<Index, NumDims> Dimensions;
+
+ // typedefs needed in evalTo
+ typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
+ typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
+
+ typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
+ typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
+
+ typedef typename LeftEvaluator::Dimensions LeftDimensions;
+ typedef typename RightEvaluator::Dimensions RightDimensions;
+
+ EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) :
+ Base(op, device) {}
+
+ // We need to redefine this method to make nvcc happy
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
+ this->m_leftImpl.evalSubExprsIfNeeded(NULL);
+ this->m_rightImpl.evalSubExprsIfNeeded(NULL);
+ if (data) {
+ evalTo(data);
+ return false;
+ } else {
+ this->m_result = static_cast<Scalar *>(this->m_device.allocate(this->dimensions().TotalSize() * sizeof(Scalar)));
+ evalTo(this->m_result);
+ return true;
+ }
+ }
+
+ void evalTo(Scalar* buffer) const {
+ if (this->m_lhs_inner_dim_contiguous) {
+ if (this->m_rhs_inner_dim_contiguous) {
+ if (this->m_rhs_inner_dim_reordered) {
+ evalTyped<true, true, true, Unaligned>(buffer);
+ }
+ else {
+ evalTyped<true, true, false, Unaligned>(buffer);
+ }
+ }
+ else {
+ if (this->m_rhs_inner_dim_reordered) {
+ evalTyped<true, false, true, Unaligned>(buffer);
+ }
+ else {
+ evalTyped<true, false, false, Unaligned>(buffer);
+ }
+ }
+ }
+ else {
+ if (this->m_rhs_inner_dim_contiguous) {
+ if (this->m_rhs_inner_dim_reordered) {
+ evalTyped<false, true, true, Unaligned>(buffer);
+ }
+ else {
+ evalTyped<false, true, false, Unaligned>(buffer);
+ }
+ }
+ else {
+ if (this->m_rhs_inner_dim_reordered) {
+ evalTyped<false, false, true, Unaligned>(buffer);
+ }
+ else {
+ evalTyped<false, false, false, Unaligned>(buffer);
+ }
+ }
+ }
+ }
+
+ template <typename LhsScalar, typename RhsScalar, typename Index, typename LhsMapper, typename RhsMapper, typename OutputMapper> struct LaunchKernels {
+ static void Run(const LhsMapper& lhs, const RhsMapper& rhs, const OutputMapper& output, Index m, Index n, Index k, const GpuDevice& device) {
+ const Index m_blocks = (m + 63) / 64;
+ const Index n_blocks = (n + 63) / 64;
+ const dim3 num_blocks(m_blocks, n_blocks, 1);
+ const dim3 block_size(8, 8, 8);
+ LAUNCH_CUDA_KERNEL((EigenContractionKernel<Scalar, Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k);
+ }
+ };
+
+ template <typename Index, typename LhsMapper, typename RhsMapper, typename OutputMapper> struct LaunchKernels<float, float, Index, LhsMapper, RhsMapper, OutputMapper> {
+ static void Run(const LhsMapper& lhs, const RhsMapper& rhs, const OutputMapper& output, Index m, Index n, Index k, const GpuDevice& device) {
+ if (m < 768 || n < 768) {
+ const Index m_blocks = (m + 63) / 64;
+ const Index n_blocks = (n + 63) / 64;
+ const dim3 num_blocks(m_blocks, n_blocks, 1);
+ const dim3 block_size(16, 16, 1);
+ LAUNCH_CUDA_KERNEL((EigenFloatContractionKernel16x16<Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k);
+ } else {
+ const Index m_blocks = (m + 127) / 128;
+ const Index n_blocks = (n + 63) / 64;
+ const dim3 num_blocks(m_blocks, n_blocks, 1);
+ const dim3 block_size(8, 32, 1);
+ LAUNCH_CUDA_KERNEL((EigenFloatContractionKernel<Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k);
+ }
+ }
+ };
+
+ template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
+ void evalTyped(Scalar* buffer) const {
+ // columns in left side, rows in right side
+ const Index k = this->m_k_size;
+ EIGEN_UNUSED_VARIABLE(k)
+
+ // rows in left side
+ const Index m = this->m_i_size;
+
+ // columns in right side
+ const Index n = this->m_j_size;
+
+ // zero out the result buffer (which must be of size at least m * n * sizeof(Scalar)
+ this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
+
+ typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
+ LeftEvaluator, left_nocontract_t,
+ contract_t, 4,
+ lhs_inner_dim_contiguous,
+ false, Unaligned> LhsMapper;
+
+ typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
+ RightEvaluator, right_nocontract_t,
+ contract_t, 4,
+ rhs_inner_dim_contiguous,
+ rhs_inner_dim_reordered, Unaligned> RhsMapper;
+
+ typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
+
+
+ // initialize data mappers
+ LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
+ this->m_left_contracting_strides, this->m_k_strides);
+
+ RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
+ this->m_right_contracting_strides, this->m_k_strides);
+
+ OutputMapper output(buffer, m);
+
+ setCudaSharedMemConfig(cudaSharedMemBankSizeEightByte);
+ LaunchKernels<LhsScalar, RhsScalar, Index, LhsMapper, RhsMapper, OutputMapper>::Run(lhs, rhs, output, m, n, k, this->m_device);
+ }
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_USE_GPU and __CUDACC__
+#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_CUDA_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h b/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h
new file mode 100644
index 000000000..9b2cb3ff6
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h
@@ -0,0 +1,467 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H
+#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H
+
+namespace Eigen {
+
+namespace internal {
+
+enum {
+ Rhs = 0,
+ Lhs = 1
+};
+
+/*
+ * Implementation of the Eigen blas_data_mapper class for tensors.
+ */
+
+template <typename Tensor, bool HasRawAccess> struct CoeffLoader {
+ enum {
+ DirectOffsets = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffLoader(const Tensor& tensor) : m_tensor(tensor) { }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index) {
+ eigen_assert(false && "unsupported");
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename Tensor::Scalar coeff(typename Tensor::Index index) const { return m_tensor.coeff(index); }
+
+ template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ typename Tensor::PacketReturnType packet(typename Tensor::Index index) const
+ {
+ return m_tensor.template packet<LoadMode>(index);
+ }
+
+
+ private:
+ const Tensor m_tensor;
+};
+
+template <typename Tensor> struct CoeffLoader<Tensor, true> {
+ enum {
+ DirectOffsets = true
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffLoader(const Tensor& tensor) : m_data(tensor.data()) {}
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index offset) {
+ m_data += offset;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename Tensor::Scalar coeff(typename Tensor::Index index) const { return loadConstant(m_data+index); }
+
+ template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ typename Tensor::PacketReturnType packet(typename Tensor::Index index) const
+ {
+ return internal::ploadt_ro<typename Tensor::PacketReturnType, LoadMode>(m_data + index);
+ }
+ private:
+ typedef typename Tensor::Scalar Scalar;
+ const Scalar* m_data;
+};
+
+template<typename Scalar, typename Index, int side,
+ typename Tensor,
+ typename nocontract_t, typename contract_t,
+ int packet_size, bool inner_dim_contiguous, int Alignment>
+class SimpleTensorContractionMapper {
+ public:
+ EIGEN_DEVICE_FUNC
+ SimpleTensorContractionMapper(const Tensor& tensor,
+ const nocontract_t& nocontract_strides,
+ const nocontract_t& ij_strides,
+ const contract_t& contract_strides,
+ const contract_t& k_strides) :
+ m_tensor(tensor),
+ m_nocontract_strides(nocontract_strides),
+ m_ij_strides(ij_strides),
+ m_contract_strides(contract_strides),
+ m_k_strides(k_strides) { }
+
+ enum {
+ DirectOffsets = CoeffLoader<Tensor, Tensor::RawAccess>::DirectOffsets
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index offset) {
+ m_tensor.offsetBuffer(offset);
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE void prefetch(Index /*i*/) { }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar operator()(Index row) const {
+ // column major assumption
+ return operator()(row, 0);
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar operator()(Index row, Index col) const {
+ return m_tensor.coeff(computeIndex(row, col));
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Index computeIndex(Index row, Index col) const {
+ const bool left = (side == Lhs);
+ Index nocontract_val = left ? row : col;
+ Index linidx = 0;
+ for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) {
+ const Index idx = nocontract_val / m_ij_strides[i];
+ linidx += idx * m_nocontract_strides[i];
+ nocontract_val -= idx * m_ij_strides[i];
+ }
+ if (array_size<typename Tensor::Dimensions>::value > array_size<contract_t>::value) {
+ if (side == Lhs && inner_dim_contiguous) {
+ eigen_assert(m_nocontract_strides[0] == 1);
+ linidx += nocontract_val;
+ } else {
+ linidx += nocontract_val * m_nocontract_strides[0];
+ }
+ }
+
+ Index contract_val = left ? col : row;
+ if(array_size<contract_t>::value > 0) {
+ for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) {
+ const Index idx = contract_val / m_k_strides[i];
+ linidx += idx * m_contract_strides[i];
+ contract_val -= idx * m_k_strides[i];
+ }
+
+ if (side == Rhs && inner_dim_contiguous) {
+ eigen_assert(m_contract_strides[0] == 1);
+ linidx += contract_val;
+ } else {
+ linidx += contract_val * m_contract_strides[0];
+ }
+ }
+
+ return linidx;
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE IndexPair<Index> computeIndexPair(Index row, Index col, const Index distance) const {
+ const bool left = (side == Lhs);
+ Index nocontract_val[2] = {left ? row : col, left ? row + distance : col};
+ Index linidx[2] = {0, 0};
+ if (array_size<typename Tensor::Dimensions>::value > array_size<contract_t>::value) {
+ for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) {
+ const Index idx0 = nocontract_val[0] / m_ij_strides[i];
+ const Index idx1 = nocontract_val[1] / m_ij_strides[i];
+ linidx[0] += idx0 * m_nocontract_strides[i];
+ linidx[1] += idx1 * m_nocontract_strides[i];
+ nocontract_val[0] -= idx0 * m_ij_strides[i];
+ nocontract_val[1] -= idx1 * m_ij_strides[i];
+ }
+ if (side == Lhs && inner_dim_contiguous) {
+ eigen_assert(m_nocontract_strides[0] == 1);
+ linidx[0] += nocontract_val[0];
+ linidx[1] += nocontract_val[1];
+ } else {
+ linidx[0] += nocontract_val[0] * m_nocontract_strides[0];
+ linidx[1] += nocontract_val[1] * m_nocontract_strides[0];
+ }
+ }
+
+ Index contract_val[2] = {left ? col : row, left ? col : row + distance};
+ if (array_size<contract_t>::value> 0) {
+ for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) {
+ const Index idx0 = contract_val[0] / m_k_strides[i];
+ const Index idx1 = contract_val[1] / m_k_strides[i];
+ linidx[0] += idx0 * m_contract_strides[i];
+ linidx[1] += idx1 * m_contract_strides[i];
+ contract_val[0] -= idx0 * m_k_strides[i];
+ contract_val[1] -= idx1 * m_k_strides[i];
+ }
+
+ if (side == Rhs && inner_dim_contiguous) {
+ eigen_assert(m_contract_strides[0] == 1);
+ linidx[0] += contract_val[0];
+ linidx[1] += contract_val[1];
+ } else {
+ linidx[0] += contract_val[0] * m_contract_strides[0];
+ linidx[1] += contract_val[1] * m_contract_strides[0];
+ }
+ }
+ return IndexPair<Index>(linidx[0], linidx[1]);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index firstAligned(Index size) const {
+ // Only claim alignment when we can compute the actual stride (ie when we're
+ // dealing with the lhs with inner_dim_contiguous. This is because the
+ // matrix-vector product relies on the stride when dealing with aligned inputs.
+ return (Alignment == Aligned) && (side == Lhs) && inner_dim_contiguous ? 0 : size;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index stride() const {
+ return ((side == Lhs) && inner_dim_contiguous && array_size<contract_t>::value > 0) ? m_contract_strides[0] : 1;
+ }
+
+ protected:
+ CoeffLoader<Tensor, Tensor::RawAccess> m_tensor;
+ const nocontract_t m_nocontract_strides;
+ const nocontract_t m_ij_strides;
+ const contract_t m_contract_strides;
+ const contract_t m_k_strides;
+};
+
+
+template<typename Scalar, typename Index, int side,
+ typename Tensor,
+ typename nocontract_t, typename contract_t,
+ int packet_size, bool inner_dim_contiguous,
+ bool inner_dim_reordered, int Alignment>
+class BaseTensorContractionMapper : public SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, Alignment>
+{
+ public:
+ typedef SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, Alignment> ParentMapper;
+
+ EIGEN_DEVICE_FUNC
+ BaseTensorContractionMapper(const Tensor& tensor,
+ const nocontract_t& nocontract_strides,
+ const nocontract_t& ij_strides,
+ const contract_t& contract_strides,
+ const contract_t& k_strides) :
+ ParentMapper(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { }
+
+ typedef typename Tensor::PacketReturnType Packet;
+ typedef typename unpacket_traits<Packet>::half HalfPacket;
+
+ template <int AlignmentType>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Packet loadPacket(Index i, Index j) const {
+ // whole method makes column major assumption
+
+ // don't need to add offsets for now (because operator handles that)
+ // current code assumes packet size must be a multiple of 2
+ EIGEN_STATIC_ASSERT(packet_size % 2 == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
+
+ if (Tensor::PacketAccess && inner_dim_contiguous && !inner_dim_reordered) {
+ const Index index = this->computeIndex(i, j);
+ eigen_assert(this->computeIndex(i+packet_size-1, j) == index + packet_size-1);
+ return this->m_tensor.template packet<AlignmentType>(index);
+ }
+
+ const IndexPair<Index> indexPair = this->computeIndexPair(i, j, packet_size - 1);
+ const Index first = indexPair.first;
+ const Index last = indexPair.second;
+
+ // We can always do optimized packet reads from left hand side right now, because
+ // the vertical matrix dimension on the left hand side is never contracting.
+ // On the right hand side we need to check if the contracting dimensions may have
+ // been shuffled first.
+ if (Tensor::PacketAccess &&
+ (side == Lhs || internal::array_size<contract_t>::value <= 1 || !inner_dim_reordered) &&
+ (last - first) == (packet_size - 1)) {
+
+ return this->m_tensor.template packet<AlignmentType>(first);
+ }
+
+ EIGEN_ALIGN_MAX Scalar data[packet_size];
+
+ data[0] = this->m_tensor.coeff(first);
+ for (Index k = 1; k < packet_size - 1; k += 2) {
+ const IndexPair<Index> internal_pair = this->computeIndexPair(i + k, j, 1);
+ data[k] = this->m_tensor.coeff(internal_pair.first);
+ data[k + 1] = this->m_tensor.coeff(internal_pair.second);
+ }
+ data[packet_size - 1] = this->m_tensor.coeff(last);
+
+ return pload<Packet>(data);
+ }
+
+ template <int AlignmentType>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE HalfPacket loadHalfPacket(Index i, Index j) const {
+ // whole method makes column major assumption
+
+ // don't need to add offsets for now (because operator handles that)
+ const Index half_packet_size = unpacket_traits<HalfPacket>::size;
+ if (half_packet_size == packet_size) {
+ return loadPacket<AlignmentType>(i, j);
+ }
+ EIGEN_ALIGN_MAX Scalar data[half_packet_size];
+ for (Index k = 0; k < half_packet_size; k++) {
+ data[k] = operator()(i + k, j);
+ }
+ return pload<HalfPacket>(data);
+ }
+};
+
+
+template<typename Scalar, typename Index, int side,
+ typename Tensor,
+ typename nocontract_t, typename contract_t,
+ bool inner_dim_contiguous,
+ bool inner_dim_reordered, int Alignment>
+class BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, inner_dim_reordered, Alignment> : public SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, Alignment>
+{
+ public:
+ typedef SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, Alignment> ParentMapper;
+
+ EIGEN_DEVICE_FUNC
+ BaseTensorContractionMapper(const Tensor& tensor,
+ const nocontract_t& nocontract_strides,
+ const nocontract_t& ij_strides,
+ const contract_t& contract_strides,
+ const contract_t& k_strides) :
+ ParentMapper(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { }
+
+ typedef typename Tensor::PacketReturnType Packet;
+ template <int> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Packet loadPacket(Index i, Index j) const {
+ EIGEN_ALIGN_MAX Scalar data[1];
+ data[0] = this->m_tensor.coeff(this->computeIndex(i, j));
+ return pload<typename Tensor::PacketReturnType>(data);
+ }
+ template <int> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Packet loadHalfPacket(Index i, Index j) const {
+ return loadPacket(i, j);
+ }
+};
+
+
+template<typename Scalar, typename Index, int side,
+ typename Tensor,
+ typename nocontract_t, typename contract_t,
+ int packet_size,
+ bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment>
+class TensorContractionSubMapper {
+ public:
+ typedef typename Tensor::PacketReturnType Packet;
+ typedef typename unpacket_traits<Packet>::half HalfPacket;
+
+ typedef BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> ParentMapper;
+ typedef TensorContractionSubMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> Self;
+ typedef Self LinearMapper;
+
+ enum {
+ // We can use direct offsets iff the parent mapper supports then and we can compute the strides.
+ // TODO: we should also enable direct offsets for the Rhs case.
+ UseDirectOffsets = ParentMapper::DirectOffsets && (side == Lhs) && inner_dim_contiguous && (array_size<contract_t>::value > 0)
+ };
+
+ EIGEN_DEVICE_FUNC TensorContractionSubMapper(const ParentMapper& base_mapper, Index vert_offset, Index horiz_offset)
+ : m_base_mapper(base_mapper), m_vert_offset(vert_offset), m_horiz_offset(horiz_offset) {
+ // Bake the offsets into the buffer used by the base mapper whenever possible. This avoids the need to recompute
+ // this offset every time we attempt to access a coefficient.
+ if (UseDirectOffsets) {
+ Index stride = m_base_mapper.stride();
+ m_base_mapper.offsetBuffer(vert_offset + horiz_offset * stride);
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const {
+ if (UseDirectOffsets) {
+ return m_base_mapper(i, 0);
+ }
+ return m_base_mapper(i + m_vert_offset, m_horiz_offset);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i, Index j) const {
+ if (UseDirectOffsets) {
+ return m_base_mapper(i, j);
+ }
+ return m_base_mapper(i + m_vert_offset, j + m_horiz_offset);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i) const {
+ if (UseDirectOffsets) {
+ return m_base_mapper.template loadPacket<Alignment>(i, 0);
+ }
+ return m_base_mapper.template loadPacket<Alignment>(i + m_vert_offset, m_horiz_offset);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i, Index j) const {
+ if (UseDirectOffsets) {
+ return m_base_mapper.template loadPacket<Alignment>(i, j);
+ }
+ return m_base_mapper.template loadPacket<Alignment>(i + m_vert_offset, j + m_horiz_offset);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HalfPacket loadHalfPacket(Index i) const {
+ if (UseDirectOffsets) {
+ return m_base_mapper.template loadHalfPacket<Alignment>(i, 0);
+ }
+ return m_base_mapper.template loadHalfPacket<Alignment>(i + m_vert_offset, m_horiz_offset);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, Packet p) const {
+ if (UseDirectOffsets) {
+ m_base_mapper.storePacket(i, 0, p);
+ }
+ m_base_mapper.storePacket(i + m_vert_offset, m_horiz_offset, p);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const {
+ if (UseDirectOffsets) {
+ return LinearMapper(m_base_mapper, i, j);
+ }
+ return LinearMapper(m_base_mapper, i + m_vert_offset, j + m_horiz_offset);
+ }
+
+ template <typename PacketT, int AlignmentType>
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i) const {
+ EIGEN_STATIC_ASSERT((internal::is_same<PacketT, Packet>::value), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ const int ActualAlignment = (AlignmentType == Aligned) && (Alignment == Aligned) ? Aligned : Unaligned;
+ if (UseDirectOffsets) {
+ return m_base_mapper.template loadPacket<ActualAlignment>(i, 0);
+ }
+ return m_base_mapper.template loadPacket<ActualAlignment>(i + m_vert_offset, m_horiz_offset);
+ }
+
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool aligned(Index) const {
+ return false;
+ }
+
+ private:
+ ParentMapper m_base_mapper;
+ const Index m_vert_offset;
+ const Index m_horiz_offset;
+};
+
+
+template<typename Scalar_, typename Index, int side,
+ typename Tensor,
+ typename nocontract_t, typename contract_t,
+ int packet_size,
+ bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment>
+class TensorContractionInputMapper
+ : public BaseTensorContractionMapper<Scalar_, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> {
+
+ public:
+ typedef Scalar_ Scalar;
+ typedef BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> Base;
+ typedef TensorContractionSubMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> SubMapper;
+ typedef SubMapper VectorMapper;
+
+ EIGEN_DEVICE_FUNC TensorContractionInputMapper(const Tensor& tensor,
+ const nocontract_t& nocontract_strides,
+ const nocontract_t& ij_strides,
+ const contract_t& contract_strides,
+ const contract_t& k_strides)
+ : Base(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE SubMapper getSubMapper(Index i, Index j) const {
+ return SubMapper(*this, i, j);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE VectorMapper getVectorMapper(Index i, Index j) const {
+ return VectorMapper(*this, i, j);
+ }
+};
+
+
+
+} // end namespace internal
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h b/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h
new file mode 100644
index 000000000..ee16cde9b
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h
@@ -0,0 +1,1052 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
+#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
+
+// evaluator for thread pool device
+#ifdef EIGEN_USE_THREADS
+
+namespace Eigen {
+
+#ifdef EIGEN_USE_SIMPLE_THREAD_POOL
+namespace internal {
+
+template<typename LhsScalar, typename LhsMapper, typename Index>
+struct packLhsArg {
+ LhsScalar* blockA;
+ const LhsMapper& lhs;
+ const Index m_start;
+ const Index k_start;
+ const Index mc;
+ const Index kc;
+};
+
+template<typename LhsScalar, typename RhsScalar, typename RhsMapper, typename OutputMapper, typename Index>
+struct packRhsAndKernelArg {
+ const MaxSizeVector<LhsScalar*>* blockAs;
+ RhsScalar* blockB;
+ const RhsMapper& rhs;
+ OutputMapper& output;
+ const Index m;
+ const Index k;
+ const Index n;
+ const Index mc;
+ const Index kc;
+ const Index nc;
+ const Index num_threads;
+ const Index num_blockAs;
+ const Index max_m;
+ const Index k_block_idx;
+ const Index m_block_idx;
+ const Index n_block_idx;
+ const Index m_blocks;
+ const Index n_blocks;
+ MaxSizeVector<Notification*>* kernel_notifications;
+ const MaxSizeVector<Notification*>* lhs_notifications;
+ const bool need_to_pack;
+};
+
+} // end namespace internal
+#endif // EIGEN_USE_SIMPLE_THREAD_POOL
+
+template<typename Indices, typename LeftArgType, typename RightArgType>
+struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> :
+ public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> > {
+
+ typedef ThreadPoolDevice Device;
+
+ typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
+ typedef TensorContractionEvaluatorBase<Self> Base;
+
+ typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
+ typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
+ typedef typename XprType::Index Index;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+
+ enum {
+ Layout = TensorEvaluator<LeftArgType, Device>::Layout,
+ };
+
+ // Most of the code is assuming that both input tensors are ColMajor. If the
+ // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
+ // If we want to compute A * B = C, where A is LHS and B is RHS, the code
+ // will pretend B is LHS and A is RHS.
+ typedef typename internal::conditional<
+ static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
+ typedef typename internal::conditional<
+ static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
+
+ static const int LDims =
+ internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
+ static const int RDims =
+ internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
+ static const int ContractDims = internal::array_size<Indices>::value;
+
+ typedef array<Index, LDims> left_dim_mapper_t;
+ typedef array<Index, RDims> right_dim_mapper_t;
+
+ typedef array<Index, ContractDims> contract_t;
+ typedef array<Index, LDims - ContractDims> left_nocontract_t;
+ typedef array<Index, RDims - ContractDims> right_nocontract_t;
+
+ static const int NumDims = LDims + RDims - 2 * ContractDims;
+
+ typedef DSizes<Index, NumDims> Dimensions;
+
+ // typedefs needed in evalTo
+ typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
+ typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
+ typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
+
+ typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
+ typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
+
+ TensorEvaluator(const XprType& op, const Device& device) :
+ Base(op, device) {}
+
+#ifndef EIGEN_USE_SIMPLE_THREAD_POOL
+ template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
+ bool rhs_inner_dim_reordered, int Alignment>
+ void evalProduct(Scalar* buffer) const {
+ typedef
+ typename internal::remove_const<typename EvalLeftArgType::Scalar>::type
+ LhsScalar;
+ typedef
+ typename internal::remove_const<typename EvalRightArgType::Scalar>::type
+ RhsScalar;
+ typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
+ typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
+ typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
+ typedef internal::TensorContractionInputMapper<
+ LhsScalar, Index, internal::Lhs, LeftEvaluator, left_nocontract_t,
+ contract_t, internal::packet_traits<LhsScalar>::size,
+ lhs_inner_dim_contiguous, false, Unaligned>
+ LhsMapper;
+ typedef internal::TensorContractionInputMapper<
+ RhsScalar, Index, internal::Rhs, RightEvaluator, right_nocontract_t,
+ contract_t, internal::packet_traits<RhsScalar>::size,
+ rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Unaligned>
+ RhsMapper;
+ typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
+ typedef internal::gemm_pack_lhs<LhsScalar, Index,
+ typename LhsMapper::SubMapper, Traits::mr,
+ Traits::LhsProgress, ColMajor>
+ LhsPacker;
+ typedef internal::gemm_pack_rhs<
+ RhsScalar, Index, typename RhsMapper::SubMapper, Traits::nr, ColMajor>
+ RhsPacker;
+ typedef internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper,
+ Traits::mr, Traits::nr, false, false>
+ GebpKernel;
+
+ const Index m = this->m_i_size;
+ const Index n = this->m_j_size;
+ const Index k = this->m_k_size;
+ if (m == 0 || n == 0 || k == 0) return;
+
+ // Compute a set of algorithm parameters:
+ // - kernel block sizes (bm, bn, bk)
+ // - task grain sizes (number of kernels executed per task: gm, gn)
+ // - number of threads
+ // - sharding by row/column
+ // - parallel packing or first lhs then rhs
+ // and some derived parameters:
+ // - number of tasks (nm, nn, nk)
+ // - number of kernels (nm0, nn0)
+ // Unfortunately, all these parameters are tightly interdependent.
+ // So in some cases we first compute approximate values, then compute other
+ // values based on these approximations and then refine the approximations.
+
+ // There are lots of heuristics here. There is some reasoning behind them,
+ // but ultimately they are just tuned on contraction benchmarks for
+ // different input configurations, thread counts and instruction sets.
+ // So feel free to question any of them.
+
+ // Compute whether we want to shard by row or by column.
+ // This is a first approximation, it will be refined later. Since we don't
+ // know number of threads yet we use 2, because what's we are most
+ // interested in at this point is whether it makes sense to use
+ // parallelization at all or not.
+ bool shard_by_col = shardByCol(m, n, 2);
+
+ // First approximation of kernel blocking sizes.
+ // Again, we don't know number of threads yet, so we use 2.
+ Index bm, bn, bk;
+ if (shard_by_col) {
+ internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
+ internal::ShardByCol>
+ blocking(k, m, n, 2);
+ bm = blocking.mc();
+ bn = blocking.nc();
+ bk = blocking.kc();
+ } else {
+ internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
+ internal::ShardByRow>
+ blocking(k, m, n, 2);
+ bm = blocking.mc();
+ bn = blocking.nc();
+ bk = blocking.kc();
+ }
+
+ // Compute optimal number of threads.
+ // Note: we use bk instead of k here because we are interested in amount of
+ // _parallelizable_ computations, and computations are not parallelizable
+ // across k dimension.
+ const TensorOpCost cost =
+ contractionCost(m, n, bm, bn, bk, shard_by_col, false);
+ int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
+ static_cast<double>(n) * m, cost, this->m_device.numThreads());
+
+ // TODO(dvyukov): this is a stop-gap to prevent regressions while the cost
+ // model is not tuned. Remove this when the cost model is tuned.
+ if (n == 1) num_threads = 1;
+
+ if (num_threads == 1) {
+ // The single-threaded algorithm should be faster in this case.
+ if (n == 1)
+ this->template evalGemv<lhs_inner_dim_contiguous,
+ rhs_inner_dim_contiguous,
+ rhs_inner_dim_reordered, Alignment>(buffer);
+ else
+ this->template evalGemm<lhs_inner_dim_contiguous,
+ rhs_inner_dim_contiguous,
+ rhs_inner_dim_reordered, Alignment>(buffer);
+ return;
+ }
+
+ // Now that we know number of threads, recalculate sharding and blocking.
+ shard_by_col = shardByCol(m, n, num_threads);
+ if (shard_by_col) {
+ internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
+ internal::ShardByCol>
+ blocking(k, m, n, num_threads);
+ bm = blocking.mc();
+ bn = blocking.nc();
+ bk = blocking.kc();
+ } else {
+ internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
+ internal::ShardByRow>
+ blocking(k, m, n, num_threads);
+ bm = blocking.mc();
+ bn = blocking.nc();
+ bk = blocking.kc();
+ }
+
+ // Number of kernels for each dimension.
+ Index nm0 = divup(m, bm);
+ Index nn0 = divup(n, bn);
+ Index nk = divup(k, bk);
+
+ // Calculate task grain size (number of kernels executed per task).
+ // This task size coarsening serves two purposes:
+ // 1. It reduces per-task overheads including synchronization overheads.
+ // 2. It allows to use caches better (reuse the same packed rhs in several
+ // consecutive kernels).
+ Index gm = 1;
+ Index gn = 1;
+ // If we are sharding by column, then we prefer to reduce rows first.
+ if (shard_by_col) {
+ gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col);
+ gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col);
+ } else {
+ gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col);
+ gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col);
+ }
+ // Number of tasks in each dimension.
+ Index nm = divup(nm0, gm);
+ Index nn = divup(nn0, gn);
+
+ // Last by not least, decide whether we want to issue both lhs and rhs
+ // packing in parallel; or issue lhs packing first, and then issue rhs
+ // packing when lhs packing completes (for !shard_by_col lhs and rhs are
+ // swapped). Parallel packing allows more parallelism (for both packing and
+ // kernels), while sequential packing provides better locality (once
+ // a thread finishes rhs packing it proceed to kernels with that rhs).
+ // First, we are interested in parallel packing if there are few tasks.
+ bool parallel_pack = num_threads >= nm * nn;
+ // Also do parallel packing if all data fits into L2$.
+ if (m * bk * Index(sizeof(LhsScalar)) + n * bk * Index(sizeof(RhsScalar)) <=
+ l2CacheSize() * num_threads)
+ parallel_pack = true;
+ // But don't do it if we will use each rhs only once. Locality seems to be
+ // more important in this case.
+ if ((shard_by_col ? nm : nn) == 1) parallel_pack = false;
+
+ LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides,
+ this->m_i_strides, this->m_left_contracting_strides,
+ this->m_k_strides);
+
+ RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides,
+ this->m_j_strides, this->m_right_contracting_strides,
+ this->m_k_strides);
+
+ Context<LhsPacker, RhsPacker, GebpKernel, LhsMapper, RhsMapper,
+ OutputMapper>(this->m_device, num_threads, lhs, rhs, buffer, m, n,
+ k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, nn0,
+ shard_by_col, parallel_pack)
+ .run();
+ }
+
+ // Context coordinates a single parallel gemm operation.
+ template <typename LhsPacker, typename RhsPacker, typename GebpKernel,
+ typename LhsMapper, typename RhsMapper, typename OutputMapper>
+ class Context {
+ public:
+ Context(const Device& device, int num_threads, LhsMapper& lhs,
+ RhsMapper& rhs, Scalar* buffer, Index tm, Index tn, Index tk, Index bm,
+ Index bn, Index bk, Index nm, Index nn, Index nk, Index gm,
+ Index gn, Index nm0, Index nn0, bool shard_by_col,
+ bool parallel_pack)
+ : device_(device),
+ lhs_(lhs),
+ rhs_(rhs),
+ buffer_(buffer),
+ output_(buffer, tm),
+ num_threads_(num_threads),
+ shard_by_col_(shard_by_col),
+ parallel_pack_(parallel_pack),
+ m_(tm),
+ n_(tn),
+ k_(tk),
+ bm_(bm),
+ bn_(bn),
+ bk_(bk),
+ nm_(nm),
+ nn_(nn),
+ nk_(nk),
+ gm_(gm),
+ gn_(gn),
+ nm0_(nm0),
+ nn0_(nn0)
+ {
+ for (Index x = 0; x < P; x++) {
+ // Normal number of notifications for k slice switch is
+ // nm_ + nn_ + nm_ * nn_. However, first P - 1 slices will receive only
+ // nm_ + nn_ notifications, because they will not receive notifications
+ // from preceeding kernels.
+ state_switch_[x] =
+ x == 0
+ ? 1
+ : (parallel_pack_ ? nn_ + nm_ : (shard_by_col_ ? nn_ : nm_)) +
+ (x == P - 1 ? nm_ * nn_ : 0);
+ state_packing_ready_[x] =
+ parallel_pack_ ? 0 : (shard_by_col_ ? nm_ : nn_);
+ state_kernel_[x] = new std::atomic<uint8_t>*[nm_];
+ for (Index m = 0; m < nm_; m++) {
+ state_kernel_[x][m] = new std::atomic<uint8_t>[nn_];
+ // Kernels generally receive 3 notifications (previous kernel + 2
+ // packing), but the first slice won't get notifications from previous
+ // kernels.
+ for (Index n = 0; n < nn_; n++)
+ state_kernel_[x][m][n].store(
+ (x == 0 ? 0 : 1) + (parallel_pack_ ? 2 : 1),
+ std::memory_order_relaxed);
+ }
+ }
+
+ // Allocate memory for packed rhs/lhs matrices.
+ size_t align = numext::maxi(EIGEN_MAX_ALIGN_BYTES, 1);
+ size_t lhs_size =
+ divup<size_t>(bm_ * bk_ * sizeof(LhsScalar), align) * align;
+ size_t rhs_size =
+ divup<size_t>(bn_ * bk_ * sizeof(RhsScalar), align) * align;
+ packed_mem_ = static_cast<char*>(internal::aligned_malloc(
+ (nm0_ * lhs_size + nn0_ * rhs_size) * std::min<size_t>(nk_, P - 1)));
+ char* mem = static_cast<char*>(packed_mem_);
+ for (Index x = 0; x < numext::mini<Index>(nk_, P - 1); x++) {
+ packed_lhs_[x].resize(nm0_);
+ for (Index m = 0; m < nm0_; m++) {
+ packed_lhs_[x][m] = reinterpret_cast<LhsScalar*>(mem);
+ mem += lhs_size;
+ }
+ packed_rhs_[x].resize(nn0_);
+ for (Index n = 0; n < nn0_; n++) {
+ packed_rhs_[x][n] = reinterpret_cast<RhsScalar*>(mem);
+ mem += rhs_size;
+ }
+ }
+ }
+
+ ~Context() {
+ for (Index x = 0; x < P; x++) {
+ for (Index m = 0; m < nm_; m++) delete[] state_kernel_[x][m];
+ delete[] state_kernel_[x];
+ }
+ internal::aligned_free(packed_mem_);
+ }
+
+ void run() {
+ // Kick off packing of the first slice.
+ signal_switch(0, 1);
+ // Wait for overall completion.
+ // TODO(dvyukov): this wait can lead to deadlock.
+ // If nthreads contractions are concurrently submitted from worker
+ // threads, this wait will block all worker threads and the system will
+ // deadlock.
+ done_.Wait();
+ }
+
+ private:
+ Notification done_;
+ const Device& device_;
+ LhsMapper& lhs_;
+ RhsMapper& rhs_;
+ Scalar* const buffer_;
+ OutputMapper output_;
+ const int num_threads_;
+ const bool shard_by_col_;
+ const bool parallel_pack_;
+ // Matrix sizes.
+ const Index m_;
+ const Index n_;
+ const Index k_;
+ // Block sizes.
+ const Index bm_;
+ const Index bn_;
+ const Index bk_;
+ // Number of tasks.
+ const Index nm_;
+ const Index nn_;
+ const Index nk_;
+ // Task grain sizes (number of kernels executed per task).
+ const Index gm_;
+ const Index gn_;
+ // Number of blocks (this is different from ni_/nn_ because of task size
+ // coarsening).
+ const Index nm0_;
+ const Index nn0_;
+
+ // Parallelization strategy.
+ //
+ // Blocks related to the same k block can run in parallel because they write
+ // to different output blocks. So we parallelize within k slices, this
+ // gives us parallelism level of m x n. Before we can start any kernels
+ // related to k-th slice, we need to issue m lhs packing tasks and n rhs
+ // packing tasks.
+ //
+ // However, there is a bottleneck when we are finishing kernels for k-th
+ // slice (at the very end there is only 1 runnable kernel). To mitigate this
+ // bottleneck we allow kernels from k-th and k+1-th slices to run in
+ // parallel. Note that (m, n, k) and (m, n, k+1) kernels write to the same
+ // output block, so they must not run in parallel.
+ //
+ // This gives us the following dependency graph.
+ // On each k slice we have m x n kernel tasks, m lhs paking tasks and n rhs
+ // packing tasks.
+ // Kernel (m, n, k) can start when:
+ // - kernel (m, n, k-1) has finished
+ // - lhs packing (m, k) has finished
+ // - rhs packing (n, k) has finished
+ // Lhs/rhs packing can start when:
+ // - all k-1 packing has finished (artificially imposed to limit amount of
+ // parallel packing)
+ //
+ // On top of that we limit runnable tasks to two consecutive k slices.
+ // This is done to limit amount of memory we need for packed lhs/rhs
+ // (for each k slice we need m*bk + n*bk memory in packed_lhs_/packed_rhs_).
+ //
+ // state_switch_ tracks when we are ready to switch to the next k slice.
+ // state_kernel_[m][n] tracks when we are ready to kick off kernel (m, n).
+ // These variable are rolling over 3 consecutive k slices: first two we are
+ // actively executing + one to track completion of kernels in the second
+ // slice.
+ static const Index P = 3;
+ void* packed_mem_;
+ std::vector<LhsScalar*> packed_lhs_[P - 1];
+ std::vector<RhsScalar*> packed_rhs_[P - 1];
+ std::atomic<uint8_t>** state_kernel_[P];
+ // state_switch_ is frequently modified by worker threads, while other
+ // fields are read-only after constructor. Let's move it to a separate cache
+ // line to reduce cache-coherency traffic.
+ char pad_[128];
+ std::atomic<Index> state_packing_ready_[P];
+ std::atomic<Index> state_switch_[P];
+
+ void pack_lhs(Index m, Index k) {
+ const Index mend = m * gm_ + gm(m);
+ for (Index m1 = m * gm_; m1 < mend; m1++)
+ LhsPacker()(packed_lhs_[k % (P - 1)][m1],
+ lhs_.getSubMapper(m1 * bm_, k * bk_), bk(k), bm(m1));
+
+ if (!parallel_pack_ && shard_by_col_) {
+ signal_packing(k);
+ } else {
+ signal_switch(k + 1);
+ for (Index n = nn_ - 1; n >= 0; n--) signal_kernel(m, n, k, n == 0);
+ }
+ }
+
+ void pack_rhs(Index n, Index k) {
+ const Index nend = n * gn_ + gn(n);
+ for (Index n1 = n * gn_; n1 < nend; n1++) {
+ if (k == 0) {
+ // Zero the output memory in parallel.
+ // On 10000x2x10000 mm zeroing can easily take half of time.
+ // Zero (bn x m) row. Safe to do here because all kernels that will
+ // write to this memory depend on completion of this task.
+ // Note: don't call device_.memset() here. device_.memset() blocks on
+ // thread pool worker thread, which can lead to underutilization and
+ // deadlocks.
+ memset(buffer_ + n1 * bn_ * m_, 0, bn(n1) * m_ * sizeof(Scalar));
+ }
+ RhsPacker()(packed_rhs_[k % (P - 1)][n1],
+ rhs_.getSubMapper(k * bk_, n1 * bn_), bk(k), bn(n1));
+ }
+
+ if (parallel_pack_ || shard_by_col_) {
+ signal_switch(k + 1);
+ for (Index m = nm_ - 1; m >= 0; m--) signal_kernel(m, n, k, m == 0);
+ } else {
+ signal_packing(k);
+ }
+ }
+
+ void kernel(Index m, Index n, Index k) {
+ // Note: order of iteration matters here. Iteration over m is innermost
+ // because we want to reuse the same packed rhs in consequetive tasks
+ // (rhs fits into L2$ while lhs only into L3$).
+ const Index nend = n * gn_ + gn(n);
+ const Index mend = m * gm_ + gm(m);
+ if (shard_by_col_) {
+ for (Index n1 = n * gn_; n1 < nend; n1++) {
+ for (Index m1 = m * gm_; m1 < mend; m1++)
+ GebpKernel()(output_.getSubMapper(m1 * bm_, n1 * bn_),
+ packed_lhs_[k % (P - 1)][m1],
+ packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1),
+ Scalar(1), -1, -1, 0, 0);
+ }
+ } else {
+ for (Index m1 = m * gm_; m1 < mend; m1++)
+ for (Index n1 = n * gn_; n1 < nend; n1++) {
+ GebpKernel()(output_.getSubMapper(m1 * bm_, n1 * bn_),
+ packed_lhs_[k % (P - 1)][m1],
+ packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1),
+ Scalar(1), -1, -1, 0, 0);
+ }
+ }
+ signal_kernel(m, n, k + 1, false);
+ signal_switch(k + 2);
+ }
+
+ void signal_packing(Index k) {
+ eigen_assert(!parallel_pack_);
+ Index s = state_packing_ready_[k % P].fetch_sub(1);
+ eigen_assert(s > 0);
+ if (s != 1) return;
+ state_packing_ready_[k % P] = shard_by_col_ ? nm_ : nn_;
+ enqueue_packing(k, shard_by_col_);
+ }
+
+ void signal_kernel(Index m, Index n, Index k, bool sync) {
+ std::atomic<uint8_t>* state = &state_kernel_[k % P][m][n];
+ Index s = state->load();
+ eigen_assert(s > 0);
+ if (s != 1 && state->fetch_sub(1) != 1) return;
+ state->store(parallel_pack_ ? 3 : 2, std::memory_order_relaxed);
+ if (sync)
+ kernel(m, n, k);
+ else
+ device_.enqueueNoNotification([=]() { kernel(m, n, k); });
+ }
+
+ void signal_switch(Index k, Index v = 1) {
+ Index s = state_switch_[k % P].fetch_sub(v);
+ eigen_assert(s >= v);
+ if (s != v) return;
+
+ // Ready to switch to the next k slice.
+ // Reset counter for the next iteration.
+ state_switch_[k % P] =
+ (parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_)) +
+ nm_ * nn_;
+ if (k < nk_) {
+ // Issue lhs/rhs packing. Their completion will in turn kick off
+ // kernels.
+ if (parallel_pack_) {
+ enqueue_packing(k, !shard_by_col_);
+ enqueue_packing(k, shard_by_col_);
+ } else if (shard_by_col_) {
+ enqueue_packing(k, false);
+ } else {
+ enqueue_packing(k, true);
+ }
+
+ // Termination handling.
+ // Because kernel completion signals k + 2 switch, we need to finish nk
+ // + 2 slices without issuing any tasks on nk + 1 slice. So here we
+ // pretend that all nk + 1 packing tasks just finish instantly; so that
+ // nk + 2 switch only waits for completion of nk kernels.
+ } else if (k == nk_) {
+ signal_switch(k + 1,
+ parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_));
+ } else {
+ done_.Notify();
+ }
+ }
+
+ // Enqueue all rhs/lhs packing for k-th slice.
+ void enqueue_packing(Index k, bool rhs) {
+ enqueue_packing_helper(0, rhs ? nn_ : nm_, k, rhs);
+ }
+
+ void enqueue_packing_helper(Index start, Index end, Index k, bool rhs) {
+ if (end - start == 1) {
+ if (rhs)
+ pack_rhs(start, k);
+ else
+ pack_lhs(start, k);
+ } else {
+ Index mid = (start + end) / 2;
+ device_.enqueueNoNotification(
+ [=]() { enqueue_packing_helper(mid, end, k, rhs); });
+ device_.enqueueNoNotification(
+ [=]() { enqueue_packing_helper(start, mid, k, rhs); });
+ }
+ }
+
+ // Block sizes with accounting for potentially incomplete last block.
+ Index bm(Index m) const { return m + 1 < nm0_ ? bm_ : m_ + bm_ - bm_ * nm0_; }
+ Index bn(Index n) const { return n + 1 < nn0_ ? bn_ : n_ + bn_ - bn_ * nn0_; }
+ Index bk(Index k) const { return k + 1 < nk_ ? bk_ : k_ + bk_ - bk_ * nk_; }
+ // Task grain sizes accounting for potentially incomplete last task.
+ Index gm(Index m) const { return m + 1 < nm_ ? gm_ : nm0_ + gm_ - gm_ * nm_; }
+ Index gn(Index n) const { return n + 1 < nn_ ? gn_ : nn0_ + gn_ - gn_ * nn_; }
+
+ Context(const Context&) = delete;
+ void operator=(const Context&) = delete;
+ };
+
+ // Decide whether we want to shard m x n contraction by columns or by rows.
+ static bool shardByCol(Index m, Index n, Index num_threads) {
+ // Note: we are comparing both n and m against Traits::nr, it is not
+ // a mistake. We are trying to figure out how both n and m will fit into
+ // the main sharding dimension.
+
+ // Sharding by column is the default
+ // ... unless there is enough data for vectorization over rows
+ if (m / num_threads >= Traits::nr &&
+ // and not enough data for vectorization over columns
+ (n / num_threads < Traits::nr ||
+ // ... or barely enough data for vectorization over columns,
+ // but it is not evenly dividable across threads
+ (n / num_threads < 4 * Traits::nr &&
+ (n % (num_threads * Traits::nr)) != 0 &&
+ // ... and it is evenly dividable across threads for rows
+ ((m % (num_threads * Traits::nr)) == 0 ||
+ // .. or it is not evenly dividable for both dimensions but
+ // there is much more data over rows so that corner effects are
+ // mitigated.
+ (m / n >= 6)))))
+ return false;
+ // Wait, or if matrices are just substantially prolonged over the other
+ // dimension.
+ if (n / num_threads < 16 * Traits::nr && m > n * 32) return false;
+ return true;
+ }
+
+ Index coarsenM(Index m, Index n, Index bm, Index bn, Index bk, Index gn,
+ int num_threads, bool shard_by_col) const {
+ Index gm = 1;
+ Index gm1 = 1;
+ Index nm0 = divup(m, bm);
+ Index nm1 = nm0;
+ for (;;) {
+ // Find the next candidate for m grain size. It needs to result in
+ // different number of blocks. E.g. if we have 10 kernels, we want to try
+ // 5 and 10, but not 6, 7, 8 and 9.
+ while (gm1 <= nm0 && nm1 == divup(nm0, gm1)) gm1++;
+ if (gm1 > nm0) break;
+ // Check the candidate.
+ int res = checkGrain(m, n, bm, bn, bk, gm1, gn, gm, gn, num_threads,
+ shard_by_col);
+ if (res < 0) break;
+ nm1 = divup(nm0, gm1);
+ if (res == 0) continue;
+ // Commit new grain size.
+ gm = gm1;
+ }
+ return gm;
+ }
+
+ Index coarsenN(Index m, Index n, Index bm, Index bn, Index bk, Index gm,
+ int num_threads, bool shard_by_col) const {
+ Index gn = 1;
+ Index gn1 = 1;
+ Index nn0 = divup(n, bn);
+ Index nn1 = nn0;
+ for (;;) {
+ while (gn1 <= nn0 && nn1 == divup(nn0, gn1)) gn1++;
+ if (gn1 > nn0) break;
+ int res = checkGrain(m, n, bm, bn, bk, gm, gn1, gm, gn, num_threads,
+ shard_by_col);
+ if (res < 0) break;
+ nn1 = divup(nn0, gn1);
+ if (res == 0) continue;
+ gn = gn1;
+ }
+ return gn;
+ }
+
+ // checkGrain checks whether grain (gm, gn) is suitable and is better than
+ // (oldgm, oldgn).
+ int checkGrain(Index m, Index n, Index bm, Index bn, Index bk, Index gm,
+ Index gn, Index oldgm, Index oldgn, int num_threads,
+ bool shard_by_col) const {
+ const TensorOpCost cost =
+ contractionCost(bm * gm, bn * gn, bm, bn, bk, shard_by_col, true);
+ double taskSize = TensorCostModel<ThreadPoolDevice>::taskSize(
+ static_cast<double>(bm) * gm * bn * gn, cost);
+ // If the task is too small, then we agree on it regardless of anything
+ // else. Otherwise synchronization overheads will dominate.
+ if (taskSize < 1) return 1;
+ // If it is too large, then we reject it and all larger tasks.
+ if (taskSize > 2) return -1;
+ // Now we are in presumably good task size range.
+ // The main deciding factor here is parallelism. Consider that we have 12
+ // kernels and 4 threads. Grains of 2, 3 and 4 all yield good task sizes.
+ // But 2/4 yield 6/3 tasks, which gives us parallelism of 0.75 (at most 3/4
+ // of cores will be busy). While grain size 3 gives us 4 tasks, which gives
+ // us parallelism of 1 (we can load all cores).
+ Index nm0 = divup(m, bm);
+ Index nn0 = divup(n, bn);
+ Index new_tasks = divup(nm0, gm) * divup(nn0, gn);
+ double new_parallelism = static_cast<double>(new_tasks) /
+ (divup<int>(new_tasks, num_threads) * num_threads);
+ Index old_tasks = divup(nm0, oldgm) * divup(nn0, oldgn);
+ double old_parallelism = static_cast<double>(old_tasks) /
+ (divup<int>(old_tasks, num_threads) * num_threads);
+ if (new_parallelism > old_parallelism || new_parallelism == 1) return 1;
+ return 0;
+ }
+
+#else // EIGEN_USE_SIMPLE_THREAD_POOL
+
+ template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
+ void evalProduct(Scalar* buffer) const {
+ if (this->m_j_size == 1) {
+ this->template evalGemv<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
+ return;
+ }
+
+ evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
+ }
+
+ template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
+ void evalGemm(Scalar* buffer) const {
+ // columns in left side, rows in right side
+ const Index k = this->m_k_size;
+
+ // rows in left side
+ const Index m = this->m_i_size;
+
+ // columns in right side
+ const Index n = this->m_j_size;
+
+ // zero out the result buffer (which must be of size at least m * n * sizeof(Scalar)
+ this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
+
+
+ const int lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size;
+ const int rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size;
+
+ typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
+ LeftEvaluator, left_nocontract_t,
+ contract_t, lhs_packet_size,
+ lhs_inner_dim_contiguous,
+ false, Unaligned> LhsMapper;
+
+ typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
+ RightEvaluator, right_nocontract_t,
+ contract_t, rhs_packet_size,
+ rhs_inner_dim_contiguous,
+ rhs_inner_dim_reordered, Unaligned> RhsMapper;
+
+ typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
+
+ // TODO: packing could be faster sometimes if we supported row major tensor mappers
+ typedef internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, Traits::mr,
+ Traits::LhsProgress, ColMajor> LhsPacker;
+ typedef internal::gemm_pack_rhs<RhsScalar, Index, typename RhsMapper::SubMapper, Traits::nr, ColMajor> RhsPacker;
+
+ // TODO: replace false, false with conjugate values?
+ typedef internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper,
+ Traits::mr, Traits::nr, false, false> GebpKernel;
+
+ typedef internal::packLhsArg<LhsScalar, LhsMapper, Index> packLArg;
+ typedef internal::packRhsAndKernelArg<LhsScalar, RhsScalar, RhsMapper, OutputMapper, Index> packRKArg;
+
+ // initialize data mappers
+ LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
+ this->m_left_contracting_strides, this->m_k_strides);
+
+ RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
+ this->m_right_contracting_strides, this->m_k_strides);
+
+ OutputMapper output(buffer, m);
+
+ // compute block sizes (which depend on number of threads)
+ const Index num_threads = this->m_device.numThreads();
+ internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index, internal::ShardByCol> blocking(k, m, n, num_threads);
+ Index mc = blocking.mc();
+ Index nc = blocking.nc();
+ Index kc = blocking.kc();
+ eigen_assert(mc <= m);
+ eigen_assert(nc <= n);
+ eigen_assert(kc <= k);
+
+#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
+ const Index k_blocks = CEIL_DIV(k, kc);
+ const Index n_blocks = CEIL_DIV(n, nc);
+ const Index m_blocks = CEIL_DIV(m, mc);
+ const Index sizeA = mc * kc;
+ const Index sizeB = kc * nc;
+
+ /* cout << "m: " << m << " n: " << n << " k: " << k << endl;
+ cout << "mc: " << mc << " nc: " << nc << " kc: " << kc << endl;
+ cout << "m_blocks: " << m_blocks << " n_blocks: " << n_blocks << " k_blocks: " << k_blocks << endl;
+ cout << "num threads: " << num_threads << endl;
+ */
+
+ // note: m_device.allocate should return 16 byte aligned pointers, but if blockA and blockB
+ // aren't 16 byte aligned segfaults will happen due to SIMD instructions
+ // note: You can get away with allocating just a single blockA and offsets and meet the
+ // the alignment requirements with the assumption that
+ // (Traits::mr * sizeof(ResScalar)) % 16 == 0
+ const Index numBlockAs = numext::mini(num_threads, m_blocks);
+ MaxSizeVector<LhsScalar *> blockAs(num_threads);
+ for (int i = 0; i < num_threads; i++) {
+ blockAs.push_back(static_cast<LhsScalar *>(this->m_device.allocate(sizeA * sizeof(LhsScalar))));
+ }
+
+ // To circumvent alignment issues, I'm just going to separately allocate the memory for each thread
+ // TODO: is this too much memory to allocate? This simplifies coding a lot, but is wasteful.
+ // Other options: (1) reuse memory when a thread finishes. con: tricky
+ // (2) allocate block B memory in each thread. con: overhead
+ MaxSizeVector<RhsScalar *> blockBs(n_blocks);
+ for (int i = 0; i < n_blocks; i++) {
+ blockBs.push_back(static_cast<RhsScalar *>(this->m_device.allocate(sizeB * sizeof(RhsScalar))));
+ }
+
+ // lhs_notifications starts with all null Notifications
+ MaxSizeVector<Notification*> lhs_notifications(num_threads, nullptr);
+
+ // this should really be numBlockAs * n_blocks;
+ const Index num_kernel_notifications = num_threads * n_blocks;
+ MaxSizeVector<Notification*> kernel_notifications(num_kernel_notifications,
+ nullptr);
+
+ for (Index k_block_idx = 0; k_block_idx < k_blocks; k_block_idx++) {
+ const Index k_start = k_block_idx * kc;
+ // make sure we don't overshoot right edge of left matrix
+ const Index actual_kc = numext::mini(k_start + kc, k) - k_start;
+
+ for (Index m_block_idx = 0; m_block_idx < m_blocks; m_block_idx += numBlockAs) {
+ const Index num_blocks = numext::mini(m_blocks-m_block_idx, numBlockAs);
+
+ for (Index mt_block_idx = m_block_idx; mt_block_idx < m_block_idx+num_blocks; mt_block_idx++) {
+ const Index m_start = mt_block_idx * mc;
+ const Index actual_mc = numext::mini(m_start + mc, m) - m_start;
+ eigen_assert(actual_mc > 0);
+
+ Index blockAId = (k_block_idx * m_blocks + mt_block_idx) % num_threads;
+
+ for (int i = 0; i < n_blocks; ++i) {
+ Index notification_id = (blockAId * n_blocks + i);
+ // Wait for any current kernels using this slot to complete
+ // before using it.
+ if (kernel_notifications[notification_id]) {
+ wait_until_ready(kernel_notifications[notification_id]);
+ delete kernel_notifications[notification_id];
+ }
+ kernel_notifications[notification_id] = new Notification();
+ }
+ const packLArg arg = {
+ blockAs[blockAId], // blockA
+ lhs, // lhs
+ m_start, // m
+ k_start, // k
+ actual_mc, // mc
+ actual_kc, // kc
+ };
+
+ // Delete any existing notification since we may be
+ // replacing it. The algorithm should ensure that there are
+ // no existing waiters on this notification.
+ delete lhs_notifications[blockAId];
+ lhs_notifications[blockAId] =
+ this->m_device.enqueue(&Self::packLhs<packLArg, LhsPacker>, arg);
+ }
+
+ // now start kernels.
+ const Index m_base_start = m_block_idx * mc;
+ const bool need_to_pack = m_block_idx == 0;
+
+ for (Index n_block_idx = 0; n_block_idx < n_blocks; n_block_idx++) {
+ const Index n_start = n_block_idx * nc;
+ const Index actual_nc = numext::mini(n_start + nc, n) - n_start;
+
+ // first make sure the previous kernels are all done before overwriting rhs. Also wait if
+ // we're going to start new k. In both cases need_to_pack is true.
+ if (need_to_pack) {
+ for (Index i = num_blocks; i < num_threads; ++i) {
+ Index blockAId = (k_block_idx * m_blocks + i + m_block_idx) % num_threads;
+ Index future_id = (blockAId * n_blocks + n_block_idx);
+ wait_until_ready(kernel_notifications[future_id]);
+ }
+ }
+
+ packRKArg arg = {
+ &blockAs, // blockA
+ blockBs[n_block_idx], // blockB
+ rhs, // rhs
+ output, // output
+ m_base_start, // m
+ k_start, // k
+ n_start, // n
+ mc, // mc
+ actual_kc, // kc
+ actual_nc, // nc
+ num_threads,
+ numBlockAs,
+ m,
+ k_block_idx,
+ m_block_idx,
+ n_block_idx, // n_block_idx
+ m_blocks, // m_blocks
+ n_blocks, // n_blocks
+ &kernel_notifications, // kernel notifications
+ &lhs_notifications, // lhs notifications
+ need_to_pack, // need_to_pack
+ };
+
+ // We asynchronously kick off this function, which ends up
+ // notifying the appropriate kernel_notifications objects,
+ // which this thread waits on before exiting.
+ this->m_device.enqueueNoNotification(&Self::packRhsAndKernel<packRKArg, RhsPacker, GebpKernel>, arg);
+ }
+ }
+ }
+
+ // Make sure all the kernels are done.
+ for (size_t i = 0; i < kernel_notifications.size(); ++i) {
+ wait_until_ready(kernel_notifications[i]);
+ delete kernel_notifications[i];
+ }
+
+ // No need to wait for lhs notifications since they should have
+ // already been waited on. Just clean them up.
+ for (size_t i = 0; i < lhs_notifications.size(); ++i) {
+ delete lhs_notifications[i];
+ }
+
+ // deallocate all of the memory for both A and B's
+ for (size_t i = 0; i < blockAs.size(); i++) {
+ this->m_device.deallocate(blockAs[i]);
+ }
+ for (size_t i = 0; i < blockBs.size(); i++) {
+ this->m_device.deallocate(blockBs[i]);
+ }
+
+#undef CEIL_DIV
+ }
+
+ /*
+ * Packs a LHS block of size (mt, kc) starting at lhs(m, k). Before packing
+ * the LHS block, check that all of the kernels that worked on the same
+ * mt_block_idx in the previous m_block are done.
+ */
+ template <typename packLArg, typename LhsPacker>
+ static void packLhs(const packLArg arg) {
+ // perform actual packing
+ LhsPacker pack_lhs;
+ pack_lhs(arg.blockA, arg.lhs.getSubMapper(arg.m_start, arg.k_start), arg.kc, arg.mc);
+ }
+
+ /*
+ * Packs a RHS block of size (kc, nc) starting at (k, n) after checking that
+ * all kernels in the previous block are done.
+ * Then for each LHS future, we wait on the future and then call GEBP
+ * on the area packed by the future (which starts at
+ * blockA + future_idx * mt * kc) on the LHS and with the full packed
+ * RHS block.
+ * The output of this GEBP is written to output(m + i * mt, n).
+ */
+ template <typename packRKArg, typename RhsPacker, typename GebpKernel>
+ static void packRhsAndKernel(packRKArg arg) {
+ if (arg.need_to_pack) {
+ RhsPacker pack_rhs;
+ pack_rhs(arg.blockB, arg.rhs.getSubMapper(arg.k, arg.n), arg.kc, arg.nc);
+ }
+
+ GebpKernel gebp;
+ for (Index mt_block_idx = 0; mt_block_idx < arg.num_blockAs; mt_block_idx++) {
+ const Index m_base_start = arg.m + arg.mc*mt_block_idx;
+ if (m_base_start < arg.max_m) {
+ Index blockAId = (arg.k_block_idx * arg.m_blocks + mt_block_idx + arg.m_block_idx) % arg.num_threads;
+ wait_until_ready((*arg.lhs_notifications)[blockAId]);
+ const Index actual_mc = numext::mini(m_base_start + arg.mc, arg.max_m) - m_base_start;
+ gebp(arg.output.getSubMapper(m_base_start, arg.n),
+ (*arg.blockAs)[blockAId], arg.blockB,
+ actual_mc, arg.kc, arg.nc, Scalar(1), -1, -1, 0, 0);
+
+ // Notify that the kernel is done.
+ const Index set_idx = blockAId * arg.n_blocks + arg.n_block_idx;
+ (*arg.kernel_notifications)[set_idx]->Notify();
+ }
+ }
+ }
+#endif // EIGEN_USE_SIMPLE_THREAD_POOL
+
+ TensorOpCost contractionCost(Index m, Index n, Index bm, Index bn, Index bk,
+ bool shard_by_col, bool prepacked) const {
+ const int packed_size = std::min<int>(PacketType<LhsScalar, Device>::size,
+ PacketType<RhsScalar, Device>::size);
+ const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
+ const double kd = static_cast<double>(bk);
+ // Peak VFMA bandwidth is 0.5. However if we have not enough data for
+ // vectorization bandwidth drops. The 4.0 and 2.0 bandwidth is determined
+ // experimentally.
+ double computeBandwidth = bk == 1 ? 4.0 :
+ (shard_by_col ? bn : bm) < Traits::nr ||
+ (shard_by_col ? bm : bn) < Traits::mr ? 2.0 : 0.5;
+#ifndef EIGEN_VECTORIZE_FMA
+ // Bandwidth of all of VFMA/MULPS/ADDPS is 0.5 on latest Intel processors.
+ // However for MULPS/ADDPS we have dependent sequence of 2 such instructions,
+ // so overall bandwidth is 1.0.
+ if (computeBandwidth == 0.5) computeBandwidth = 1.0;
+#endif
+ // Computations.
+ TensorOpCost cost = TensorOpCost(0, 0, kd * computeBandwidth, true, packed_size);
+ // Output stores.
+ cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size);
+ if (prepacked) {
+ // Packing and kernels are executed in different tasks. When we calculate
+ // task grain size we look only at kernel cost assuming that kernel
+ // is more expensive than packing.
+ return cost;
+ }
+ // Lhs/rhs loads + computations.
+ TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * (kd / n);
+ TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * (kd / m);
+ // Lhs packing memory cost does not contribute considerably to overall
+ // execution time because lhs is prefetched early and accessed sequentially.
+ if (shard_by_col)
+ lhsCost.dropMemoryCost();
+ else
+ rhsCost.dropMemoryCost();
+ return cost + lhsCost + rhsCost;
+ }
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_USE_THREADS
+#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h b/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h
new file mode 100644
index 000000000..860a6949a
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h
@@ -0,0 +1,279 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H
+#define EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H
+
+namespace Eigen {
+
+/** \class TensorConversionOp
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor conversion class. This class makes it possible to vectorize
+ * type casting operations when the number of scalars per packet in the source
+ * and the destination type differ
+ */
+namespace internal {
+template<typename TargetType, typename XprType>
+struct traits<TensorConversionOp<TargetType, XprType> >
+{
+ // Type promotion to handle the case where the types of the lhs and the rhs are different.
+ typedef TargetType Scalar;
+ typedef typename traits<XprType>::StorageKind StorageKind;
+ typedef typename traits<XprType>::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = traits<XprType>::NumDimensions;
+ static const int Layout = traits<XprType>::Layout;
+ enum { Flags = 0 };
+};
+
+template<typename TargetType, typename XprType>
+struct eval<TensorConversionOp<TargetType, XprType>, Eigen::Dense>
+{
+ typedef const TensorConversionOp<TargetType, XprType>& type;
+};
+
+template<typename TargetType, typename XprType>
+struct nested<TensorConversionOp<TargetType, XprType>, 1, typename eval<TensorConversionOp<TargetType, XprType> >::type>
+{
+ typedef TensorConversionOp<TargetType, XprType> type;
+};
+
+} // end namespace internal
+
+
+template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio>
+struct PacketConverter {
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ PacketConverter(const TensorEvaluator& impl)
+ : m_impl(impl) {}
+
+ template<int LoadMode, typename Index>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const {
+ return internal::pcast<SrcPacket, TgtPacket>(m_impl.template packet<LoadMode>(index));
+ }
+
+ private:
+ const TensorEvaluator& m_impl;
+};
+
+
+template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket>
+struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 2, 1> {
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ PacketConverter(const TensorEvaluator& impl)
+ : m_impl(impl) {}
+
+ template<int LoadMode, typename Index>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const {
+ const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
+
+ SrcPacket src1 = m_impl.template packet<LoadMode>(index);
+ SrcPacket src2 = m_impl.template packet<LoadMode>(index + SrcPacketSize);
+ TgtPacket result = internal::pcast<SrcPacket, TgtPacket>(src1, src2);
+ return result;
+ }
+
+ private:
+ const TensorEvaluator& m_impl;
+};
+
+template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket>
+struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 4, 1> {
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ PacketConverter(const TensorEvaluator& impl)
+ : m_impl(impl) {}
+
+ template<int LoadMode, typename Index>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const {
+ const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
+
+ SrcPacket src1 = m_impl.template packet<LoadMode>(index);
+ SrcPacket src2 = m_impl.template packet<LoadMode>(index + SrcPacketSize);
+ SrcPacket src3 = m_impl.template packet<LoadMode>(index + 2 * SrcPacketSize);
+ SrcPacket src4 = m_impl.template packet<LoadMode>(index + 3 * SrcPacketSize);
+ TgtPacket result = internal::pcast<SrcPacket, TgtPacket>(src1, src2, src3, src4);
+ return result;
+ }
+
+ private:
+ const TensorEvaluator& m_impl;
+};
+
+template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket>
+struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 1, 2> {
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ PacketConverter(const TensorEvaluator& impl)
+ : m_impl(impl), m_maxIndex(impl.dimensions().TotalSize()) {}
+
+ template<int LoadMode, typename Index>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const {
+ const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
+ // Only call m_impl.packet() when we have direct access to the underlying data. This
+ // ensures that we don't compute the subexpression twice. We may however load some
+ // coefficients twice, but in practice this doesn't negatively impact performance.
+ if (m_impl.data() && (index + SrcPacketSize < m_maxIndex)) {
+ // Force unaligned memory loads since we can't ensure alignment anymore
+ return internal::pcast<SrcPacket, TgtPacket>(m_impl.template packet<Unaligned>(index));
+ } else {
+ const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
+ typedef typename internal::unpacket_traits<SrcPacket>::type SrcType;
+ typedef typename internal::unpacket_traits<TgtPacket>::type TgtType;
+ internal::scalar_cast_op<SrcType, TgtType> converter;
+ EIGEN_ALIGN_MAX typename internal::unpacket_traits<TgtPacket>::type values[TgtPacketSize];
+ for (int i = 0; i < TgtPacketSize; ++i) {
+ values[i] = converter(m_impl.coeff(index+i));
+ }
+ TgtPacket rslt = internal::pload<TgtPacket>(values);
+ return rslt;
+ }
+ }
+
+ private:
+ const TensorEvaluator& m_impl;
+ const typename TensorEvaluator::Index m_maxIndex;
+};
+
+template<typename TargetType, typename XprType>
+class TensorConversionOp : public TensorBase<TensorConversionOp<TargetType, XprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename internal::traits<TensorConversionOp>::Scalar Scalar;
+ typedef typename internal::traits<TensorConversionOp>::StorageKind StorageKind;
+ typedef typename internal::traits<TensorConversionOp>::Index Index;
+ typedef typename internal::nested<TensorConversionOp>::type Nested;
+ typedef Scalar CoeffReturnType;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConversionOp(const XprType& xpr)
+ : m_xpr(xpr) {}
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+};
+
+template <bool SameType, typename Eval, typename Scalar> struct ConversionSubExprEval {
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool run(Eval& impl, Scalar*) {
+ impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+};
+
+template <typename Eval, typename Scalar> struct ConversionSubExprEval<true, Eval, Scalar> {
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool run(Eval& impl, Scalar* data) {
+ return impl.evalSubExprsIfNeeded(data);
+ }
+};
+
+
+// Eval as rvalue
+template<typename TargetType, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorConversionOp<TargetType, ArgType>, Device>
+{
+ typedef TensorConversionOp<TargetType, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
+ typedef TargetType Scalar;
+ typedef TargetType CoeffReturnType;
+ typedef typename internal::remove_all<typename internal::traits<ArgType>::Scalar>::type SrcType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ typedef typename PacketType<SrcType, Device>::type PacketSourceType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = true,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device)
+ {
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_impl.dimensions(); }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data)
+ {
+ return ConversionSubExprEval<internal::is_same<TargetType, SrcType>::value, TensorEvaluator<ArgType, Device>, Scalar>::run(m_impl, data);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup()
+ {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ internal::scalar_cast_op<SrcType, TargetType> converter;
+ return converter(m_impl.coeff(index));
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ const bool Vectorizable = TensorEvaluator<ArgType, Device>::PacketAccess &
+ internal::type_casting_traits<SrcType, TargetType>::VectorizedCast;
+ return PacketConv<LoadMode, Vectorizable>::run(m_impl, index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ const double cast_cost = TensorOpCost::CastCost<SrcType, TargetType>();
+ if (vectorized) {
+ const double SrcCoeffRatio =
+ internal::type_casting_traits<SrcType, TargetType>::SrcCoeffRatio;
+ const double TgtCoeffRatio =
+ internal::type_casting_traits<SrcType, TargetType>::TgtCoeffRatio;
+ return m_impl.costPerCoeff(vectorized) * (SrcCoeffRatio / PacketSize) +
+ TensorOpCost(0, 0, TgtCoeffRatio * (cast_cost / PacketSize));
+ } else {
+ return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, cast_cost);
+ }
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ protected:
+ template <int LoadMode, bool ActuallyVectorize>
+ struct PacketConv {
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType run(const TensorEvaluator<ArgType, Device>& impl, Index index) {
+ internal::scalar_cast_op<SrcType, TargetType> converter;
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
+ for (int i = 0; i < PacketSize; ++i) {
+ values[i] = converter(impl.coeff(index+i));
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+ };
+
+ template <int LoadMode>
+ struct PacketConv<LoadMode, true> {
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType run(const TensorEvaluator<ArgType, Device>& impl, Index index) {
+ const int SrcCoeffRatio = internal::type_casting_traits<SrcType, TargetType>::SrcCoeffRatio;
+ const int TgtCoeffRatio = internal::type_casting_traits<SrcType, TargetType>::TgtCoeffRatio;
+ PacketConverter<TensorEvaluator<ArgType, Device>, PacketSourceType, PacketReturnType,
+ SrcCoeffRatio, TgtCoeffRatio> converter(impl);
+ return converter.template packet<LoadMode>(index);
+ }
+ };
+
+ TensorEvaluator<ArgType, Device> m_impl;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h b/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h
new file mode 100644
index 000000000..abdf742c6
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h
@@ -0,0 +1,1104 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
+#define EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
+
+namespace Eigen {
+
+/** \class TensorConvolution
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor convolution class.
+ *
+ *
+ */
+namespace internal {
+
+template <typename Index, typename InputDims, int NumKernelDims, int Layout>
+class IndexMapper {
+ public:
+ IndexMapper(const InputDims& input_dims, const array<Index, NumKernelDims>& kernel_dims,
+ const array<Index, NumKernelDims>& indices) {
+
+ array<Index, NumDims> dimensions = input_dims;
+ for (int i = 0; i < NumKernelDims; ++i) {
+ const Index index = indices[i];
+ const Index input_dim = input_dims[index];
+ const Index kernel_dim = kernel_dims[i];
+ const Index result_dim = input_dim - kernel_dim + 1;
+ dimensions[index] = result_dim;
+ }
+
+ array<Index, NumDims> inputStrides;
+ array<Index, NumDims> outputStrides;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ inputStrides[0] = 1;
+ outputStrides[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ inputStrides[i] = inputStrides[i-1] * input_dims[i-1];
+ outputStrides[i] = outputStrides[i-1] * dimensions[i-1];
+ }
+ } else {
+ inputStrides[NumDims - 1] = 1;
+ outputStrides[NumDims - 1] = 1;
+ for (int i = static_cast<int>(NumDims) - 2; i >= 0; --i) {
+ inputStrides[i] = inputStrides[i + 1] * input_dims[i + 1];
+ outputStrides[i] = outputStrides[i + 1] * dimensions[i + 1];
+ }
+ }
+
+ array<Index, NumDims> cudaInputDimensions;
+ array<Index, NumDims> cudaOutputDimensions;
+ array<Index, NumDims> tmp = dimensions;
+ array<Index, NumDims> ordering;
+ const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
+ ? 0
+ : NumDims - NumKernelDims;
+ for (int i = 0; i < NumKernelDims; ++i) {
+ const Index index = i + offset;
+ ordering[index] = indices[i];
+ tmp[indices[i]] = -1;
+ cudaInputDimensions[index] = input_dims[indices[i]];
+ cudaOutputDimensions[index] = dimensions[indices[i]];
+ }
+
+ int written = static_cast<int>(Layout) == static_cast<int>(ColMajor)
+ ? NumKernelDims
+ : 0;
+ for (int i = 0; i < NumDims; ++i) {
+ if (tmp[i] >= 0) {
+ ordering[written] = i;
+ cudaInputDimensions[written] = input_dims[i];
+ cudaOutputDimensions[written] = dimensions[i];
+ ++written;
+ }
+ }
+
+ for (int i = 0; i < NumDims; ++i) {
+ m_inputStrides[i] = inputStrides[ordering[i]];
+ m_outputStrides[i] = outputStrides[ordering[i]];
+ }
+
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = 0; i < NumDims; ++i) {
+ if (i > NumKernelDims) {
+ m_cudaInputStrides[i] =
+ m_cudaInputStrides[i - 1] * cudaInputDimensions[i - 1];
+ m_cudaOutputStrides[i] =
+ m_cudaOutputStrides[i - 1] * cudaOutputDimensions[i - 1];
+ } else {
+ m_cudaInputStrides[i] = 1;
+ m_cudaOutputStrides[i] = 1;
+ }
+ }
+ } else {
+ for (int i = NumDims - 1; i >= 0; --i) {
+ if (i + 1 < offset) {
+ m_cudaInputStrides[i] =
+ m_cudaInputStrides[i + 1] * cudaInputDimensions[i + 1];
+ m_cudaOutputStrides[i] =
+ m_cudaOutputStrides[i + 1] * cudaOutputDimensions[i + 1];
+ } else {
+ m_cudaInputStrides[i] = 1;
+ m_cudaOutputStrides[i] = 1;
+ }
+ }
+ }
+ }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputPlaneToTensorInputOffset(Index p) const {
+ Index inputIndex = 0;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int d = NumDims - 1; d > NumKernelDims; --d) {
+ const Index idx = p / m_cudaInputStrides[d];
+ inputIndex += idx * m_inputStrides[d];
+ p -= idx * m_cudaInputStrides[d];
+ }
+ inputIndex += p * m_inputStrides[NumKernelDims];
+ } else {
+ std::ptrdiff_t limit = 0;
+ if (NumKernelDims < NumDims) {
+ limit = NumDims - NumKernelDims - 1;
+ }
+ for (int d = 0; d < limit; ++d) {
+ const Index idx = p / m_cudaInputStrides[d];
+ inputIndex += idx * m_inputStrides[d];
+ p -= idx * m_cudaInputStrides[d];
+ }
+ inputIndex += p * m_inputStrides[limit];
+ }
+ return inputIndex;
+ }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputPlaneToTensorOutputOffset(Index p) const {
+ Index outputIndex = 0;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int d = NumDims - 1; d > NumKernelDims; --d) {
+ const Index idx = p / m_cudaOutputStrides[d];
+ outputIndex += idx * m_outputStrides[d];
+ p -= idx * m_cudaOutputStrides[d];
+ }
+ outputIndex += p * m_outputStrides[NumKernelDims];
+ } else {
+ std::ptrdiff_t limit = 0;
+ if (NumKernelDims < NumDims) {
+ limit = NumDims - NumKernelDims - 1;
+ }
+ for (int d = 0; d < limit; ++d) {
+ const Index idx = p / m_cudaOutputStrides[d];
+ outputIndex += idx * m_outputStrides[d];
+ p -= idx * m_cudaOutputStrides[d];
+ }
+ outputIndex += p * m_outputStrides[limit];
+ }
+ return outputIndex;
+ }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i) const {
+ const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
+ ? 0
+ : NumDims - NumKernelDims;
+ return i * m_inputStrides[offset];
+ }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i) const {
+ const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
+ ? 0
+ : NumDims - NumKernelDims;
+ return i * m_outputStrides[offset];
+ }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i, Index j) const {
+ const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
+ ? 0
+ : NumDims - NumKernelDims;
+ return i * m_inputStrides[offset] + j * m_inputStrides[offset + 1];
+ }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i, Index j) const {
+ const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
+ ? 0
+ : NumDims - NumKernelDims;
+ return i * m_outputStrides[offset] + j * m_outputStrides[offset + 1];
+ }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i, Index j, Index k) const {
+ const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
+ ? 0
+ : NumDims - NumKernelDims;
+ return i * m_inputStrides[offset] + j * m_inputStrides[offset + 1] +
+ k * m_inputStrides[offset + 2];
+ }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i, Index j, Index k) const {
+ const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
+ ? 0
+ : NumDims - NumKernelDims;
+ return i * m_outputStrides[offset] + j * m_outputStrides[offset + 1] +
+ k * m_outputStrides[offset + 2];
+ }
+
+ private:
+ static const int NumDims = internal::array_size<InputDims>::value;
+ array<Index, NumDims> m_inputStrides;
+ array<Index, NumDims> m_outputStrides;
+ array<Index, NumDims> m_cudaInputStrides;
+ array<Index, NumDims> m_cudaOutputStrides;
+};
+
+
+
+template<typename Dimensions, typename InputXprType, typename KernelXprType>
+struct traits<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >
+{
+ // Type promotion to handle the case where the types of the lhs and the rhs are different.
+ typedef typename promote_storage_type<typename InputXprType::Scalar,
+ typename KernelXprType::Scalar>::ret Scalar;
+ typedef typename promote_storage_type<typename traits<InputXprType>::StorageKind,
+ typename traits<KernelXprType>::StorageKind>::ret StorageKind;
+ typedef typename promote_index_type<typename traits<InputXprType>::Index,
+ typename traits<KernelXprType>::Index>::type Index;
+ typedef typename InputXprType::Nested LhsNested;
+ typedef typename KernelXprType::Nested RhsNested;
+ typedef typename remove_reference<LhsNested>::type _LhsNested;
+ typedef typename remove_reference<RhsNested>::type _RhsNested;
+ static const int NumDimensions = traits<InputXprType>::NumDimensions;
+ static const int Layout = traits<InputXprType>::Layout;
+
+ enum {
+ Flags = 0
+ };
+};
+
+template<typename Dimensions, typename InputXprType, typename KernelXprType>
+struct eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, Eigen::Dense>
+{
+ typedef const TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>& type;
+};
+
+template<typename Dimensions, typename InputXprType, typename KernelXprType>
+struct nested<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, 1, typename eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >::type>
+{
+ typedef TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> type;
+};
+
+} // end namespace internal
+
+
+
+template<typename Indices, typename InputXprType, typename KernelXprType>
+class TensorConvolutionOp : public TensorBase<TensorConvolutionOp<Indices, InputXprType, KernelXprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorConvolutionOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename internal::promote_storage_type<typename InputXprType::CoeffReturnType,
+ typename KernelXprType::CoeffReturnType>::ret CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorConvolutionOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorConvolutionOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorConvolutionOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConvolutionOp(const InputXprType& input, const KernelXprType& kernel, const Indices& dims)
+ : m_input_xpr(input), m_kernel_xpr(kernel), m_indices(dims) {}
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const Indices& indices() const { return m_indices; }
+
+ /** \returns the nested expressions */
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const typename internal::remove_all<typename InputXprType::Nested>::type&
+ inputExpression() const { return m_input_xpr; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const typename internal::remove_all<typename KernelXprType::Nested>::type&
+ kernelExpression() const { return m_kernel_xpr; }
+
+ protected:
+ typename InputXprType::Nested m_input_xpr;
+ typename KernelXprType::Nested m_kernel_xpr;
+ const Indices m_indices;
+};
+
+
+template<typename Indices, typename InputArgType, typename KernelArgType, typename Device>
+struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, Device>
+{
+ typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
+
+ static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, Device>::Dimensions>::value;
+ static const int NumKernelDims = internal::array_size<Indices>::value;
+ typedef typename XprType::Index Index;
+ typedef DSizes<Index, NumDims> Dimensions;
+
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = TensorEvaluator<InputArgType, Device>::IsAligned & TensorEvaluator<KernelArgType, Device>::IsAligned,
+ PacketAccess = TensorEvaluator<InputArgType, Device>::PacketAccess & TensorEvaluator<KernelArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<InputArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_inputImpl(op.inputExpression(), device), m_kernelImpl(op.kernelExpression(), device), m_kernelArg(op.kernelExpression()), m_kernel(NULL), m_local_kernel(false), m_device(device)
+ {
+ EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<KernelArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
+
+ const typename TensorEvaluator<InputArgType, Device>::Dimensions& input_dims = m_inputImpl.dimensions();
+ const typename TensorEvaluator<KernelArgType, Device>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
+
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_inputStride[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ m_inputStride[i] = m_inputStride[i - 1] * input_dims[i - 1];
+ }
+ } else {
+ m_inputStride[NumDims - 1] = 1;
+ for (int i = NumDims - 2; i >= 0; --i) {
+ m_inputStride[i] = m_inputStride[i + 1] * input_dims[i + 1];
+ }
+ }
+
+ m_dimensions = m_inputImpl.dimensions();
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = 0; i < NumKernelDims; ++i) {
+ const Index index = op.indices()[i];
+ const Index input_dim = input_dims[index];
+ const Index kernel_dim = kernel_dims[i];
+ const Index result_dim = input_dim - kernel_dim + 1;
+ m_dimensions[index] = result_dim;
+ if (i > 0) {
+ m_kernelStride[i] = m_kernelStride[i - 1] * kernel_dims[i - 1];
+ } else {
+ m_kernelStride[0] = 1;
+ }
+ m_indexStride[i] = m_inputStride[index];
+ }
+
+ m_outputStride[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ m_outputStride[i] = m_outputStride[i - 1] * m_dimensions[i - 1];
+ }
+ } else {
+ for (int i = NumKernelDims - 1; i >= 0; --i) {
+ const Index index = op.indices()[i];
+ const Index input_dim = input_dims[index];
+ const Index kernel_dim = kernel_dims[i];
+ const Index result_dim = input_dim - kernel_dim + 1;
+ m_dimensions[index] = result_dim;
+ if (i < NumKernelDims - 1) {
+ m_kernelStride[i] = m_kernelStride[i + 1] * kernel_dims[i + 1];
+ } else {
+ m_kernelStride[NumKernelDims - 1] = 1;
+ }
+ m_indexStride[i] = m_inputStride[index];
+ }
+
+ m_outputStride[NumDims - 1] = 1;
+ for (int i = NumDims - 2; i >= 0; --i) {
+ m_outputStride[i] = m_outputStride[i + 1] * m_dimensions[i + 1];
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
+ m_inputImpl.evalSubExprsIfNeeded(NULL);
+ preloadKernel();
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_inputImpl.cleanup();
+ if (m_local_kernel) {
+ m_device.deallocate((void*)m_kernel);
+ m_local_kernel = false;
+ }
+ m_kernel = NULL;
+ }
+
+ void evalTo(typename XprType::Scalar* buffer) {
+ evalSubExprsIfNeeded(NULL);
+ for (int i = 0; i < dimensions().TotalSize(); ++i) {
+ buffer[i] += coeff(i);
+ }
+ cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ CoeffReturnType result = CoeffReturnType(0);
+ convolve(firstInput(index), 0, NumKernelDims-1, result);
+ return result;
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC PacketReturnType packet(const Index index) const
+ {
+ Index indices[2] = {index, index+PacketSize-1};
+ Index startInputs[2] = {0, 0};
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ const Index idx0 = indices[0] / m_outputStride[i];
+ const Index idx1 = indices[1] / m_outputStride[i];
+ startInputs[0] += idx0 * m_inputStride[i];
+ startInputs[1] += idx1 * m_inputStride[i];
+ indices[0] -= idx0 * m_outputStride[i];
+ indices[1] -= idx1 * m_outputStride[i];
+ }
+ } else {
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const Index idx0 = indices[0] / m_outputStride[i];
+ const Index idx1 = indices[1] / m_outputStride[i];
+ startInputs[0] += idx0 * m_inputStride[i];
+ startInputs[1] += idx1 * m_inputStride[i];
+ indices[0] -= idx0 * m_outputStride[i];
+ indices[1] -= idx1 * m_outputStride[i];
+ }
+ }
+ startInputs[0] += indices[0];
+ startInputs[1] += indices[1];
+
+ if (startInputs[1]-startInputs[0] == PacketSize-1) {
+ PacketReturnType result = internal::pset1<PacketReturnType>(0);
+ convolvePacket(startInputs[0], 0, NumKernelDims-1, result);
+ return result;
+ } else {
+ EIGEN_ALIGN_MAX Scalar data[PacketSize];
+ data[0] = Scalar(0);
+ convolve(startInputs[0], 0, NumKernelDims-1, data[0]);
+ for (int i = 1; i < PacketSize-1; ++i) {
+ data[i] = Scalar(0);
+ convolve(firstInput(index+i), 0, NumKernelDims-1, data[i]);
+ }
+ data[PacketSize-1] = Scalar(0);
+ convolve(startInputs[1], 0, NumKernelDims-1, data[PacketSize-1]);
+ return internal::pload<PacketReturnType>(data);
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ const double kernel_size = m_kernelImpl.dimensions().TotalSize();
+ // We ignore the use of fused multiply-add.
+ const double convolve_compute_cost =
+ TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>();
+ const double firstIndex_compute_cost =
+ NumDims *
+ (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() +
+ TensorOpCost::DivCost<Index>());
+ return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) +
+ kernel_size * (m_inputImpl.costPerCoeff(vectorized) +
+ m_kernelImpl.costPerCoeff(vectorized) +
+ TensorOpCost(0, 0, convolve_compute_cost, vectorized,
+ PacketSize));
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ private:
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
+ Index startInput = 0;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ const Index idx = index / m_outputStride[i];
+ startInput += idx * m_inputStride[i];
+ index -= idx * m_outputStride[i];
+ }
+ } else {
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const Index idx = index / m_outputStride[i];
+ startInput += idx * m_inputStride[i];
+ index -= idx * m_outputStride[i];
+ }
+ }
+ startInput += index;
+ return startInput;
+ }
+
+ EIGEN_DEVICE_FUNC void convolve(Index firstIndex, Index firstKernel, int DimIndex, CoeffReturnType& accum) const {
+ for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) {
+ const Index input = firstIndex + j * m_indexStride[DimIndex];
+ const Index kernel = firstKernel + j * m_kernelStride[DimIndex];
+ if (DimIndex > 0) {
+ convolve(input, kernel, DimIndex-1, accum);
+ } else {
+ accum += m_inputImpl.coeff(input) * m_kernel[kernel];
+ }
+ }
+ }
+
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC void convolvePacket(Index firstIndex, Index firstKernel, int DimIndex, Packet& accum) const {
+ for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) {
+ const Index input = firstIndex + j * m_indexStride[DimIndex];
+ const Index kernel = firstKernel + j * m_kernelStride[DimIndex];
+ if (DimIndex > 0) {
+ convolvePacket(input, kernel, DimIndex-1, accum);
+ } else {
+ accum = internal::pmadd<Packet>(m_inputImpl.template packet<Unaligned>(input), internal::pset1<Packet>(m_kernel[kernel]), accum);
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void preloadKernel() {
+ // Don't make a local copy of the kernel unless we have to (i.e. it's an
+ // expression that needs to be evaluated)
+ const Scalar* in_place = m_kernelImpl.data();
+ if (in_place) {
+ m_kernel = in_place;
+ m_local_kernel = false;
+ } else {
+ size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
+ Scalar* local = (Scalar*)m_device.allocate(kernel_sz);
+ typedef TensorEvalToOp<const KernelArgType> EvalTo;
+ EvalTo evalToTmp(local, m_kernelArg);
+ const bool PacketAccess = internal::IsVectorizable<Device, KernelArgType>::value;
+ internal::TensorExecutor<const EvalTo, Device, PacketAccess>::run(evalToTmp, m_device);
+
+ m_kernel = local;
+ m_local_kernel = true;
+ }
+ }
+
+ array<Index, NumDims> m_inputStride;
+ array<Index, NumDims> m_outputStride;
+
+ array<Index, NumKernelDims> m_indexStride;
+ array<Index, NumKernelDims> m_kernelStride;
+ TensorEvaluator<InputArgType, Device> m_inputImpl;
+ TensorEvaluator<KernelArgType, Device> m_kernelImpl;
+ Dimensions m_dimensions;
+
+ KernelArgType m_kernelArg;
+ const Scalar* m_kernel;
+ bool m_local_kernel;
+ const Device& m_device;
+};
+
+
+
+
+// Use an optimized implementation of the evaluation code for GPUs whenever possible.
+#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
+
+template <int StaticKernelSize>
+struct GetKernelSize {
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int /*kernelSize*/) const {
+ return StaticKernelSize;
+ }
+};
+template <>
+struct GetKernelSize<Dynamic> {
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int kernelSize) const {
+ return kernelSize;
+ }
+};
+
+template <typename InputEvaluator, typename Index, typename InputDims,
+ int StaticKernelSize>
+__global__ void EigenConvolutionKernel1D(
+ InputEvaluator eval,
+ const internal::IndexMapper<Index, InputDims, 1, InputEvaluator::Layout>
+ indexMapper,
+ const float* __restrict kernel, const int numPlanes, const int numX,
+ const int maxX, const int kernelSize, float* buffer) {
+ extern __shared__ float s[];
+
+ const int first_x = blockIdx.x * maxX;
+ const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
+ const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSize>()(kernelSize);
+ const int num_x_output = last_x - first_x + 1;
+
+ const int first_plane = blockIdx.y * blockDim.y;
+ const int plane_stride = blockDim.y * gridDim.y;
+
+ for (int p = first_plane + threadIdx.y; p < numPlanes; p += plane_stride) {
+ // Load inputs to shared memory
+ const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
+ const int plane_kernel_offset = threadIdx.y * num_x_input;
+ #pragma unroll
+ for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
+ const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x);
+ s[i + plane_kernel_offset] = eval.coeff(tensor_index);
+ }
+
+ __syncthreads();
+
+ // Compute the convolution
+ const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p);
+
+ #pragma unroll
+ for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
+ const int kernel_offset = plane_kernel_offset + i;
+ float result = 0.0f;
+ #pragma unroll
+ for (int k = 0; k < GetKernelSize<StaticKernelSize>()(kernelSize); ++k) {
+ result += s[k + kernel_offset] * kernel[k];
+ }
+ const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x);
+ buffer[tensor_index] = result;
+ }
+ __syncthreads();
+ }
+};
+
+template <typename InputEvaluator, typename Index, typename InputDims,
+ int StaticKernelSizeX, int StaticKernelSizeY>
+__global__ void EigenConvolutionKernel2D(
+ InputEvaluator eval,
+ const internal::IndexMapper<Index, InputDims, 2, InputEvaluator::Layout>
+ indexMapper,
+ const float* __restrict kernel, const int numPlanes, const int numX,
+ const int maxX, const int numY, const int maxY, const int kernelSizeX,
+ const int kernelSizeY, float* buffer) {
+ extern __shared__ float s[];
+
+ const int first_x = blockIdx.x * maxX;
+ const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
+ const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSizeX>()(kernelSizeX);
+ const int num_x_output = last_x - first_x + 1;
+
+ const int first_y = blockIdx.y * maxY;
+ const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1;
+ const int num_y_input = last_y - first_y + GetKernelSize<StaticKernelSizeY>()(kernelSizeY);
+ const int num_y_output = last_y - first_y + 1;
+
+ const int first_plane = blockIdx.z * blockDim.z;
+ const int plane_stride = blockDim.z * gridDim.z;
+
+ for (int p = first_plane + threadIdx.z; p < numPlanes; p += plane_stride) {
+
+ const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
+ const int plane_kernel_offset = threadIdx.z * num_y_input;
+
+ // Load inputs to shared memory
+ #pragma unroll
+ for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) {
+ const int input_offset = num_x_input * (j + plane_kernel_offset);
+ #pragma unroll
+ for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
+ const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x, j+first_y);
+ s[i + input_offset] = eval.coeff(tensor_index);
+ }
+ }
+
+ __syncthreads();
+
+ // Convolution
+ const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p);
+
+ #pragma unroll
+ for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) {
+ #pragma unroll
+ for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
+ float result = 0.0f;
+ #pragma unroll
+ for (int l = 0; l < GetKernelSize<StaticKernelSizeY>()(kernelSizeY); ++l) {
+ const int kernel_offset = kernelSizeX * l;
+ const int input_offset = i + num_x_input * (j + l + plane_kernel_offset);
+ #pragma unroll
+ for (int k = 0; k < GetKernelSize<StaticKernelSizeX>()(kernelSizeX); ++k) {
+ result += s[k + input_offset] * kernel[k + kernel_offset];
+ }
+ }
+ const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x, j+first_y);
+ buffer[tensor_index] = result;
+ }
+ }
+
+ __syncthreads();
+ }
+};
+
+template <typename InputEvaluator, typename Index, typename InputDims>
+__global__ void EigenConvolutionKernel3D(
+ InputEvaluator eval,
+ const internal::IndexMapper<Index, InputDims, 3, InputEvaluator::Layout>
+ indexMapper,
+ const float* __restrict kernel, const size_t numPlanes, const size_t numX,
+ const size_t maxX, const size_t numY, const size_t maxY, const size_t numZ,
+ const size_t maxZ, const size_t kernelSizeX, const size_t kernelSizeY,
+ const size_t kernelSizeZ, float* buffer) {
+ extern __shared__ float s[];
+
+ // Load inputs to shared memory
+ const int first_x = blockIdx.x * maxX;
+ const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
+ const int num_x_input = last_x - first_x + kernelSizeX;
+
+ const int first_y = blockIdx.y * maxY;
+ const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1;
+ const int num_y_input = last_y - first_y + kernelSizeY;
+
+ const int first_z = blockIdx.z * maxZ;
+ const int last_z = (first_z + maxZ < numZ ? first_z + maxZ : numZ) - 1;
+ const int num_z_input = last_z - first_z + kernelSizeZ;
+
+ for (int p = 0; p < numPlanes; ++p) {
+
+ const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
+ const int plane_kernel_offset = 0;
+
+ for (int k = threadIdx.z; k < num_z_input; k += blockDim.z) {
+ for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) {
+ for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
+ const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x, j+first_y, k+first_z);
+ s[i + num_x_input * (j + num_y_input * (k + plane_kernel_offset))] = eval.coeff(tensor_index);
+ }
+ }
+ }
+
+ __syncthreads();
+
+ // Convolution
+ const int num_z_output = last_z - first_z + 1;
+ const int num_y_output = last_y - first_y + 1;
+ const int num_x_output = last_x - first_x + 1;
+ const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p);
+
+ for (int k = threadIdx.z; k < num_z_output; k += blockDim.z) {
+ for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) {
+ for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
+ float result = 0.0f;
+ for (int n = 0; n < kernelSizeZ; ++n) {
+ for (int m = 0; m < kernelSizeY; ++m) {
+ for (int l = 0; l < kernelSizeX; ++l) {
+ result += s[i + l + num_x_input * (j + m + num_y_input * (k + n + plane_kernel_offset))] * kernel[l + kernelSizeX * (m + kernelSizeY * n)];
+ }
+ }
+ }
+ const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x, j+first_y, k+first_z);
+ buffer[tensor_index] = result;
+ }
+ }
+ }
+ __syncthreads();
+ }
+};
+
+
+
+template<typename Indices, typename InputArgType, typename KernelArgType>
+struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, GpuDevice>
+{
+ typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
+
+ static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions>::value;
+ static const int NumKernelDims = internal::array_size<Indices>::value;
+ typedef typename XprType::Index Index;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions KernelDimensions;
+
+ enum {
+ IsAligned = TensorEvaluator<InputArgType, GpuDevice>::IsAligned & TensorEvaluator<KernelArgType, GpuDevice>::IsAligned,
+ PacketAccess = false,
+ Layout = TensorEvaluator<InputArgType, GpuDevice>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const GpuDevice& device)
+ : m_inputImpl(op.inputExpression(), device), m_kernelArg(op.kernelExpression()), m_kernelImpl(op.kernelExpression(), device), m_indices(op.indices()), m_buf(NULL), m_kernel(NULL), m_local_kernel(false), m_device(device)
+ {
+ EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, GpuDevice>::Layout) == static_cast<int>(TensorEvaluator<KernelArgType, GpuDevice>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
+
+ const typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions& input_dims = m_inputImpl.dimensions();
+ const typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
+
+ m_dimensions = m_inputImpl.dimensions();
+ for (int i = 0; i < NumKernelDims; ++i) {
+ const Index index = op.indices()[i];
+ const Index input_dim = input_dims[index];
+ const Index kernel_dim = kernel_dims[i];
+ const Index result_dim = input_dim - kernel_dim + 1;
+ m_dimensions[index] = result_dim;
+ }
+ }
+
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, GpuDevice>::type PacketReturnType;
+ typedef typename InputArgType::Scalar Scalar;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
+ preloadKernel();
+ m_inputImpl.evalSubExprsIfNeeded(NULL);
+ if (data) {
+ executeEval(data);
+ return false;
+ } else {
+ m_buf = (Scalar*)m_device.allocate(dimensions().TotalSize() * sizeof(Scalar));
+ executeEval(m_buf);
+ return true;
+ }
+ }
+
+ EIGEN_STRONG_INLINE void cleanup() {
+ m_inputImpl.cleanup();
+ if (m_buf) {
+ m_device.deallocate(m_buf);
+ m_buf = NULL;
+ }
+ if (m_local_kernel) {
+ m_device.deallocate((void*)m_kernel);
+ m_local_kernel = false;
+ }
+ m_kernel = NULL;
+ }
+
+ EIGEN_STRONG_INLINE void preloadKernel() {
+ // Don't make a local copy of the kernel unless we have to (i.e. it's an
+ // expression that needs to be evaluated)
+ const Scalar* in_place = m_kernelImpl.data();
+ if (in_place) {
+ m_kernel = in_place;
+ m_local_kernel = false;
+ } else {
+ size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
+ Scalar* local = (Scalar*)m_device.allocate(kernel_sz);
+ typedef TensorEvalToOp<const KernelArgType> EvalTo;
+ EvalTo evalToTmp(local, m_kernelArg);
+ const bool PacketAccess = internal::IsVectorizable<GpuDevice, KernelArgType>::value;
+ internal::TensorExecutor<const EvalTo, GpuDevice, PacketAccess>::run(evalToTmp, m_device);
+
+ m_kernel = local;
+ m_local_kernel = true;
+ }
+ }
+
+ static unsigned int ceil(unsigned int num, unsigned int denom) {
+ const unsigned int rounded_toward_zero = num / denom;
+ if (num > rounded_toward_zero * denom) {
+ return rounded_toward_zero + 1;
+ }
+ return rounded_toward_zero;
+ }
+
+ void executeEval(Scalar* data) const {
+ typedef typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions InputDims;
+
+ const int maxSharedMem = m_device.sharedMemPerBlock();
+ const int maxThreadsPerBlock = m_device.maxCudaThreadsPerBlock();
+ const int maxBlocksPerProcessor = m_device.maxCudaThreadsPerMultiProcessor() / maxThreadsPerBlock;
+ const int numMultiProcessors = m_device.getNumCudaMultiProcessors();
+ const int warpSize = 32;
+
+ switch (NumKernelDims) {
+ case 1: {
+ const int kernel_size = m_kernelImpl.dimensions().TotalSize();
+
+ const int numX = dimensions()[m_indices[0]];
+ const int numP = dimensions().TotalSize() / numX;
+ int maxX;
+ dim3 block_size;
+
+ const int single_stride_dim =
+ static_cast<int>(Layout) == static_cast<int>(ColMajor)
+ ? 0
+ : m_inputImpl.dimensions().rank() - 1;
+ if (m_indices[0] == single_stride_dim) {
+ // Maximum the reuse
+ const int inner_dim = ((maxSharedMem / (sizeof(Scalar)) - kernel_size + 1 + 31) / 32) * 32;
+ maxX = numext::mini<int>(inner_dim, numX);
+ const int maxP = numext::mini<int>(maxSharedMem / ((kernel_size - 1 + maxX) * sizeof(Scalar)), numP);
+ block_size.x = numext::mini(maxThreadsPerBlock, maxX);
+ block_size.y = numext::mini<int>(maxThreadsPerBlock / block_size.x, maxP);
+ }
+ else {
+ // Read as much as possible alongside the inner most dimension, that is the plane
+ const int inner_dim = maxSharedMem / ((warpSize + kernel_size) * sizeof(Scalar));
+ const int maxP = numext::mini<int>(inner_dim, numP);
+ maxX = numext::mini<int>(maxSharedMem / (inner_dim * sizeof(Scalar)) - kernel_size + 1, numX);
+
+ block_size.x = numext::mini(warpSize, maxX);
+ block_size.y = numext::mini<int>(maxThreadsPerBlock/block_size.x, maxP);
+ }
+
+ const int shared_mem = block_size.y * (maxX + kernel_size - 1) * sizeof(Scalar);
+ assert(shared_mem <= maxSharedMem);
+
+ const int num_x_blocks = ceil(numX, maxX);
+ const int blocksPerProcessor = numext::mini(maxBlocksPerProcessor, maxSharedMem / shared_mem);
+ const int num_y_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks);
+
+ dim3 num_blocks(num_x_blocks, numext::mini<int>(num_y_blocks, ceil(numP, block_size.y)));
+
+
+ //cout << "launching 1D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " maxX: " << maxX << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
+
+ const array<Index, 1> indices(m_indices[0]);
+ const array<Index, 1> kernel_dims(m_kernelImpl.dimensions()[0]);
+ internal::IndexMapper<Index, InputDims, 1, Layout> indexMapper(
+ m_inputImpl.dimensions(), kernel_dims, indices);
+ switch(kernel_size) {
+ case 4: {
+ LAUNCH_CUDA_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 4, data);
+ break;
+ }
+ case 7: {
+ LAUNCH_CUDA_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 7, data);
+ break;
+ }
+ default: {
+ LAUNCH_CUDA_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, kernel_size, data);
+ }
+ }
+ break;
+ }
+
+ case 2: {
+ const int idxX =
+ static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 1;
+ const int idxY =
+ static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 0;
+ const int kernel_size_x = m_kernelImpl.dimensions()[idxX];
+ const int kernel_size_y = m_kernelImpl.dimensions()[idxY];
+
+ const int numX = dimensions()[m_indices[idxX]];
+ const int numY = dimensions()[m_indices[idxY]];
+ const int numP = dimensions().TotalSize() / (numX*numY);
+
+ const float scaling_factor = sqrtf(static_cast<float>(maxSharedMem) / (sizeof(Scalar) * kernel_size_y * kernel_size_x));
+
+ // Snap maxX to warp size
+ int inner_dim = ((static_cast<int>(scaling_factor * kernel_size_x) - kernel_size_x + 1 + 32) / 32) * 32;
+ const int maxX = numext::mini<int>(inner_dim, numX);
+ const int maxY = numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1)) - kernel_size_y + 1, numY);
+ const int maxP = numext::mini<int>(maxSharedMem / ((kernel_size_x - 1 + maxX) * (kernel_size_y - 1 + maxY) * sizeof(Scalar)), numP);
+
+ dim3 block_size;
+ block_size.x = numext::mini(1024, maxX);
+ block_size.y = numext::mini<int>(1024/block_size.x, maxY);
+ block_size.z = numext::mini<int>(1024/(block_size.x*block_size.y), maxP);
+
+ const int shared_mem = block_size.z * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * sizeof(Scalar);
+ assert(shared_mem <= maxSharedMem);
+
+ const int num_x_blocks = ceil(numX, maxX);
+ const int num_y_blocks = ceil(numY, maxY);
+ const int blocksPerProcessor = numext::mini(maxBlocksPerProcessor, maxSharedMem / shared_mem);
+ const int num_z_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks * num_y_blocks);
+
+ dim3 num_blocks(num_x_blocks, num_y_blocks, numext::mini<int>(num_z_blocks, ceil(numP, block_size.z)));
+
+
+ //cout << "launching 2D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " maxX: " << maxX << " maxY: " << maxY << " maxP: " << maxP << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
+
+ const array<Index, 2> indices(m_indices[idxX], m_indices[idxY]);
+ const array<Index, 2> kernel_dims(m_kernelImpl.dimensions()[idxX],
+ m_kernelImpl.dimensions()[idxY]);
+ internal::IndexMapper<Index, InputDims, 2, Layout> indexMapper(
+ m_inputImpl.dimensions(), kernel_dims, indices);
+ switch (kernel_size_x) {
+ case 4: {
+ switch (kernel_size_y) {
+ case 7: {
+ LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, 7, data);
+ break;
+ }
+ default: {
+ LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, kernel_size_y, data);
+ break;
+ }
+ }
+ break;
+ }
+ case 7: {
+ switch (kernel_size_y) {
+ case 4: {
+ LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, 4, data);
+ break;
+ }
+ default: {
+ LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, kernel_size_y, data);
+ break;
+ }
+ }
+ break;
+ }
+ default: {
+ LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, kernel_size_x, kernel_size_y, data);
+ break;
+ }
+ }
+ break;
+ }
+
+ case 3: {
+ const int idxX =
+ static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 2;
+ const int idxY =
+ static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 1;
+ const int idxZ =
+ static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 2 : 0;
+
+ const int kernel_size_x = m_kernelImpl.dimensions()[idxX];
+ const int kernel_size_y = m_kernelImpl.dimensions()[idxY];
+ const int kernel_size_z = m_kernelImpl.dimensions()[idxZ];
+
+ const int numX = dimensions()[m_indices[idxX]];
+ const int numY = dimensions()[m_indices[idxY]];
+ const int numZ = dimensions()[m_indices[idxZ]];
+ const int numP = dimensions().TotalSize() / (numX*numY*numZ);
+
+ const int maxX = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * kernel_size_y * kernel_size_z) - kernel_size_x + 1, numX));
+ const int maxY = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * kernel_size_z) - kernel_size_y + 1, numY));
+ const int maxZ = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1)) - kernel_size_z + 1, numZ));
+
+ dim3 block_size;
+ block_size.x = numext::mini(32, maxX);
+ block_size.y = numext::mini(32, maxY);
+ block_size.z = numext::mini<int>(1024/(block_size.x*block_size.y), maxZ);
+ dim3 num_blocks(ceil(numX, maxX), ceil(numY, maxY), ceil(numZ, maxZ));
+
+ const int shared_mem = (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * (maxZ + kernel_size_z - 1) * sizeof(Scalar);
+ assert(shared_mem <= maxSharedMem);
+
+ //cout << "launching 3D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
+ const array<Index, 3> indices(m_indices[idxX], m_indices[idxY],
+ m_indices[idxZ]);
+ const array<Index, 3> kernel_dims(m_kernelImpl.dimensions()[idxX],
+ m_kernelImpl.dimensions()[idxY],
+ m_kernelImpl.dimensions()[idxZ]);
+ internal::IndexMapper<Index, InputDims, 3, Layout> indexMapper(
+ m_inputImpl.dimensions(), kernel_dims, indices);
+
+ LAUNCH_CUDA_KERNEL((EigenConvolutionKernel3D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, numZ, maxZ, kernel_size_x, kernel_size_y, kernel_size_z, data);
+ break;
+ }
+
+ default: {
+ EIGEN_STATIC_ASSERT((NumKernelDims >= 1 && NumKernelDims <= 3), THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE);
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ eigen_assert(m_buf);
+ eigen_assert(index < m_dimensions.TotalSize());
+ return m_buf[index];
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(const Index index) const
+ {
+ eigen_assert(m_buf);
+ eigen_assert(index < m_dimensions.TotalSize());
+ return internal::ploadt<PacketReturnType, LoadMode>(m_buf+index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ // TODO(rmlarsen): FIXME: For now, this is just a copy of the CPU cost
+ // model.
+ const double kernel_size = m_kernelImpl.dimensions().TotalSize();
+ // We ignore the use of fused multiply-add.
+ const double convolve_compute_cost =
+ TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>();
+ const double firstIndex_compute_cost =
+ NumDims *
+ (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() +
+ TensorOpCost::DivCost<Index>());
+ return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) +
+ kernel_size * (m_inputImpl.costPerCoeff(vectorized) +
+ m_kernelImpl.costPerCoeff(vectorized) +
+ TensorOpCost(0, 0, convolve_compute_cost, vectorized,
+ PacketSize));
+ }
+
+ private:
+ // No assignment (copies are needed by the kernels)
+ TensorEvaluator& operator = (const TensorEvaluator&);
+
+ TensorEvaluator<InputArgType, GpuDevice> m_inputImpl;
+ TensorEvaluator<KernelArgType, GpuDevice> m_kernelImpl;
+ KernelArgType m_kernelArg;
+ Indices m_indices;
+ Dimensions m_dimensions;
+ Scalar* m_buf;
+ const Scalar* m_kernel;
+ bool m_local_kernel;
+
+ const GpuDevice& m_device;
+};
+#endif
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h b/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h
new file mode 100644
index 000000000..83c449cf1
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h
@@ -0,0 +1,212 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016 Rasmus Munk Larsen <rmlarsen@google.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H
+#define EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H
+
+namespace Eigen {
+
+/** \class TensorEvaluator
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief A cost model used to limit the number of threads used for evaluating
+ * tensor expression.
+ *
+ */
+
+// Class storing the cost of evaluating a tensor expression in terms of the
+// estimated number of operand bytes loads, bytes stored, and compute cycles.
+class TensorOpCost {
+ public:
+ // TODO(rmlarsen): Fix the scalar op costs in Eigen proper. Even a simple
+ // model based on minimal reciprocal throughput numbers from Intel or
+ // Agner Fog's tables would be better than what is there now.
+ template <typename ArgType>
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int MulCost() {
+ return internal::functor_traits<
+ internal::scalar_product_op<ArgType, ArgType> >::Cost;
+ }
+ template <typename ArgType>
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int AddCost() {
+ return internal::functor_traits<internal::scalar_sum_op<ArgType> >::Cost;
+ }
+ template <typename ArgType>
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int DivCost() {
+ return internal::functor_traits<
+ internal::scalar_quotient_op<ArgType, ArgType> >::Cost;
+ }
+ template <typename ArgType>
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int ModCost() {
+ return internal::functor_traits<internal::scalar_mod_op<ArgType> >::Cost;
+ }
+ template <typename SrcType, typename TargetType>
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int CastCost() {
+ return internal::functor_traits<
+ internal::scalar_cast_op<SrcType, TargetType> >::Cost;
+ }
+
+ EIGEN_DEVICE_FUNC
+ TensorOpCost() : bytes_loaded_(0), bytes_stored_(0), compute_cycles_(0) {}
+ EIGEN_DEVICE_FUNC
+ TensorOpCost(double bytes_loaded, double bytes_stored, double compute_cycles)
+ : bytes_loaded_(bytes_loaded),
+ bytes_stored_(bytes_stored),
+ compute_cycles_(compute_cycles) {}
+
+ EIGEN_DEVICE_FUNC
+ TensorOpCost(double bytes_loaded, double bytes_stored, double compute_cycles,
+ bool vectorized, double packet_size)
+ : bytes_loaded_(bytes_loaded),
+ bytes_stored_(bytes_stored),
+ compute_cycles_(vectorized ? compute_cycles / packet_size
+ : compute_cycles) {
+ eigen_assert(bytes_loaded >= 0 && (numext::isfinite)(bytes_loaded));
+ eigen_assert(bytes_stored >= 0 && (numext::isfinite)(bytes_stored));
+ eigen_assert(compute_cycles >= 0 && (numext::isfinite)(compute_cycles));
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double bytes_loaded() const {
+ return bytes_loaded_;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double bytes_stored() const {
+ return bytes_stored_;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double compute_cycles() const {
+ return compute_cycles_;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double total_cost(
+ double load_cost, double store_cost, double compute_cost) const {
+ return load_cost * bytes_loaded_ + store_cost * bytes_stored_ +
+ compute_cost * compute_cycles_;
+ }
+
+ // Drop memory access component. Intended for cases when memory accesses are
+ // sequential or are completely masked by computations.
+ EIGEN_DEVICE_FUNC void dropMemoryCost() {
+ bytes_loaded_ = 0;
+ bytes_stored_ = 0;
+ }
+
+ // TODO(rmlarsen): Define min in terms of total cost, not elementwise.
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost cwiseMin(
+ const TensorOpCost& rhs) const {
+ double bytes_loaded = numext::mini(bytes_loaded_, rhs.bytes_loaded());
+ double bytes_stored = numext::mini(bytes_stored_, rhs.bytes_stored());
+ double compute_cycles = numext::mini(compute_cycles_, rhs.compute_cycles());
+ return TensorOpCost(bytes_loaded, bytes_stored, compute_cycles);
+ }
+
+ // TODO(rmlarsen): Define max in terms of total cost, not elementwise.
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost cwiseMax(
+ const TensorOpCost& rhs) const {
+ double bytes_loaded = numext::maxi(bytes_loaded_, rhs.bytes_loaded());
+ double bytes_stored = numext::maxi(bytes_stored_, rhs.bytes_stored());
+ double compute_cycles = numext::maxi(compute_cycles_, rhs.compute_cycles());
+ return TensorOpCost(bytes_loaded, bytes_stored, compute_cycles);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost& operator+=(
+ const TensorOpCost& rhs) {
+ bytes_loaded_ += rhs.bytes_loaded();
+ bytes_stored_ += rhs.bytes_stored();
+ compute_cycles_ += rhs.compute_cycles();
+ return *this;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost& operator*=(double rhs) {
+ bytes_loaded_ *= rhs;
+ bytes_stored_ *= rhs;
+ compute_cycles_ *= rhs;
+ return *this;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend TensorOpCost operator+(
+ TensorOpCost lhs, const TensorOpCost& rhs) {
+ lhs += rhs;
+ return lhs;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend TensorOpCost operator*(
+ TensorOpCost lhs, double rhs) {
+ lhs *= rhs;
+ return lhs;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend TensorOpCost operator*(
+ double lhs, TensorOpCost rhs) {
+ rhs *= lhs;
+ return rhs;
+ }
+
+ friend std::ostream& operator<<(std::ostream& os, const TensorOpCost& tc) {
+ return os << "[bytes_loaded = " << tc.bytes_loaded()
+ << ", bytes_stored = " << tc.bytes_stored()
+ << ", compute_cycles = " << tc.compute_cycles() << "]";
+ }
+
+ private:
+ double bytes_loaded_;
+ double bytes_stored_;
+ double compute_cycles_;
+};
+
+// TODO(rmlarsen): Implement a policy that chooses an "optimal" number of theads
+// in [1:max_threads] instead of just switching multi-threading off for small
+// work units.
+template <typename Device>
+class TensorCostModel {
+ public:
+ // Scaling from Eigen compute cost to device cycles.
+ static const int kDeviceCyclesPerComputeCycle = 1;
+
+ // Costs in device cycles.
+ static const int kStartupCycles = 100000;
+ static const int kPerThreadCycles = 100000;
+ static const int kTaskSize = 40000;
+
+ // Returns the number of threads in [1:max_threads] to use for
+ // evaluating an expression with the given output size and cost per
+ // coefficient.
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int numThreads(
+ double output_size, const TensorOpCost& cost_per_coeff, int max_threads) {
+ double cost = totalCost(output_size, cost_per_coeff);
+ int threads = (cost - kStartupCycles) / kPerThreadCycles + 0.9;
+ return numext::mini(max_threads, numext::maxi(1, threads));
+ }
+
+ // taskSize assesses parallel task size.
+ // Value of 1.0 means ideal parallel task size. Values < 1.0 mean that task
+ // granularity needs to be increased to mitigate parallelization overheads.
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double taskSize(
+ double output_size, const TensorOpCost& cost_per_coeff) {
+ return totalCost(output_size, cost_per_coeff) / kTaskSize;
+ }
+
+ private:
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double totalCost(
+ double output_size, const TensorOpCost& cost_per_coeff) {
+ // Cost of memory fetches from L2 cache. 64 is typical cache line size.
+ // 11 is L2 cache latency on Haswell.
+ // We don't know whether data is in L1, L2 or L3. But we are most interested
+ // in single-threaded computational time around 100us-10ms (smaller time
+ // is too small for parallelization, larger time is not intersting
+ // either because we are probably using all available threads already).
+ // And for the target time range, L2 seems to be what matters. Data set
+ // fitting into L1 is too small to take noticeable time. Data set fitting
+ // only into L3 presumably will take more than 10ms to load and process.
+ const double kLoadCycles = 1.0 / 64 * 11;
+ const double kStoreCycles = 1.0 / 64 * 11;
+ // Scaling from Eigen compute cost to device cycles.
+ return output_size *
+ cost_per_coeff.total_cost(kLoadCycles, kStoreCycles,
+ kDeviceCyclesPerComputeCycle);
+ }
+};
+
+} // namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h b/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h
new file mode 100644
index 000000000..e020d076f
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h
@@ -0,0 +1,313 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H
+#define EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H
+
+namespace Eigen {
+
+/** \class TensorCustomUnaryOp
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor custom class.
+ *
+ *
+ */
+namespace internal {
+template<typename CustomUnaryFunc, typename XprType>
+struct traits<TensorCustomUnaryOp<CustomUnaryFunc, XprType> >
+{
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::StorageKind StorageKind;
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = traits<XprType>::NumDimensions;
+ static const int Layout = traits<XprType>::Layout;
+};
+
+template<typename CustomUnaryFunc, typename XprType>
+struct eval<TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Eigen::Dense>
+{
+ typedef const TensorCustomUnaryOp<CustomUnaryFunc, XprType>& type;
+};
+
+template<typename CustomUnaryFunc, typename XprType>
+struct nested<TensorCustomUnaryOp<CustomUnaryFunc, XprType> >
+{
+ typedef TensorCustomUnaryOp<CustomUnaryFunc, XprType> type;
+};
+
+} // end namespace internal
+
+
+
+template<typename CustomUnaryFunc, typename XprType>
+class TensorCustomUnaryOp : public TensorBase<TensorCustomUnaryOp<CustomUnaryFunc, XprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename internal::traits<TensorCustomUnaryOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename internal::nested<TensorCustomUnaryOp>::type Nested;
+ typedef typename internal::traits<TensorCustomUnaryOp>::StorageKind StorageKind;
+ typedef typename internal::traits<TensorCustomUnaryOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCustomUnaryOp(const XprType& expr, const CustomUnaryFunc& func)
+ : m_expr(expr), m_func(func) {}
+
+ EIGEN_DEVICE_FUNC
+ const CustomUnaryFunc& func() const { return m_func; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_expr; }
+
+ protected:
+ typename XprType::Nested m_expr;
+ const CustomUnaryFunc m_func;
+};
+
+
+// Eval as rvalue
+template<typename CustomUnaryFunc, typename XprType, typename Device>
+struct TensorEvaluator<const TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Device>
+{
+ typedef TensorCustomUnaryOp<CustomUnaryFunc, XprType> ArgType;
+ typedef typename internal::traits<ArgType>::Index Index;
+ static const int NumDims = internal::traits<ArgType>::NumDimensions;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename internal::remove_const<typename ArgType::Scalar>::type Scalar;
+ typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = (internal::packet_traits<Scalar>::size > 1),
+ BlockAccess = false,
+ Layout = TensorEvaluator<XprType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const ArgType& op, const Device& device)
+ : m_op(op), m_device(device), m_result(NULL)
+ {
+ m_dimensions = op.func().dimensions(op.expression());
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
+ if (data) {
+ evalTo(data);
+ return false;
+ } else {
+ m_result = static_cast<CoeffReturnType*>(
+ m_device.allocate(dimensions().TotalSize() * sizeof(Scalar)));
+ evalTo(m_result);
+ return true;
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ if (m_result != NULL) {
+ m_device.deallocate(m_result);
+ m_result = NULL;
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
+ return m_result[index];
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const {
+ return internal::ploadt<PacketReturnType, LoadMode>(m_result + index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ // TODO(rmlarsen): Extend CustomOp API to return its cost estimate.
+ return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
+ }
+
+ EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return m_result; }
+
+ protected:
+ EIGEN_DEVICE_FUNC void evalTo(Scalar* data) {
+ TensorMap<Tensor<CoeffReturnType, NumDims, Layout, Index> > result(
+ data, m_dimensions);
+ m_op.func().eval(m_op.expression(), result, m_device);
+ }
+
+ Dimensions m_dimensions;
+ const ArgType m_op;
+ const Device& m_device;
+ CoeffReturnType* m_result;
+};
+
+
+
+/** \class TensorCustomBinaryOp
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor custom class.
+ *
+ *
+ */
+namespace internal {
+template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType>
+struct traits<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> >
+{
+ typedef typename internal::promote_storage_type<typename LhsXprType::Scalar,
+ typename RhsXprType::Scalar>::ret Scalar;
+ typedef typename internal::promote_storage_type<typename LhsXprType::CoeffReturnType,
+ typename RhsXprType::CoeffReturnType>::ret CoeffReturnType;
+ typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind,
+ typename traits<RhsXprType>::StorageKind>::ret StorageKind;
+ typedef typename promote_index_type<typename traits<LhsXprType>::Index,
+ typename traits<RhsXprType>::Index>::type Index;
+ typedef typename LhsXprType::Nested LhsNested;
+ typedef typename RhsXprType::Nested RhsNested;
+ typedef typename remove_reference<LhsNested>::type _LhsNested;
+ typedef typename remove_reference<RhsNested>::type _RhsNested;
+ static const int NumDimensions = traits<LhsXprType>::NumDimensions;
+ static const int Layout = traits<LhsXprType>::Layout;
+};
+
+template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType>
+struct eval<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, Eigen::Dense>
+{
+ typedef const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>& type;
+};
+
+template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType>
+struct nested<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> >
+{
+ typedef TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> type;
+};
+
+} // end namespace internal
+
+
+
+template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType>
+class TensorCustomBinaryOp : public TensorBase<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename internal::traits<TensorCustomBinaryOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename internal::traits<TensorCustomBinaryOp>::CoeffReturnType CoeffReturnType;
+ typedef typename internal::nested<TensorCustomBinaryOp>::type Nested;
+ typedef typename internal::traits<TensorCustomBinaryOp>::StorageKind StorageKind;
+ typedef typename internal::traits<TensorCustomBinaryOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCustomBinaryOp(const LhsXprType& lhs, const RhsXprType& rhs, const CustomBinaryFunc& func)
+
+ : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_func(func) {}
+
+ EIGEN_DEVICE_FUNC
+ const CustomBinaryFunc& func() const { return m_func; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename LhsXprType::Nested>::type&
+ lhsExpression() const { return m_lhs_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename RhsXprType::Nested>::type&
+ rhsExpression() const { return m_rhs_xpr; }
+
+ protected:
+ typename LhsXprType::Nested m_lhs_xpr;
+ typename RhsXprType::Nested m_rhs_xpr;
+ const CustomBinaryFunc m_func;
+};
+
+
+// Eval as rvalue
+template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType, typename Device>
+struct TensorEvaluator<const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, Device>
+{
+ typedef TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> XprType;
+ typedef typename internal::traits<XprType>::Index Index;
+ static const int NumDims = internal::traits<XprType>::NumDimensions;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = (internal::packet_traits<Scalar>::size > 1),
+ BlockAccess = false,
+ Layout = TensorEvaluator<LhsXprType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_op(op), m_device(device), m_result(NULL)
+ {
+ m_dimensions = op.func().dimensions(op.lhsExpression(), op.rhsExpression());
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
+ if (data) {
+ evalTo(data);
+ return false;
+ } else {
+ m_result = static_cast<Scalar *>(m_device.allocate(dimensions().TotalSize() * sizeof(Scalar)));
+ evalTo(m_result);
+ return true;
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ if (m_result != NULL) {
+ m_device.deallocate(m_result);
+ m_result = NULL;
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
+ return m_result[index];
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const {
+ return internal::ploadt<PacketReturnType, LoadMode>(m_result + index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ // TODO(rmlarsen): Extend CustomOp API to return its cost estimate.
+ return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
+ }
+
+ EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return m_result; }
+
+ protected:
+ EIGEN_DEVICE_FUNC void evalTo(Scalar* data) {
+ TensorMap<Tensor<Scalar, NumDims, Layout> > result(data, m_dimensions);
+ m_op.func().eval(m_op.lhsExpression(), m_op.rhsExpression(), result, m_device);
+ }
+
+ Dimensions m_dimensions;
+ const XprType m_op;
+ const Device& m_device;
+ CoeffReturnType* m_result;
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h b/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h
new file mode 100644
index 000000000..29e50a3b2
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h
@@ -0,0 +1,68 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H
+#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H
+
+namespace Eigen {
+
+/** \class TensorDevice
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Pseudo expression providing an operator = that will evaluate its argument
+ * on the specified computing 'device' (GPU, thread pool, ...)
+ *
+ * Example:
+ * C.device(EIGEN_GPU) = A + B;
+ *
+ * Todo: operator *= and /=.
+ */
+
+template <typename ExpressionType, typename DeviceType> class TensorDevice {
+ public:
+ TensorDevice(const DeviceType& device, ExpressionType& expression) : m_device(device), m_expression(expression) {}
+
+ template<typename OtherDerived>
+ EIGEN_STRONG_INLINE TensorDevice& operator=(const OtherDerived& other) {
+ typedef TensorAssignOp<ExpressionType, const OtherDerived> Assign;
+ Assign assign(m_expression, other);
+ internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device);
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ EIGEN_STRONG_INLINE TensorDevice& operator+=(const OtherDerived& other) {
+ typedef typename OtherDerived::Scalar Scalar;
+ typedef TensorCwiseBinaryOp<internal::scalar_sum_op<Scalar>, const ExpressionType, const OtherDerived> Sum;
+ Sum sum(m_expression, other);
+ typedef TensorAssignOp<ExpressionType, const Sum> Assign;
+ Assign assign(m_expression, sum);
+ internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device);
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ EIGEN_STRONG_INLINE TensorDevice& operator-=(const OtherDerived& other) {
+ typedef typename OtherDerived::Scalar Scalar;
+ typedef TensorCwiseBinaryOp<internal::scalar_difference_op<Scalar>, const ExpressionType, const OtherDerived> Difference;
+ Difference difference(m_expression, other);
+ typedef TensorAssignOp<ExpressionType, const Difference> Assign;
+ Assign assign(m_expression, difference);
+ internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device);
+ return *this;
+ }
+
+ protected:
+ const DeviceType& m_device;
+ ExpressionType& m_expression;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h b/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h
new file mode 100644
index 000000000..4f5767bc7
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h
@@ -0,0 +1,337 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#if defined(EIGEN_USE_GPU) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H)
+#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H
+
+namespace Eigen {
+
+static const int kCudaScratchSize = 1024;
+
+// This defines an interface that GPUDevice can take to use
+// CUDA streams underneath.
+class StreamInterface {
+ public:
+ virtual ~StreamInterface() {}
+
+ virtual const cudaStream_t& stream() const = 0;
+ virtual const cudaDeviceProp& deviceProperties() const = 0;
+
+ // Allocate memory on the actual device where the computation will run
+ virtual void* allocate(size_t num_bytes) const = 0;
+ virtual void deallocate(void* buffer) const = 0;
+
+ // Return a scratchpad buffer of size 1k
+ virtual void* scratchpad() const = 0;
+
+ // Return a semaphore. The semaphore is initially initialized to 0, and
+ // each kernel using it is responsible for resetting to 0 upon completion
+ // to maintain the invariant that the semaphore is always equal to 0 upon
+ // each kernel start.
+ virtual unsigned int* semaphore() const = 0;
+};
+
+static cudaDeviceProp* m_deviceProperties;
+static bool m_devicePropInitialized = false;
+
+static void initializeDeviceProp() {
+ if (!m_devicePropInitialized) {
+ // Attempts to ensure proper behavior in the case of multiple threads
+ // calling this function simultaneously. This would be trivial to
+ // implement if we could use std::mutex, but unfortunately mutex don't
+ // compile with nvcc, so we resort to atomics and thread fences instead.
+ // Note that if the caller uses a compiler that doesn't support c++11 we
+ // can't ensure that the initialization is thread safe.
+#if __cplusplus >= 201103L
+ static std::atomic<bool> first(true);
+ if (first.exchange(false)) {
+#else
+ static bool first = true;
+ if (first) {
+ first = false;
+#endif
+ // We're the first thread to reach this point.
+ int num_devices;
+ cudaError_t status = cudaGetDeviceCount(&num_devices);
+ if (status != cudaSuccess) {
+ std::cerr << "Failed to get the number of CUDA devices: "
+ << cudaGetErrorString(status)
+ << std::endl;
+ assert(status == cudaSuccess);
+ }
+ m_deviceProperties = new cudaDeviceProp[num_devices];
+ for (int i = 0; i < num_devices; ++i) {
+ status = cudaGetDeviceProperties(&m_deviceProperties[i], i);
+ if (status != cudaSuccess) {
+ std::cerr << "Failed to initialize CUDA device #"
+ << i
+ << ": "
+ << cudaGetErrorString(status)
+ << std::endl;
+ assert(status == cudaSuccess);
+ }
+ }
+
+#if __cplusplus >= 201103L
+ std::atomic_thread_fence(std::memory_order_release);
+#endif
+ m_devicePropInitialized = true;
+ } else {
+ // Wait for the other thread to inititialize the properties.
+ while (!m_devicePropInitialized) {
+#if __cplusplus >= 201103L
+ std::atomic_thread_fence(std::memory_order_acquire);
+#endif
+ sleep(1);
+ }
+ }
+ }
+}
+
+static const cudaStream_t default_stream = cudaStreamDefault;
+
+class CudaStreamDevice : public StreamInterface {
+ public:
+ // Use the default stream on the current device
+ CudaStreamDevice() : stream_(&default_stream), scratch_(NULL), semaphore_(NULL) {
+ cudaGetDevice(&device_);
+ initializeDeviceProp();
+ }
+ // Use the default stream on the specified device
+ CudaStreamDevice(int device) : stream_(&default_stream), device_(device), scratch_(NULL), semaphore_(NULL) {
+ initializeDeviceProp();
+ }
+ // Use the specified stream. Note that it's the
+ // caller responsibility to ensure that the stream can run on
+ // the specified device. If no device is specified the code
+ // assumes that the stream is associated to the current gpu device.
+ CudaStreamDevice(const cudaStream_t* stream, int device = -1)
+ : stream_(stream), device_(device), scratch_(NULL), semaphore_(NULL) {
+ if (device < 0) {
+ cudaGetDevice(&device_);
+ } else {
+ int num_devices;
+ cudaError_t err = cudaGetDeviceCount(&num_devices);
+ EIGEN_UNUSED_VARIABLE(err)
+ assert(err == cudaSuccess);
+ assert(device < num_devices);
+ device_ = device;
+ }
+ initializeDeviceProp();
+ }
+
+ virtual ~CudaStreamDevice() {
+ if (scratch_) {
+ deallocate(scratch_);
+ }
+ }
+
+ const cudaStream_t& stream() const { return *stream_; }
+ const cudaDeviceProp& deviceProperties() const {
+ return m_deviceProperties[device_];
+ }
+ virtual void* allocate(size_t num_bytes) const {
+ cudaError_t err = cudaSetDevice(device_);
+ EIGEN_UNUSED_VARIABLE(err)
+ assert(err == cudaSuccess);
+ void* result;
+ err = cudaMalloc(&result, num_bytes);
+ assert(err == cudaSuccess);
+ assert(result != NULL);
+ return result;
+ }
+ virtual void deallocate(void* buffer) const {
+ cudaError_t err = cudaSetDevice(device_);
+ EIGEN_UNUSED_VARIABLE(err)
+ assert(err == cudaSuccess);
+ assert(buffer != NULL);
+ err = cudaFree(buffer);
+ assert(err == cudaSuccess);
+ }
+
+ virtual void* scratchpad() const {
+ if (scratch_ == NULL) {
+ scratch_ = allocate(kCudaScratchSize + sizeof(unsigned int));
+ }
+ return scratch_;
+ }
+
+ virtual unsigned int* semaphore() const {
+ if (semaphore_ == NULL) {
+ char* scratch = static_cast<char*>(scratchpad()) + kCudaScratchSize;
+ semaphore_ = reinterpret_cast<unsigned int*>(scratch);
+ cudaError_t err = cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_);
+ EIGEN_UNUSED_VARIABLE(err)
+ assert(err == cudaSuccess);
+ }
+ return semaphore_;
+ }
+
+ private:
+ const cudaStream_t* stream_;
+ int device_;
+ mutable void* scratch_;
+ mutable unsigned int* semaphore_;
+};
+
+struct GpuDevice {
+ // The StreamInterface is not owned: the caller is
+ // responsible for its initialization and eventual destruction.
+ explicit GpuDevice(const StreamInterface* stream) : stream_(stream), max_blocks_(INT_MAX) {
+ eigen_assert(stream);
+ }
+ explicit GpuDevice(const StreamInterface* stream, int num_blocks) : stream_(stream), max_blocks_(num_blocks) {
+ eigen_assert(stream);
+ }
+ // TODO(bsteiner): This is an internal API, we should not expose it.
+ EIGEN_STRONG_INLINE const cudaStream_t& stream() const {
+ return stream_->stream();
+ }
+
+ EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
+ return stream_->allocate(num_bytes);
+ }
+
+ EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
+ stream_->deallocate(buffer);
+ }
+
+ EIGEN_STRONG_INLINE void* scratchpad() const {
+ return stream_->scratchpad();
+ }
+
+ EIGEN_STRONG_INLINE unsigned int* semaphore() const {
+ return stream_->semaphore();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
+#ifndef __CUDA_ARCH__
+ cudaError_t err = cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToDevice,
+ stream_->stream());
+ EIGEN_UNUSED_VARIABLE(err)
+ assert(err == cudaSuccess);
+#else
+ eigen_assert(false && "The default device should be used instead to generate kernel code");
+#endif
+ }
+
+ EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
+ cudaError_t err =
+ cudaMemcpyAsync(dst, src, n, cudaMemcpyHostToDevice, stream_->stream());
+ EIGEN_UNUSED_VARIABLE(err)
+ assert(err == cudaSuccess);
+ }
+
+ EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
+ cudaError_t err =
+ cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToHost, stream_->stream());
+ EIGEN_UNUSED_VARIABLE(err)
+ assert(err == cudaSuccess);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
+#ifndef __CUDA_ARCH__
+ cudaError_t err = cudaMemsetAsync(buffer, c, n, stream_->stream());
+ EIGEN_UNUSED_VARIABLE(err)
+ assert(err == cudaSuccess);
+#else
+ eigen_assert(false && "The default device should be used instead to generate kernel code");
+#endif
+ }
+
+ EIGEN_STRONG_INLINE size_t numThreads() const {
+ // FIXME
+ return 32;
+ }
+
+ EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
+ // FIXME
+ return 48*1024;
+ }
+
+ EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
+ // We won't try to take advantage of the l2 cache for the time being, and
+ // there is no l3 cache on cuda devices.
+ return firstLevelCacheSize();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void synchronize() const {
+#if defined(__CUDACC__) && !defined(__CUDA_ARCH__)
+ cudaError_t err = cudaStreamSynchronize(stream_->stream());
+ if (err != cudaSuccess) {
+ std::cerr << "Error detected in CUDA stream: "
+ << cudaGetErrorString(err)
+ << std::endl;
+ assert(err == cudaSuccess);
+ }
+#else
+ assert(false && "The default device should be used instead to generate kernel code");
+#endif
+ }
+
+ EIGEN_STRONG_INLINE int getNumCudaMultiProcessors() const {
+ return stream_->deviceProperties().multiProcessorCount;
+ }
+ EIGEN_STRONG_INLINE int maxCudaThreadsPerBlock() const {
+ return stream_->deviceProperties().maxThreadsPerBlock;
+ }
+ EIGEN_STRONG_INLINE int maxCudaThreadsPerMultiProcessor() const {
+ return stream_->deviceProperties().maxThreadsPerMultiProcessor;
+ }
+ EIGEN_STRONG_INLINE int sharedMemPerBlock() const {
+ return stream_->deviceProperties().sharedMemPerBlock;
+ }
+ EIGEN_STRONG_INLINE int majorDeviceVersion() const {
+ return stream_->deviceProperties().major;
+ }
+ EIGEN_STRONG_INLINE int minorDeviceVersion() const {
+ return stream_->deviceProperties().minor;
+ }
+
+ EIGEN_STRONG_INLINE int maxBlocks() const {
+ return max_blocks_;
+ }
+
+ // This function checks if the CUDA runtime recorded an error for the
+ // underlying stream device.
+ inline bool ok() const {
+#ifdef __CUDACC__
+ cudaError_t error = cudaStreamQuery(stream_->stream());
+ return (error == cudaSuccess) || (error == cudaErrorNotReady);
+#else
+ return false;
+#endif
+ }
+
+ private:
+ const StreamInterface* stream_;
+ int max_blocks_;
+};
+
+#define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \
+ (kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__); \
+ assert(cudaGetLastError() == cudaSuccess);
+
+
+// FIXME: Should be device and kernel specific.
+#ifdef __CUDACC__
+static EIGEN_DEVICE_FUNC inline void setCudaSharedMemConfig(cudaSharedMemConfig config) {
+#ifndef __CUDA_ARCH__
+ cudaError_t status = cudaDeviceSetSharedMemConfig(config);
+ EIGEN_UNUSED_VARIABLE(status)
+ assert(status == cudaSuccess);
+#else
+ EIGEN_UNUSED_VARIABLE(config)
+#endif
+}
+#endif
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h b/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h
new file mode 100644
index 000000000..9d141395b
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h
@@ -0,0 +1,81 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_DEVICE_DEFAULT_H
+#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_DEFAULT_H
+
+
+namespace Eigen {
+
+// Default device for the machine (typically a single cpu core)
+struct DefaultDevice {
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
+ return internal::aligned_malloc(num_bytes);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
+ internal::aligned_free(buffer);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
+ ::memcpy(dst, src, n);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
+ memcpy(dst, src, n);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
+ memcpy(dst, src, n);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
+ ::memset(buffer, c, n);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t numThreads() const {
+#ifndef __CUDA_ARCH__
+ // Running on the host CPU
+ return 1;
+#else
+ // Running on a CUDA device
+ return 32;
+#endif
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
+#ifndef __CUDA_ARCH__
+ // Running on the host CPU
+ return l1CacheSize();
+#else
+ // Running on a CUDA device, return the amount of shared memory available.
+ return 48*1024;
+#endif
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
+#ifndef __CUDA_ARCH__
+ // Running single threaded on the host CPU
+ return l3CacheSize();
+#else
+ // Running on a CUDA device
+ return firstLevelCacheSize();
+#endif
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const {
+#ifndef __CUDA_ARCH__
+ // Running single threaded on the host CPU
+ // Should return an enum that encodes the ISA supported by the CPU
+ return 1;
+#else
+ // Running on a CUDA device
+ return __CUDA_ARCH__ / 100;
+#endif
+ }
+};
+
+} // namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_DEFAULT_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h b/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h
new file mode 100644
index 000000000..7c039890e
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h
@@ -0,0 +1,122 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
+
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#if defined(EIGEN_USE_SYCL) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H)
+#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H
+
+namespace Eigen {
+struct SyclDevice {
+ /// class members
+ /// sycl queue
+ mutable cl::sycl::queue m_queue;
+ /// std::map is the container used to make sure that we create only one buffer
+ /// per pointer. The lifespan of the buffer now depends on the lifespan of SyclDevice.
+ /// If a non-read-only pointer is needed to be accessed on the host we should manually deallocate it.
+ mutable std::map<const void *, std::shared_ptr<void>> buffer_map;
+ /// creating device by using selector
+ template<typename dev_Selector> SyclDevice(dev_Selector s)
+ :
+#ifdef EIGEN_EXCEPTIONS
+ m_queue(cl::sycl::queue(s, [=](cl::sycl::exception_list l) {
+ for (const auto& e : l) {
+ try {
+ std::rethrow_exception(e);
+ } catch (cl::sycl::exception e) {
+ std::cout << e.what() << std::endl;
+ }
+ }
+ }))
+#else
+ m_queue(cl::sycl::queue(s))
+#endif
+ {}
+ // destructor
+ ~SyclDevice() { deallocate_all(); }
+
+ template <typename T> void deallocate(T *p) const {
+ auto it = buffer_map.find(p);
+ if (it != buffer_map.end()) {
+ buffer_map.erase(it);
+ internal::aligned_free(p);
+ }
+ }
+ void deallocate_all() const {
+ std::map<const void *, std::shared_ptr<void>>::iterator it=buffer_map.begin();
+ while (it!=buffer_map.end()) {
+ auto p=it->first;
+ buffer_map.erase(it);
+ internal::aligned_free(const_cast<void*>(p));
+ it=buffer_map.begin();
+ }
+ buffer_map.clear();
+ }
+
+ /// creation of sycl accessor for a buffer. This function first tries to find
+ /// the buffer in the buffer_map. If found it gets the accessor from it, if not,
+ ///the function then adds an entry by creating a sycl buffer for that particular pointer.
+ template <cl::sycl::access::mode AcMd, typename T> inline cl::sycl::accessor<T, 1, AcMd, cl::sycl::access::target::global_buffer>
+ get_sycl_accessor(size_t num_bytes, cl::sycl::handler &cgh, const T * ptr) const {
+ return (get_sycl_buffer<T>(num_bytes, ptr)->template get_access<AcMd, cl::sycl::access::target::global_buffer>(cgh));
+ }
+
+ template<typename T> inline std::pair<std::map<const void *, std::shared_ptr<void>>::iterator,bool> add_sycl_buffer(const T *ptr, size_t num_bytes) const {
+ using Type = cl::sycl::buffer<T, 1>;
+ std::pair<std::map<const void *, std::shared_ptr<void>>::iterator,bool> ret = buffer_map.insert(std::pair<const void *, std::shared_ptr<void>>(ptr, std::shared_ptr<void>(new Type(cl::sycl::range<1>(num_bytes)),
+ [](void *dataMem) { delete static_cast<Type*>(dataMem); })));
+ (static_cast<Type*>(buffer_map.at(ptr).get()))->set_final_data(nullptr);
+ return ret;
+ }
+
+ template <typename T> inline cl::sycl::buffer<T, 1>* get_sycl_buffer(size_t num_bytes,const T * ptr) const {
+ return static_cast<cl::sycl::buffer<T, 1>*>(add_sycl_buffer(ptr, num_bytes).first->second.get());
+ }
+
+ /// allocating memory on the cpu
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void *allocate(size_t) const {
+ return internal::aligned_malloc(8);
+ }
+
+ // some runtime conditions that can be applied here
+ bool isDeviceSuitable() const { return true; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void *dst, const void *src, size_t n) const {
+ ::memcpy(dst, src, n);
+ }
+
+ template<typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyHostToDevice(T *dst, const T *src, size_t n) const {
+ auto host_acc= (static_cast<cl::sycl::buffer<T, 1>*>(add_sycl_buffer(dst, n).first->second.get()))-> template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>();
+ memcpy(host_acc.get_pointer(), src, n);
+ }
+ /// whith the current implementation of sycl, the data is copied twice from device to host. This will be fixed soon.
+ template<typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyDeviceToHost(T *dst, const T *src, size_t n) const {
+ auto it = buffer_map.find(src);
+ if (it != buffer_map.end()) {
+ auto host_acc= (static_cast<cl::sycl::buffer<T, 1>*>(it->second.get()))-> template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::host_buffer>();
+ memcpy(dst,host_acc.get_pointer(), n);
+ } else{
+ eigen_assert("no device memory found. The memory might be destroyed before creation");
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void *buffer, int c, size_t n) const {
+ ::memset(buffer, c, n);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const {
+ return 1;
+ }
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h b/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h
new file mode 100644
index 000000000..069680a11
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h
@@ -0,0 +1,279 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#if defined(EIGEN_USE_THREADS) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H)
+#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H
+
+namespace Eigen {
+
+// Use the SimpleThreadPool by default. We'll switch to the new non blocking
+// thread pool later.
+#ifndef EIGEN_USE_SIMPLE_THREAD_POOL
+template <typename Env> using ThreadPoolTempl = NonBlockingThreadPoolTempl<Env>;
+typedef NonBlockingThreadPool ThreadPool;
+#else
+template <typename Env> using ThreadPoolTempl = SimpleThreadPoolTempl<Env>;
+typedef SimpleThreadPool ThreadPool;
+#endif
+
+
+// Barrier is an object that allows one or more threads to wait until
+// Notify has been called a specified number of times.
+class Barrier {
+ public:
+ Barrier(unsigned int count) : state_(count << 1), notified_(false) {
+ eigen_assert(((count << 1) >> 1) == count);
+ }
+ ~Barrier() {
+ eigen_assert((state_>>1) == 0);
+ }
+
+ void Notify() {
+ unsigned int v = state_.fetch_sub(2, std::memory_order_acq_rel) - 2;
+ if (v != 1) {
+ eigen_assert(((v + 2) & ~1) != 0);
+ return; // either count has not dropped to 0, or waiter is not waiting
+ }
+ std::unique_lock<std::mutex> l(mu_);
+ eigen_assert(!notified_);
+ notified_ = true;
+ cv_.notify_all();
+ }
+
+ void Wait() {
+ unsigned int v = state_.fetch_or(1, std::memory_order_acq_rel);
+ if ((v >> 1) == 0) return;
+ std::unique_lock<std::mutex> l(mu_);
+ while (!notified_) {
+ cv_.wait(l);
+ }
+ }
+
+ private:
+ std::mutex mu_;
+ std::condition_variable cv_;
+ std::atomic<unsigned int> state_; // low bit is waiter flag
+ bool notified_;
+};
+
+
+// Notification is an object that allows a user to to wait for another
+// thread to signal a notification that an event has occurred.
+//
+// Multiple threads can wait on the same Notification object,
+// but only one caller must call Notify() on the object.
+struct Notification : Barrier {
+ Notification() : Barrier(1) {};
+};
+
+
+// Runs an arbitrary function and then calls Notify() on the passed in
+// Notification.
+template <typename Function, typename... Args> struct FunctionWrapperWithNotification
+{
+ static void run(Notification* n, Function f, Args... args) {
+ f(args...);
+ if (n) {
+ n->Notify();
+ }
+ }
+};
+
+template <typename Function, typename... Args> struct FunctionWrapperWithBarrier
+{
+ static void run(Barrier* b, Function f, Args... args) {
+ f(args...);
+ if (b) {
+ b->Notify();
+ }
+ }
+};
+
+template <typename SyncType>
+static EIGEN_STRONG_INLINE void wait_until_ready(SyncType* n) {
+ if (n) {
+ n->Wait();
+ }
+}
+
+
+// Build a thread pool device on top the an existing pool of threads.
+struct ThreadPoolDevice {
+ // The ownership of the thread pool remains with the caller.
+ ThreadPoolDevice(ThreadPoolInterface* pool, int num_cores) : pool_(pool), num_threads_(num_cores) { }
+
+ EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
+ return internal::aligned_malloc(num_bytes);
+ }
+
+ EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
+ internal::aligned_free(buffer);
+ }
+
+ EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
+ ::memcpy(dst, src, n);
+ }
+ EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
+ memcpy(dst, src, n);
+ }
+ EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
+ memcpy(dst, src, n);
+ }
+
+ EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
+ ::memset(buffer, c, n);
+ }
+
+ EIGEN_STRONG_INLINE int numThreads() const {
+ return num_threads_;
+ }
+
+ EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
+ return l1CacheSize();
+ }
+
+ EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
+ // The l3 cache size is shared between all the cores.
+ return l3CacheSize() / num_threads_;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const {
+ // Should return an enum that encodes the ISA supported by the CPU
+ return 1;
+ }
+
+ template <class Function, class... Args>
+ EIGEN_STRONG_INLINE Notification* enqueue(Function&& f, Args&&... args) const {
+ Notification* n = new Notification();
+ pool_->Schedule(std::bind(&FunctionWrapperWithNotification<Function, Args...>::run, n, f, args...));
+ return n;
+ }
+
+ template <class Function, class... Args>
+ EIGEN_STRONG_INLINE void enqueue_with_barrier(Barrier* b,
+ Function&& f,
+ Args&&... args) const {
+ pool_->Schedule(std::bind(
+ &FunctionWrapperWithBarrier<Function, Args...>::run, b, f, args...));
+ }
+
+ template <class Function, class... Args>
+ EIGEN_STRONG_INLINE void enqueueNoNotification(Function&& f, Args&&... args) const {
+ pool_->Schedule(std::bind(f, args...));
+ }
+
+ // Returns a logical thread index between 0 and pool_->NumThreads() - 1 if
+ // called from one of the threads in pool_. Returns -1 otherwise.
+ EIGEN_STRONG_INLINE int currentThreadId() const {
+ return pool_->CurrentThreadId();
+ }
+
+ // parallelFor executes f with [0, n) arguments in parallel and waits for
+ // completion. F accepts a half-open interval [first, last).
+ // Block size is choosen based on the iteration cost and resulting parallel
+ // efficiency. If block_align is not nullptr, it is called to round up the
+ // block size.
+ void parallelFor(Index n, const TensorOpCost& cost,
+ std::function<Index(Index)> block_align,
+ std::function<void(Index, Index)> f) const {
+ typedef TensorCostModel<ThreadPoolDevice> CostModel;
+ if (n <= 1 || numThreads() == 1 ||
+ CostModel::numThreads(n, cost, static_cast<int>(numThreads())) == 1) {
+ f(0, n);
+ return;
+ }
+
+ // Calculate block size based on (1) the iteration cost and (2) parallel
+ // efficiency. We want blocks to be not too small to mitigate
+ // parallelization overheads; not too large to mitigate tail
+ // effect and potential load imbalance and we also want number
+ // of blocks to be evenly dividable across threads.
+
+ double block_size_f = 1.0 / CostModel::taskSize(1, cost);
+ Index block_size = numext::mini(n, numext::maxi<Index>(1, block_size_f));
+ const Index max_block_size =
+ numext::mini(n, numext::maxi<Index>(1, 2 * block_size_f));
+ if (block_align) {
+ Index new_block_size = block_align(block_size);
+ eigen_assert(new_block_size >= block_size);
+ block_size = numext::mini(n, new_block_size);
+ }
+ Index block_count = divup(n, block_size);
+ // Calculate parallel efficiency as fraction of total CPU time used for
+ // computations:
+ double max_efficiency =
+ static_cast<double>(block_count) /
+ (divup<int>(block_count, numThreads()) * numThreads());
+ // Now try to increase block size up to max_block_size as long as it
+ // doesn't decrease parallel efficiency.
+ for (Index prev_block_count = block_count; prev_block_count > 1;) {
+ // This is the next block size that divides size into a smaller number
+ // of blocks than the current block_size.
+ Index coarser_block_size = divup(n, prev_block_count - 1);
+ if (block_align) {
+ Index new_block_size = block_align(coarser_block_size);
+ eigen_assert(new_block_size >= coarser_block_size);
+ coarser_block_size = numext::mini(n, new_block_size);
+ }
+ if (coarser_block_size > max_block_size) {
+ break; // Reached max block size. Stop.
+ }
+ // Recalculate parallel efficiency.
+ const Index coarser_block_count = divup(n, coarser_block_size);
+ eigen_assert(coarser_block_count < prev_block_count);
+ prev_block_count = coarser_block_count;
+ const double coarser_efficiency =
+ static_cast<double>(coarser_block_count) /
+ (divup<int>(coarser_block_count, numThreads()) * numThreads());
+ if (coarser_efficiency + 0.01 >= max_efficiency) {
+ // Taking it.
+ block_size = coarser_block_size;
+ block_count = coarser_block_count;
+ if (max_efficiency < coarser_efficiency) {
+ max_efficiency = coarser_efficiency;
+ }
+ }
+ }
+
+ // Recursively divide size into halves until we reach block_size.
+ // Division code rounds mid to block_size, so we are guaranteed to get
+ // block_count leaves that do actual computations.
+ Barrier barrier(static_cast<unsigned int>(block_count));
+ std::function<void(Index, Index)> handleRange;
+ handleRange = [=, &handleRange, &barrier, &f](Index first, Index last) {
+ if (last - first <= block_size) {
+ // Single block or less, execute directly.
+ f(first, last);
+ barrier.Notify();
+ return;
+ }
+ // Split into halves and submit to the pool.
+ Index mid = first + divup((last - first) / 2, block_size) * block_size;
+ pool_->Schedule([=, &handleRange]() { handleRange(mid, last); });
+ pool_->Schedule([=, &handleRange]() { handleRange(first, mid); });
+ };
+ handleRange(0, n);
+ barrier.Wait();
+ }
+
+ // Convenience wrapper for parallelFor that does not align blocks.
+ void parallelFor(Index n, const TensorOpCost& cost,
+ std::function<void(Index, Index)> f) const {
+ parallelFor(n, cost, nullptr, std::move(f));
+ }
+
+ private:
+ ThreadPoolInterface* pool_;
+ int num_threads_;
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h b/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h
new file mode 100644
index 000000000..1a30e45fb
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h
@@ -0,0 +1,236 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_DIMENSION_LIST_H
+#define EIGEN_CXX11_TENSOR_TENSOR_DIMENSION_LIST_H
+
+namespace Eigen {
+
+/** \internal
+ *
+ * \class TensorDimensionList
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Special case of tensor index list used to list all the dimensions of a tensor of rank n.
+ *
+ * \sa Tensor
+ */
+
+template <typename Index, std::size_t Rank> struct DimensionList {
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+ const Index operator[] (const Index i) const { return i; }
+};
+
+namespace internal {
+
+template<typename Index, std::size_t Rank> struct array_size<DimensionList<Index, Rank> > {
+ static const size_t value = Rank;
+};
+template<typename Index, std::size_t Rank> struct array_size<const DimensionList<Index, Rank> > {
+ static const size_t value = Rank;
+};
+
+template<DenseIndex n, typename Index, std::size_t Rank> const Index array_get(DimensionList<Index, Rank>&) {
+ return n;
+}
+template<DenseIndex n, typename Index, std::size_t Rank> const Index array_get(const DimensionList<Index, Rank>&) {
+ return n;
+}
+
+
+#if EIGEN_HAS_CONSTEXPR
+template <typename Index, std::size_t Rank>
+struct index_known_statically_impl<DimensionList<Index, Rank> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex) {
+ return true;
+ }
+};
+template <typename Index, std::size_t Rank>
+struct index_known_statically_impl<const DimensionList<Index, Rank> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex) {
+ return true;
+ }
+};
+
+template <typename Index, std::size_t Rank>
+struct all_indices_known_statically_impl<DimensionList<Index, Rank> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run() {
+ return true;
+ }
+};
+template <typename Index, std::size_t Rank>
+struct all_indices_known_statically_impl<const DimensionList<Index, Rank> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run() {
+ return true;
+ }
+};
+
+template <typename Index, std::size_t Rank>
+struct indices_statically_known_to_increase_impl<DimensionList<Index, Rank> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run() {
+ return true;
+ }
+};
+template <typename Index, std::size_t Rank>
+struct indices_statically_known_to_increase_impl<const DimensionList<Index, Rank> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run() {
+ return true;
+ }
+};
+
+template <typename Index, std::size_t Rank>
+struct index_statically_eq_impl<DimensionList<Index, Rank> > {
+ static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return i == value;
+ }
+};
+template <typename Index, std::size_t Rank>
+struct index_statically_eq_impl<const DimensionList<Index, Rank> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return i == value;
+ }
+};
+
+template <typename Index, std::size_t Rank>
+struct index_statically_ne_impl<DimensionList<Index, Rank> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return i != value;
+ }
+};
+template <typename Index, std::size_t Rank>
+struct index_statically_ne_impl<const DimensionList<Index, Rank> > {
+ static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return i != value;
+ }
+};
+
+template <typename Index, std::size_t Rank>
+struct index_statically_gt_impl<DimensionList<Index, Rank> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return i > value;
+ }
+};
+template <typename Index, std::size_t Rank>
+struct index_statically_gt_impl<const DimensionList<Index, Rank> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return i > value;
+ }
+};
+
+template <typename Index, std::size_t Rank>
+struct index_statically_lt_impl<DimensionList<Index, Rank> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return i < value;
+ }
+};
+template <typename Index, std::size_t Rank>
+struct index_statically_lt_impl<const DimensionList<Index, Rank> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return i < value;
+ }
+};
+
+#else
+template <typename Index, std::size_t Rank>
+struct index_known_statically_impl<DimensionList<Index, Rank> > {
+ EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run(const DenseIndex) {
+ return true;
+ }
+};
+template <typename Index, std::size_t Rank>
+struct index_known_statically_impl<const DimensionList<Index, Rank> > {
+ EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run(const DenseIndex) {
+ return true;
+ }
+};
+
+template <typename Index, std::size_t Rank>
+struct all_indices_known_statically_impl<DimensionList<Index, Rank> > {
+ EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run() {
+ return true;
+ }
+};
+template <typename Index, std::size_t Rank>
+struct all_indices_known_statically_impl<const DimensionList<Index, Rank> > {
+ EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run() {
+ return true;
+ }
+};
+
+template <typename Index, std::size_t Rank>
+struct indices_statically_known_to_increase_impl<DimensionList<Index, Rank> > {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() {
+ return true;
+ }
+};
+template <typename Index, std::size_t Rank>
+struct indices_statically_known_to_increase_impl<const DimensionList<Index, Rank> > {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() {
+ return true;
+ }
+};
+
+template <typename Index, std::size_t Rank>
+struct index_statically_eq_impl<DimensionList<Index, Rank> > {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
+ return false;
+ }
+};
+template <typename Index, std::size_t Rank>
+struct index_statically_eq_impl<const DimensionList<Index, Rank> > {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
+ return false;
+ }
+};
+
+template <typename Index, std::size_t Rank>
+struct index_statically_ne_impl<DimensionList<Index, Rank> > {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex){
+ return false;
+ }
+};
+template <typename Index, std::size_t Rank>
+struct index_statically_ne_impl<const DimensionList<Index, Rank> > {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
+ return false;
+ }
+};
+
+template <typename Index, std::size_t Rank>
+struct index_statically_gt_impl<DimensionList<Index, Rank> > {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
+ return false;
+ }
+};
+template <typename Index, std::size_t Rank>
+struct index_statically_gt_impl<const DimensionList<Index, Rank> > {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
+ return false;
+ }
+};
+
+template <typename Index, std::size_t Rank>
+struct index_statically_lt_impl<DimensionList<Index, Rank> > {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
+ return false;
+ }
+};
+template <typename Index, std::size_t Rank>
+struct index_statically_lt_impl<const DimensionList<Index, Rank> > {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
+ return false;
+ }
+};
+#endif
+
+} // end namespace internal
+} // end namespace Eigen
+
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_DIMENSION_LIST_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h b/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h
new file mode 100644
index 000000000..b24cdebf1
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h
@@ -0,0 +1,428 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_DIMENSIONS_H
+#define EIGEN_CXX11_TENSOR_TENSOR_DIMENSIONS_H
+
+
+namespace Eigen {
+
+/** \internal
+ *
+ * \class TensorDimensions
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Set of classes used to encode and store the dimensions of a Tensor.
+ *
+ * The Sizes class encodes as part of the type the number of dimensions and the
+ * sizes corresponding to each dimension. It uses no storage space since it is
+ * entirely known at compile time.
+ * The DSizes class is its dynamic sibling: the number of dimensions is known
+ * at compile time but the sizes are set during execution.
+ *
+ * \sa Tensor
+ */
+
+// Boilerplate code
+namespace internal {
+
+template<std::size_t n, typename Dimension> struct dget {
+ static const std::size_t value = get<n, Dimension>::value;
+};
+
+
+template<typename Index, std::size_t NumIndices, std::size_t n, bool RowMajor>
+struct fixed_size_tensor_index_linearization_helper
+{
+ template <typename Dimensions> EIGEN_DEVICE_FUNC
+ static inline Index run(array<Index, NumIndices> const& indices,
+ const Dimensions& dimensions)
+ {
+ return array_get<RowMajor ? n - 1 : (NumIndices - n)>(indices) +
+ dget<RowMajor ? n - 1 : (NumIndices - n), Dimensions>::value *
+ fixed_size_tensor_index_linearization_helper<Index, NumIndices, n - 1, RowMajor>::run(indices, dimensions);
+ }
+};
+
+template<typename Index, std::size_t NumIndices, bool RowMajor>
+struct fixed_size_tensor_index_linearization_helper<Index, NumIndices, 0, RowMajor>
+{
+ template <typename Dimensions> EIGEN_DEVICE_FUNC
+ static inline Index run(array<Index, NumIndices> const&, const Dimensions&)
+ {
+ return 0;
+ }
+};
+
+template<typename Index, std::size_t n>
+struct fixed_size_tensor_index_extraction_helper
+{
+ template <typename Dimensions> EIGEN_DEVICE_FUNC
+ static inline Index run(const Index index,
+ const Dimensions& dimensions)
+ {
+ const Index mult = (index == n-1) ? 1 : 0;
+ return array_get<n-1>(dimensions) * mult +
+ fixed_size_tensor_index_extraction_helper<Index, n - 1>::run(index, dimensions);
+ }
+};
+
+template<typename Index>
+struct fixed_size_tensor_index_extraction_helper<Index, 0>
+{
+ template <typename Dimensions> EIGEN_DEVICE_FUNC
+ static inline Index run(const Index,
+ const Dimensions&)
+ {
+ return 0;
+ }
+ };
+
+} // end namespace internal
+
+
+// Fixed size
+#ifndef EIGEN_EMULATE_CXX11_META_H
+template <typename std::ptrdiff_t... Indices>
+struct Sizes : internal::numeric_list<std::ptrdiff_t, Indices...> {
+ typedef internal::numeric_list<std::ptrdiff_t, Indices...> Base;
+ static const std::ptrdiff_t total_size = internal::arg_prod(Indices...);
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t rank() const {
+ return Base::count;
+ }
+
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t TotalSize() {
+ return internal::arg_prod(Indices...);
+ }
+
+ EIGEN_DEVICE_FUNC Sizes() { }
+ template <typename DenseIndex>
+ explicit EIGEN_DEVICE_FUNC Sizes(const array<DenseIndex, Base::count>& /*indices*/) {
+ // todo: add assertion
+ }
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template <typename... DenseIndex> EIGEN_DEVICE_FUNC Sizes(DenseIndex...) { }
+ explicit EIGEN_DEVICE_FUNC Sizes(std::initializer_list<std::ptrdiff_t> /*l*/) {
+ // todo: add assertion
+ }
+#endif
+
+ template <typename T> Sizes& operator = (const T& /*other*/) {
+ // add assertion failure if the size of other is different
+ return *this;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t operator[] (const std::size_t index) const {
+ return internal::fixed_size_tensor_index_extraction_helper<std::ptrdiff_t, Base::count>::run(index, *this);
+ }
+
+ template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ size_t IndexOfColMajor(const array<DenseIndex, Base::count>& indices) const {
+ return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, false>::run(indices, *static_cast<const Base*>(this));
+ }
+ template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ size_t IndexOfRowMajor(const array<DenseIndex, Base::count>& indices) const {
+ return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, true>::run(indices, *static_cast<const Base*>(this));
+ }
+};
+
+namespace internal {
+template <typename std::ptrdiff_t... Indices>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_prod(const Sizes<Indices...>&) {
+ return Sizes<Indices...>::total_size;
+}
+}
+
+#else
+
+template <std::size_t n>
+struct non_zero_size {
+ typedef internal::type2val<std::size_t, n> type;
+};
+template <>
+struct non_zero_size<0> {
+ typedef internal::null_type type;
+};
+
+template <std::size_t V1=0, std::size_t V2=0, std::size_t V3=0, std::size_t V4=0, std::size_t V5=0> struct Sizes {
+ typedef typename internal::make_type_list<typename non_zero_size<V1>::type, typename non_zero_size<V2>::type, typename non_zero_size<V3>::type, typename non_zero_size<V4>::type, typename non_zero_size<V5>::type >::type Base;
+ static const size_t count = Base::count;
+ static const std::size_t total_size = internal::arg_prod<Base>::value;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t rank() const {
+ return count;
+ }
+
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t TotalSize() {
+ return internal::arg_prod<Base>::value;
+ }
+
+ Sizes() { }
+ template <typename DenseIndex>
+ explicit Sizes(const array<DenseIndex, Base::count>& /*indices*/) {
+ // todo: add assertion
+ }
+ template <typename T> Sizes& operator = (const T& /*other*/) {
+ // add assertion failure if the size of other is different
+ return *this;
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template <typename... DenseIndex> Sizes(DenseIndex... /*indices*/) { }
+ explicit Sizes(std::initializer_list<std::size_t>) {
+ // todo: add assertion
+ }
+#else
+ EIGEN_DEVICE_FUNC explicit Sizes(const DenseIndex) {
+ }
+ EIGEN_DEVICE_FUNC Sizes(const DenseIndex, const DenseIndex) {
+ }
+ EIGEN_DEVICE_FUNC Sizes(const DenseIndex, const DenseIndex, const DenseIndex) {
+ }
+ EIGEN_DEVICE_FUNC Sizes(const DenseIndex, const DenseIndex, const DenseIndex, const DenseIndex) {
+ }
+ EIGEN_DEVICE_FUNC Sizes(const DenseIndex, const DenseIndex, const DenseIndex, const DenseIndex, const DenseIndex) {
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex operator[] (const int index) const {
+ switch (index) {
+ case 0:
+ return internal::get<0, Base>::value;
+ case 1:
+ return internal::get<1, Base>::value;
+ case 2:
+ return internal::get<2, Base>::value;
+ case 3:
+ return internal::get<3, Base>::value;
+ case 4:
+ return internal::get<4, Base>::value;
+ default:
+ eigen_assert(false && "index overflow");
+ return static_cast<DenseIndex>(-1);
+ }
+ }
+
+ template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ size_t IndexOfColMajor(const array<DenseIndex, Base::count>& indices) const {
+ return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, false>::run(indices, *reinterpret_cast<const Base*>(this));
+ }
+ template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ size_t IndexOfRowMajor(const array<DenseIndex, Base::count>& indices) const {
+ return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, true>::run(indices, *reinterpret_cast<const Base*>(this));
+ }
+};
+
+namespace internal {
+template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t array_prod(const Sizes<V1, V2, V3, V4, V5>&) {
+ return Sizes<V1, V2, V3, V4, V5>::total_size;
+}
+}
+
+#endif
+
+// Boilerplate
+namespace internal {
+template<typename Index, std::size_t NumIndices, std::size_t n, bool RowMajor>
+struct tensor_index_linearization_helper
+{
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Index run(array<Index, NumIndices> const& indices, array<Index, NumIndices> const& dimensions)
+ {
+ return array_get<RowMajor ? n : (NumIndices - n - 1)>(indices) +
+ array_get<RowMajor ? n : (NumIndices - n - 1)>(dimensions) *
+ tensor_index_linearization_helper<Index, NumIndices, n - 1, RowMajor>::run(indices, dimensions);
+ }
+};
+
+template<typename Index, std::size_t NumIndices, bool RowMajor>
+struct tensor_index_linearization_helper<Index, NumIndices, 0, RowMajor>
+{
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Index run(array<Index, NumIndices> const& indices, array<Index, NumIndices> const&)
+ {
+ return array_get<RowMajor ? 0 : NumIndices - 1>(indices);
+ }
+};
+} // end namespace internal
+
+
+
+// Dynamic size
+template <typename DenseIndex, int NumDims>
+struct DSizes : array<DenseIndex, NumDims> {
+ typedef array<DenseIndex, NumDims> Base;
+ static const int count = NumDims;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t rank() const {
+ return NumDims;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex TotalSize() const {
+ return (NumDims == 0) ? 1 : internal::array_prod(*static_cast<const Base*>(this));
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DSizes() {
+ for (int i = 0 ; i < NumDims; ++i) {
+ (*this)[i] = 0;
+ }
+ }
+ EIGEN_DEVICE_FUNC explicit DSizes(const array<DenseIndex, NumDims>& a) : Base(a) { }
+
+ EIGEN_DEVICE_FUNC explicit DSizes(const DenseIndex i0) {
+ eigen_assert(NumDims == 1);
+ (*this)[0] = i0;
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE explicit DSizes(DenseIndex firstDimension, DenseIndex secondDimension, IndexTypes... otherDimensions) : Base({{firstDimension, secondDimension, otherDimensions...}}) {
+ EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 2 == NumDims, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+#else
+ EIGEN_DEVICE_FUNC DSizes(const DenseIndex i0, const DenseIndex i1) {
+ eigen_assert(NumDims == 2);
+ (*this)[0] = i0;
+ (*this)[1] = i1;
+ }
+ EIGEN_DEVICE_FUNC DSizes(const DenseIndex i0, const DenseIndex i1, const DenseIndex i2) {
+ eigen_assert(NumDims == 3);
+ (*this)[0] = i0;
+ (*this)[1] = i1;
+ (*this)[2] = i2;
+ }
+ EIGEN_DEVICE_FUNC DSizes(const DenseIndex i0, const DenseIndex i1, const DenseIndex i2, const DenseIndex i3) {
+ eigen_assert(NumDims == 4);
+ (*this)[0] = i0;
+ (*this)[1] = i1;
+ (*this)[2] = i2;
+ (*this)[3] = i3;
+ }
+ EIGEN_DEVICE_FUNC DSizes(const DenseIndex i0, const DenseIndex i1, const DenseIndex i2, const DenseIndex i3, const DenseIndex i4) {
+ eigen_assert(NumDims == 5);
+ (*this)[0] = i0;
+ (*this)[1] = i1;
+ (*this)[2] = i2;
+ (*this)[3] = i3;
+ (*this)[4] = i4;
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC DSizes& operator = (const array<DenseIndex, NumDims>& other) {
+ *static_cast<Base*>(this) = other;
+ return *this;
+ }
+
+ // A constexpr would be so much better here
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex IndexOfColMajor(const array<DenseIndex, NumDims>& indices) const {
+ return internal::tensor_index_linearization_helper<DenseIndex, NumDims, NumDims - 1, false>::run(indices, *static_cast<const Base*>(this));
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex IndexOfRowMajor(const array<DenseIndex, NumDims>& indices) const {
+ return internal::tensor_index_linearization_helper<DenseIndex, NumDims, NumDims - 1, true>::run(indices, *static_cast<const Base*>(this));
+ }
+};
+
+
+
+
+// Boilerplate
+namespace internal {
+template<typename Index, std::size_t NumIndices, std::size_t n, bool RowMajor>
+struct tensor_vsize_index_linearization_helper
+{
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Index run(array<Index, NumIndices> const& indices, std::vector<DenseIndex> const& dimensions)
+ {
+ return array_get<RowMajor ? n : (NumIndices - n - 1)>(indices) +
+ array_get<RowMajor ? n : (NumIndices - n - 1)>(dimensions) *
+ tensor_vsize_index_linearization_helper<Index, NumIndices, n - 1, RowMajor>::run(indices, dimensions);
+ }
+};
+
+template<typename Index, std::size_t NumIndices, bool RowMajor>
+struct tensor_vsize_index_linearization_helper<Index, NumIndices, 0, RowMajor>
+{
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Index run(array<Index, NumIndices> const& indices, std::vector<DenseIndex> const&)
+ {
+ return array_get<RowMajor ? 0 : NumIndices - 1>(indices);
+ }
+};
+} // end namespace internal
+
+
+namespace internal {
+
+template <typename DenseIndex, int NumDims> struct array_size<const DSizes<DenseIndex, NumDims> > {
+ static const size_t value = NumDims;
+};
+template <typename DenseIndex, int NumDims> struct array_size<DSizes<DenseIndex, NumDims> > {
+ static const size_t value = NumDims;
+};
+#ifndef EIGEN_EMULATE_CXX11_META_H
+template <typename std::ptrdiff_t... Indices> struct array_size<const Sizes<Indices...> > {
+static const std::ptrdiff_t value = Sizes<Indices...>::count;
+};
+template <typename std::ptrdiff_t... Indices> struct array_size<Sizes<Indices...> > {
+static const std::ptrdiff_t value = Sizes<Indices...>::count;
+};
+template <std::ptrdiff_t n, typename std::ptrdiff_t... Indices> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_get(const Sizes<Indices...>&) {
+ return get<n, internal::numeric_list<std::size_t, Indices...> >::value;
+}
+template <std::ptrdiff_t n> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_get(const Sizes<>&) {
+ eigen_assert(false && "should never be called");
+ return -1;
+}
+#else
+template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5> struct array_size<const Sizes<V1,V2,V3,V4,V5> > {
+ static const size_t value = Sizes<V1,V2,V3,V4,V5>::count;
+};
+template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5> struct array_size<Sizes<V1,V2,V3,V4,V5> > {
+ static const size_t value = Sizes<V1,V2,V3,V4,V5>::count;
+};
+template <std::size_t n, std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t array_get(const Sizes<V1,V2,V3,V4,V5>&) {
+ return get<n, typename Sizes<V1,V2,V3,V4,V5>::Base>::value;
+}
+
+#endif
+
+
+template <typename Dims1, typename Dims2, size_t n, size_t m>
+struct sizes_match_below_dim {
+ static EIGEN_DEVICE_FUNC inline bool run(Dims1&, Dims2&) {
+ return false;
+ }
+};
+template <typename Dims1, typename Dims2, size_t n>
+struct sizes_match_below_dim<Dims1, Dims2, n, n> {
+ static EIGEN_DEVICE_FUNC inline bool run(Dims1& dims1, Dims2& dims2) {
+ return (array_get<n-1>(dims1) == array_get<n-1>(dims2)) &
+ sizes_match_below_dim<Dims1, Dims2, n-1, n-1>::run(dims1, dims2);
+ }
+};
+template <typename Dims1, typename Dims2>
+struct sizes_match_below_dim<Dims1, Dims2, 0, 0> {
+ static EIGEN_DEVICE_FUNC inline bool run(Dims1&, Dims2&) {
+ return true;
+ }
+};
+
+} // end namespace internal
+
+
+template <typename Dims1, typename Dims2>
+EIGEN_DEVICE_FUNC bool dimensions_match(Dims1& dims1, Dims2& dims2) {
+ return internal::sizes_match_below_dim<Dims1, Dims2, internal::array_size<Dims1>::value, internal::array_size<Dims2>::value>::run(dims1, dims2);
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_DIMENSIONS_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h b/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h
new file mode 100644
index 000000000..06987132b
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h
@@ -0,0 +1,181 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H
+#define EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H
+
+namespace Eigen {
+
+/** \class TensorForcedEval
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor reshaping class.
+ *
+ *
+ */
+namespace internal {
+template<typename XprType, template <class> class MakePointer_>
+struct traits<TensorEvalToOp<XprType, MakePointer_> >
+{
+ // Type promotion to handle the case where the types of the lhs and the rhs are different.
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+
+ enum {
+ Flags = 0
+ };
+ template <class T>
+ struct MakePointer {
+ // Intermediate typedef to workaround MSVC issue.
+ typedef MakePointer_<T> MakePointerT;
+ typedef typename MakePointerT::Type Type;
+ };
+};
+
+template<typename XprType, template <class> class MakePointer_>
+struct eval<TensorEvalToOp<XprType, MakePointer_>, Eigen::Dense>
+{
+ typedef const TensorEvalToOp<XprType, MakePointer_>& type;
+};
+
+template<typename XprType, template <class> class MakePointer_>
+struct nested<TensorEvalToOp<XprType, MakePointer_>, 1, typename eval<TensorEvalToOp<XprType, MakePointer_> >::type>
+{
+ typedef TensorEvalToOp<XprType, MakePointer_> type;
+};
+
+} // end namespace internal
+
+
+
+
+template<typename XprType, template <class> class MakePointer_>
+class TensorEvalToOp : public TensorBase<TensorEvalToOp<XprType, MakePointer_>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorEvalToOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
+ typedef typename MakePointer_<CoeffReturnType>::Type PointerType;
+ typedef typename Eigen::internal::nested<TensorEvalToOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorEvalToOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorEvalToOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvalToOp(PointerType buffer, const XprType& expr)
+ : m_xpr(expr), m_buffer(buffer) {}
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ EIGEN_DEVICE_FUNC PointerType buffer() const { return m_buffer; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ PointerType m_buffer;
+};
+
+
+
+template<typename ArgType, typename Device, template <class> class MakePointer_>
+struct TensorEvaluator<const TensorEvalToOp<ArgType, MakePointer_>, Device>
+{
+ typedef TensorEvalToOp<ArgType, MakePointer_> XprType;
+ typedef typename ArgType::Scalar Scalar;
+ typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
+ typedef typename XprType::Index Index;
+ typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = true
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device), m_device(device),
+ m_buffer(op.buffer()), m_op(op), m_expression(op.expression())
+ { }
+
+ // Used for accessor extraction in SYCL Managed TensorMap:
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const XprType& op() const {
+ return m_op;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ~TensorEvaluator() {
+ }
+
+ typedef typename internal::traits<const TensorEvalToOp<ArgType, MakePointer_> >::template MakePointer<CoeffReturnType>::Type DevicePointer;
+ EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(DevicePointer scalar) {
+ EIGEN_UNUSED_VARIABLE(scalar);
+ eigen_assert(scalar == NULL);
+ return m_impl.evalSubExprsIfNeeded(m_buffer);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) {
+ m_buffer[i] = m_impl.coeff(i);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) {
+ internal::pstoret<CoeffReturnType, PacketReturnType, Aligned>(m_buffer + i, m_impl.template packet<TensorEvaluator<ArgType, Device>::IsAligned ? Aligned : Unaligned>(i));
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ return m_buffer[index];
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ return internal::ploadt<PacketReturnType, LoadMode>(m_buffer + index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ // We assume that evalPacket or evalScalar is called to perform the
+ // assignment and account for the cost of the write here.
+ return m_impl.costPerCoeff(vectorized) +
+ TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize);
+ }
+
+ EIGEN_DEVICE_FUNC DevicePointer data() const { return m_buffer; }
+ ArgType expression() const { return m_expression; }
+
+ /// required by sycl in order to extract the accessor
+ const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
+ /// added for sycl in order to construct the buffer from the sycl device
+ const Device& device() const{return m_device;}
+
+ private:
+ TensorEvaluator<ArgType, Device> m_impl;
+ const Device& m_device;
+ DevicePointer m_buffer;
+ const XprType& m_op;
+ const ArgType m_expression;
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h b/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h
new file mode 100644
index 000000000..834ce07df
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h
@@ -0,0 +1,633 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H
+#define EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H
+
+namespace Eigen {
+
+/** \class TensorEvaluator
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief The tensor evaluator classes.
+ *
+ * These classes are responsible for the evaluation of the tensor expression.
+ *
+ * TODO: add support for more types of expressions, in particular expressions
+ * leading to lvalues (slicing, reshaping, etc...)
+ */
+
+// Generic evaluator
+template<typename Derived, typename Device>
+struct TensorEvaluator
+{
+ typedef typename Derived::Index Index;
+ typedef typename Derived::Scalar Scalar;
+ typedef typename Derived::Scalar CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ typedef typename Derived::Dimensions Dimensions;
+
+ // NumDimensions is -1 for variable dim tensors
+ static const int NumCoords = internal::traits<Derived>::NumDimensions > 0 ?
+ internal::traits<Derived>::NumDimensions : 0;
+
+ enum {
+ IsAligned = Derived::IsAligned,
+ PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1),
+ Layout = Derived::Layout,
+ CoordAccess = NumCoords > 0,
+ RawAccess = true
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const Derived& m, const Device& device)
+ : m_data(const_cast<typename internal::traits<Derived>::template MakePointer<Scalar>::Type>(m.data())), m_dims(m.dimensions()), m_device(device), m_impl(m)
+ { }
+
+ // Used for accessor extraction in SYCL Managed TensorMap:
+ const Derived& derived() const { return m_impl; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dims; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* dest) {
+ if (dest) {
+ m_device.memcpy((void*)dest, m_data, sizeof(Scalar) * m_dims.TotalSize());
+ return false;
+ }
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
+ eigen_assert(m_data);
+ return m_data[index];
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) {
+ eigen_assert(m_data);
+ return m_data[index];
+ }
+
+ template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ PacketReturnType packet(Index index) const
+ {
+ return internal::ploadt<PacketReturnType, LoadMode>(m_data + index);
+ }
+
+ template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ void writePacket(Index index, const PacketReturnType& x)
+ {
+ return internal::pstoret<Scalar, PacketReturnType, StoreMode>(m_data + index, x);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<DenseIndex, NumCoords>& coords) const {
+ eigen_assert(m_data);
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ return m_data[m_dims.IndexOfColMajor(coords)];
+ } else {
+ return m_data[m_dims.IndexOfRowMajor(coords)];
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(const array<DenseIndex, NumCoords>& coords) {
+ eigen_assert(m_data);
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ return m_data[m_dims.IndexOfColMajor(coords)];
+ } else {
+ return m_data[m_dims.IndexOfRowMajor(coords)];
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
+ internal::unpacket_traits<PacketReturnType>::size);
+ }
+
+ EIGEN_DEVICE_FUNC typename internal::traits<Derived>::template MakePointer<Scalar>::Type data() const { return m_data; }
+
+ /// required by sycl in order to construct sycl buffer from raw pointer
+ const Device& device() const{return m_device;}
+
+ protected:
+ typename internal::traits<Derived>::template MakePointer<Scalar>::Type m_data;
+ Dimensions m_dims;
+ const Device& m_device;
+ const Derived& m_impl;
+};
+
+namespace {
+template <typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T loadConstant(const T* address) {
+ return *address;
+}
+// Use the texture cache on CUDA devices whenever possible
+#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350
+template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float loadConstant(const float* address) {
+ return __ldg(address);
+}
+template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double loadConstant(const double* address) {
+ return __ldg(address);
+}
+template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+Eigen::half loadConstant(const Eigen::half* address) {
+ return Eigen::half(half_impl::raw_uint16_to_half(__ldg(&address->x)));
+}
+#endif
+}
+
+
+// Default evaluator for rvalues
+template<typename Derived, typename Device>
+struct TensorEvaluator<const Derived, Device>
+{
+ typedef typename Derived::Index Index;
+ typedef typename Derived::Scalar Scalar;
+ typedef typename Derived::Scalar CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ typedef typename Derived::Dimensions Dimensions;
+
+ // NumDimensions is -1 for variable dim tensors
+ static const int NumCoords = internal::traits<Derived>::NumDimensions > 0 ?
+ internal::traits<Derived>::NumDimensions : 0;
+
+ enum {
+ IsAligned = Derived::IsAligned,
+ PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1),
+ Layout = Derived::Layout,
+ CoordAccess = NumCoords > 0,
+ RawAccess = true
+ };
+
+ // Used for accessor extraction in SYCL Managed TensorMap:
+ const Derived& derived() const { return m_impl; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const Derived& m, const Device& device)
+ : m_data(m.data()), m_dims(m.dimensions()), m_device(device), m_impl(m)
+ { }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dims; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
+ if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization && data) {
+ m_device.memcpy((void*)data, m_data, m_dims.TotalSize() * sizeof(Scalar));
+ return false;
+ }
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
+ eigen_assert(m_data);
+ return loadConstant(m_data+index);
+ }
+
+ template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ PacketReturnType packet(Index index) const
+ {
+ return internal::ploadt_ro<PacketReturnType, LoadMode>(m_data + index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<DenseIndex, NumCoords>& coords) const {
+ eigen_assert(m_data);
+ const Index index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_dims.IndexOfColMajor(coords)
+ : m_dims.IndexOfRowMajor(coords);
+ return loadConstant(m_data+index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
+ internal::unpacket_traits<PacketReturnType>::size);
+ }
+
+ EIGEN_DEVICE_FUNC typename internal::traits<Derived>::template MakePointer<const Scalar>::Type data() const { return m_data; }
+
+ /// added for sycl in order to construct the buffer from the sycl device
+ const Device& device() const{return m_device;}
+
+ protected:
+ typename internal::traits<Derived>::template MakePointer<const Scalar>::Type m_data;
+ Dimensions m_dims;
+ const Device& m_device;
+ const Derived& m_impl;
+};
+
+
+
+
+// -------------------- CwiseNullaryOp --------------------
+
+template<typename NullaryOp, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorCwiseNullaryOp<NullaryOp, ArgType>, Device>
+{
+ typedef TensorCwiseNullaryOp<NullaryOp, ArgType> XprType;
+
+ enum {
+ IsAligned = true,
+ PacketAccess = internal::functor_traits<NullaryOp>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC
+ TensorEvaluator(const XprType& op, const Device& device)
+ : m_functor(op.functor()), m_argImpl(op.nestedExpression(), device), m_wrapper()
+ { }
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+ typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
+
+ EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) { return true; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { }
+
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
+ {
+ return m_wrapper(m_functor, index);
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ return m_wrapper.template packetOp<PacketReturnType, Index>(m_functor, index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
+ internal::unpacket_traits<PacketReturnType>::size);
+ }
+
+ EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return NULL; }
+
+ /// required by sycl in order to extract the accessor
+ const TensorEvaluator<ArgType, Device>& impl() const { return m_argImpl; }
+ /// required by sycl in order to extract the accessor
+ NullaryOp functor() const { return m_functor; }
+
+
+ private:
+ const NullaryOp m_functor;
+ TensorEvaluator<ArgType, Device> m_argImpl;
+ const internal::nullary_wrapper<CoeffReturnType,NullaryOp> m_wrapper;
+};
+
+
+
+// -------------------- CwiseUnaryOp --------------------
+
+template<typename UnaryOp, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorCwiseUnaryOp<UnaryOp, ArgType>, Device>
+{
+ typedef TensorCwiseUnaryOp<UnaryOp, ArgType> XprType;
+
+ enum {
+ IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess & internal::functor_traits<UnaryOp>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
+ : m_functor(op.functor()),
+ m_argImpl(op.nestedExpression(), device)
+ { }
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+ typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
+
+ EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
+ m_argImpl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_argImpl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
+ {
+ return m_functor(m_argImpl.coeff(index));
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ return m_functor.packetOp(m_argImpl.template packet<LoadMode>(index));
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ const double functor_cost = internal::functor_traits<UnaryOp>::Cost;
+ return m_argImpl.costPerCoeff(vectorized) +
+ TensorOpCost(0, 0, functor_cost, vectorized, PacketSize);
+ }
+
+ EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return NULL; }
+
+ /// required by sycl in order to extract the accessor
+ const TensorEvaluator<ArgType, Device> & impl() const { return m_argImpl; }
+ /// added for sycl in order to construct the buffer from sycl device
+ UnaryOp functor() const { return m_functor; }
+
+
+ private:
+ const UnaryOp m_functor;
+ TensorEvaluator<ArgType, Device> m_argImpl;
+};
+
+
+// -------------------- CwiseBinaryOp --------------------
+
+template<typename BinaryOp, typename LeftArgType, typename RightArgType, typename Device>
+struct TensorEvaluator<const TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArgType>, Device>
+{
+ typedef TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArgType> XprType;
+
+ enum {
+ IsAligned = TensorEvaluator<LeftArgType, Device>::IsAligned & TensorEvaluator<RightArgType, Device>::IsAligned,
+ PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess &
+ internal::functor_traits<BinaryOp>::PacketAccess,
+ Layout = TensorEvaluator<LeftArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
+ : m_functor(op.functor()),
+ m_leftImpl(op.lhsExpression(), device),
+ m_rightImpl(op.rhsExpression(), device)
+ {
+ EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout) || internal::traits<XprType>::NumDimensions <= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions()));
+ }
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+ typedef typename TensorEvaluator<LeftArgType, Device>::Dimensions Dimensions;
+
+ EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
+ {
+ // TODO: use right impl instead if right impl dimensions are known at compile time.
+ return m_leftImpl.dimensions();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
+ m_leftImpl.evalSubExprsIfNeeded(NULL);
+ m_rightImpl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_leftImpl.cleanup();
+ m_rightImpl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
+ {
+ return m_functor(m_leftImpl.coeff(index), m_rightImpl.coeff(index));
+ }
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ return m_functor.packetOp(m_leftImpl.template packet<LoadMode>(index), m_rightImpl.template packet<LoadMode>(index));
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ const double functor_cost = internal::functor_traits<BinaryOp>::Cost;
+ return m_leftImpl.costPerCoeff(vectorized) +
+ m_rightImpl.costPerCoeff(vectorized) +
+ TensorOpCost(0, 0, functor_cost, vectorized, PacketSize);
+ }
+
+ EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return NULL; }
+ /// required by sycl in order to extract the accessor
+ const TensorEvaluator<LeftArgType, Device>& left_impl() const { return m_leftImpl; }
+ /// required by sycl in order to extract the accessor
+ const TensorEvaluator<RightArgType, Device>& right_impl() const { return m_rightImpl; }
+ /// required by sycl in order to extract the accessor
+ BinaryOp functor() const { return m_functor; }
+
+ private:
+ const BinaryOp m_functor;
+ TensorEvaluator<LeftArgType, Device> m_leftImpl;
+ TensorEvaluator<RightArgType, Device> m_rightImpl;
+};
+
+// -------------------- CwiseTernaryOp --------------------
+
+template<typename TernaryOp, typename Arg1Type, typename Arg2Type, typename Arg3Type, typename Device>
+struct TensorEvaluator<const TensorCwiseTernaryOp<TernaryOp, Arg1Type, Arg2Type, Arg3Type>, Device>
+{
+ typedef TensorCwiseTernaryOp<TernaryOp, Arg1Type, Arg2Type, Arg3Type> XprType;
+
+ enum {
+ IsAligned = TensorEvaluator<Arg1Type, Device>::IsAligned & TensorEvaluator<Arg2Type, Device>::IsAligned & TensorEvaluator<Arg3Type, Device>::IsAligned,
+ PacketAccess = TensorEvaluator<Arg1Type, Device>::PacketAccess & TensorEvaluator<Arg2Type, Device>::PacketAccess & TensorEvaluator<Arg3Type, Device>::PacketAccess &
+ internal::functor_traits<TernaryOp>::PacketAccess,
+ Layout = TensorEvaluator<Arg1Type, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
+ : m_functor(op.functor()),
+ m_arg1Impl(op.arg1Expression(), device),
+ m_arg2Impl(op.arg2Expression(), device),
+ m_arg3Impl(op.arg3Expression(), device)
+ {
+ EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<Arg1Type, Device>::Layout) == static_cast<int>(TensorEvaluator<Arg3Type, Device>::Layout) || internal::traits<XprType>::NumDimensions <= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
+
+ EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::StorageKind,
+ typename internal::traits<Arg2Type>::StorageKind>::value),
+ STORAGE_KIND_MUST_MATCH)
+ EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::StorageKind,
+ typename internal::traits<Arg3Type>::StorageKind>::value),
+ STORAGE_KIND_MUST_MATCH)
+ EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::Index,
+ typename internal::traits<Arg2Type>::Index>::value),
+ STORAGE_INDEX_MUST_MATCH)
+ EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::Index,
+ typename internal::traits<Arg3Type>::Index>::value),
+ STORAGE_INDEX_MUST_MATCH)
+
+ eigen_assert(dimensions_match(m_arg1Impl.dimensions(), m_arg2Impl.dimensions()) && dimensions_match(m_arg1Impl.dimensions(), m_arg3Impl.dimensions()));
+ }
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+ typedef typename TensorEvaluator<Arg1Type, Device>::Dimensions Dimensions;
+
+ EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
+ {
+ // TODO: use arg2 or arg3 dimensions if they are known at compile time.
+ return m_arg1Impl.dimensions();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
+ m_arg1Impl.evalSubExprsIfNeeded(NULL);
+ m_arg2Impl.evalSubExprsIfNeeded(NULL);
+ m_arg3Impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_arg1Impl.cleanup();
+ m_arg2Impl.cleanup();
+ m_arg3Impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
+ {
+ return m_functor(m_arg1Impl.coeff(index), m_arg2Impl.coeff(index), m_arg3Impl.coeff(index));
+ }
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ return m_functor.packetOp(m_arg1Impl.template packet<LoadMode>(index),
+ m_arg2Impl.template packet<LoadMode>(index),
+ m_arg3Impl.template packet<LoadMode>(index));
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ const double functor_cost = internal::functor_traits<TernaryOp>::Cost;
+ return m_arg1Impl.costPerCoeff(vectorized) +
+ m_arg2Impl.costPerCoeff(vectorized) +
+ m_arg3Impl.costPerCoeff(vectorized) +
+ TensorOpCost(0, 0, functor_cost, vectorized, PacketSize);
+ }
+
+ EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return NULL; }
+
+ /// required by sycl in order to extract the accessor
+ const TensorEvaluator<Arg1Type, Device> & arg1Impl() const { return m_arg1Impl; }
+ /// required by sycl in order to extract the accessor
+ const TensorEvaluator<Arg2Type, Device>& arg2Impl() const { return m_arg2Impl; }
+ /// required by sycl in order to extract the accessor
+ const TensorEvaluator<Arg3Type, Device>& arg3Impl() const { return m_arg3Impl; }
+
+ private:
+ const TernaryOp m_functor;
+ TensorEvaluator<Arg1Type, Device> m_arg1Impl;
+ TensorEvaluator<Arg2Type, Device> m_arg2Impl;
+ TensorEvaluator<Arg3Type, Device> m_arg3Impl;
+};
+
+
+// -------------------- SelectOp --------------------
+
+template<typename IfArgType, typename ThenArgType, typename ElseArgType, typename Device>
+struct TensorEvaluator<const TensorSelectOp<IfArgType, ThenArgType, ElseArgType>, Device>
+{
+ typedef TensorSelectOp<IfArgType, ThenArgType, ElseArgType> XprType;
+ typedef typename XprType::Scalar Scalar;
+
+ enum {
+ IsAligned = TensorEvaluator<ThenArgType, Device>::IsAligned & TensorEvaluator<ElseArgType, Device>::IsAligned,
+ PacketAccess = TensorEvaluator<ThenArgType, Device>::PacketAccess & TensorEvaluator<ElseArgType, Device>::PacketAccess &
+ internal::packet_traits<Scalar>::HasBlend,
+ Layout = TensorEvaluator<IfArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
+ : m_condImpl(op.ifExpression(), device),
+ m_thenImpl(op.thenExpression(), device),
+ m_elseImpl(op.elseExpression(), device)
+ {
+ EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<IfArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<ThenArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<IfArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<ElseArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ eigen_assert(dimensions_match(m_condImpl.dimensions(), m_thenImpl.dimensions()));
+ eigen_assert(dimensions_match(m_thenImpl.dimensions(), m_elseImpl.dimensions()));
+ }
+
+ typedef typename XprType::Index Index;
+ typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+ typedef typename TensorEvaluator<IfArgType, Device>::Dimensions Dimensions;
+
+ EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
+ {
+ // TODO: use then or else impl instead if they happen to be known at compile time.
+ return m_condImpl.dimensions();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
+ m_condImpl.evalSubExprsIfNeeded(NULL);
+ m_thenImpl.evalSubExprsIfNeeded(NULL);
+ m_elseImpl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_condImpl.cleanup();
+ m_thenImpl.cleanup();
+ m_elseImpl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
+ {
+ return m_condImpl.coeff(index) ? m_thenImpl.coeff(index) : m_elseImpl.coeff(index);
+ }
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const
+ {
+ internal::Selector<PacketSize> select;
+ for (Index i = 0; i < PacketSize; ++i) {
+ select.select[i] = m_condImpl.coeff(index+i);
+ }
+ return internal::pblend(select,
+ m_thenImpl.template packet<LoadMode>(index),
+ m_elseImpl.template packet<LoadMode>(index));
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ return m_condImpl.costPerCoeff(vectorized) +
+ m_thenImpl.costPerCoeff(vectorized)
+ .cwiseMax(m_elseImpl.costPerCoeff(vectorized));
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const { return NULL; }
+ /// required by sycl in order to extract the accessor
+ const TensorEvaluator<IfArgType, Device> & cond_impl() const { return m_condImpl; }
+ /// required by sycl in order to extract the accessor
+ const TensorEvaluator<ThenArgType, Device>& then_impl() const { return m_thenImpl; }
+ /// required by sycl in order to extract the accessor
+ const TensorEvaluator<ElseArgType, Device>& else_impl() const { return m_elseImpl; }
+
+ private:
+ TensorEvaluator<IfArgType, Device> m_condImpl;
+ TensorEvaluator<ThenArgType, Device> m_thenImpl;
+ TensorEvaluator<ElseArgType, Device> m_elseImpl;
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h b/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h
new file mode 100644
index 000000000..f01d77c0a
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h
@@ -0,0 +1,288 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H
+#define EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H
+
+namespace Eigen {
+
+/** \class TensorExecutor
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief The tensor executor class.
+ *
+ * This class is responsible for launch the evaluation of the expression on
+ * the specified computing device.
+ */
+namespace internal {
+
+// Default strategy: the expression is evaluated with a single cpu thread.
+template<typename Expression, typename Device, bool Vectorizable>
+class TensorExecutor
+{
+ public:
+ typedef typename Expression::Index Index;
+ EIGEN_DEVICE_FUNC
+ static inline void run(const Expression& expr, const Device& device = Device())
+ {
+ TensorEvaluator<Expression, Device> evaluator(expr, device);
+ const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
+ if (needs_assign)
+ {
+ const Index size = array_prod(evaluator.dimensions());
+ for (Index i = 0; i < size; ++i) {
+ evaluator.evalScalar(i);
+ }
+ }
+ evaluator.cleanup();
+ }
+};
+
+
+template<typename Expression>
+class TensorExecutor<Expression, DefaultDevice, true>
+{
+ public:
+ typedef typename Expression::Index Index;
+ EIGEN_DEVICE_FUNC
+ static inline void run(const Expression& expr, const DefaultDevice& device = DefaultDevice())
+ {
+ TensorEvaluator<Expression, DefaultDevice> evaluator(expr, device);
+ const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
+ if (needs_assign)
+ {
+ const Index size = array_prod(evaluator.dimensions());
+ const int PacketSize = unpacket_traits<typename TensorEvaluator<Expression, DefaultDevice>::PacketReturnType>::size;
+ // Give the compiler a strong hint to unroll the loop. But don't insist
+ // on unrolling, because if the function is expensive the compiler should not
+ // unroll the loop at the expense of inlining.
+ const Index UnrolledSize = (size / (4 * PacketSize)) * 4 * PacketSize;
+ for (Index i = 0; i < UnrolledSize; i += 4*PacketSize) {
+ for (Index j = 0; j < 4; j++) {
+ evaluator.evalPacket(i + j * PacketSize);
+ }
+ }
+ const Index VectorizedSize = (size / PacketSize) * PacketSize;
+ for (Index i = UnrolledSize; i < VectorizedSize; i += PacketSize) {
+ evaluator.evalPacket(i);
+ }
+ for (Index i = VectorizedSize; i < size; ++i) {
+ evaluator.evalScalar(i);
+ }
+ }
+ evaluator.cleanup();
+ }
+};
+
+
+
+// Multicore strategy: the index space is partitioned and each partition is executed on a single core
+#ifdef EIGEN_USE_THREADS
+template <typename Evaluator, typename Index, bool Vectorizable>
+struct EvalRange {
+ static void run(Evaluator* evaluator_in, const Index first, const Index last) {
+ Evaluator evaluator = *evaluator_in;
+ eigen_assert(last >= first);
+ for (Index i = first; i < last; ++i) {
+ evaluator.evalScalar(i);
+ }
+ }
+
+ static Index alignBlockSize(Index size) {
+ return size;
+ }
+};
+
+template <typename Evaluator, typename Index>
+struct EvalRange<Evaluator, Index, true> {
+ static const int PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size;
+
+ static void run(Evaluator* evaluator_in, const Index first, const Index last) {
+ Evaluator evaluator = *evaluator_in;
+ eigen_assert(last >= first);
+ Index i = first;
+ if (last - first >= PacketSize) {
+ eigen_assert(first % PacketSize == 0);
+ Index last_chunk_offset = last - 4 * PacketSize;
+ // Give the compiler a strong hint to unroll the loop. But don't insist
+ // on unrolling, because if the function is expensive the compiler should not
+ // unroll the loop at the expense of inlining.
+ for (; i <= last_chunk_offset; i += 4*PacketSize) {
+ for (Index j = 0; j < 4; j++) {
+ evaluator.evalPacket(i + j * PacketSize);
+ }
+ }
+ last_chunk_offset = last - PacketSize;
+ for (; i <= last_chunk_offset; i += PacketSize) {
+ evaluator.evalPacket(i);
+ }
+ }
+ for (; i < last; ++i) {
+ evaluator.evalScalar(i);
+ }
+ }
+
+ static Index alignBlockSize(Index size) {
+ // Align block size to packet size and account for unrolling in run above.
+ if (size >= 16 * PacketSize) {
+ return (size + 4 * PacketSize - 1) & ~(4 * PacketSize - 1);
+ }
+ // Aligning to 4 * PacketSize would increase block size by more than 25%.
+ return (size + PacketSize - 1) & ~(PacketSize - 1);
+ }
+};
+
+template <typename Expression, bool Vectorizable>
+class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable> {
+ public:
+ typedef typename Expression::Index Index;
+ static inline void run(const Expression& expr, const ThreadPoolDevice& device)
+ {
+ typedef TensorEvaluator<Expression, ThreadPoolDevice> Evaluator;
+ Evaluator evaluator(expr, device);
+ const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
+ if (needs_assign)
+ {
+ const Index size = array_prod(evaluator.dimensions());
+#if !defined(EIGEN_USE_SIMPLE_THREAD_POOL)
+ device.parallelFor(size, evaluator.costPerCoeff(Vectorizable),
+ EvalRange<Evaluator, Index, Vectorizable>::alignBlockSize,
+ [&evaluator](Index first, Index last) {
+ EvalRange<Evaluator, Index, Vectorizable>::run(&evaluator, first, last);
+ });
+#else
+ size_t num_threads = device.numThreads();
+ if (num_threads > 1) {
+ num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
+ size, evaluator.costPerCoeff(Vectorizable), num_threads);
+ }
+ if (num_threads == 1) {
+ EvalRange<Evaluator, Index, Vectorizable>::run(&evaluator, 0, size);
+ } else {
+ const Index PacketSize = Vectorizable ? unpacket_traits<typename Evaluator::PacketReturnType>::size : 1;
+ Index blocksz = std::ceil<Index>(static_cast<float>(size)/num_threads) + PacketSize - 1;
+ const Index blocksize = numext::maxi<Index>(PacketSize, (blocksz - (blocksz % PacketSize)));
+ const Index numblocks = size / blocksize;
+
+ Barrier barrier(numblocks);
+ for (int i = 0; i < numblocks; ++i) {
+ device.enqueue_with_barrier(
+ &barrier, &EvalRange<Evaluator, Index, Vectorizable>::run,
+ &evaluator, i * blocksize, (i + 1) * blocksize);
+ }
+ if (numblocks * blocksize < size) {
+ EvalRange<Evaluator, Index, Vectorizable>::run(
+ &evaluator, numblocks * blocksize, size);
+ }
+ barrier.Wait();
+ }
+#endif // defined(!EIGEN_USE_SIMPLE_THREAD_POOL)
+ }
+ evaluator.cleanup();
+ }
+};
+#endif // EIGEN_USE_THREADS
+
+
+// GPU: the evaluation of the expression is offloaded to a GPU.
+#if defined(EIGEN_USE_GPU)
+
+template <typename Expression, bool Vectorizable>
+class TensorExecutor<Expression, GpuDevice, Vectorizable> {
+ public:
+ typedef typename Expression::Index Index;
+ static void run(const Expression& expr, const GpuDevice& device);
+};
+
+
+#if defined(__CUDACC__)
+template <typename Evaluator, typename Index, bool Vectorizable>
+struct EigenMetaKernelEval {
+ static __device__ EIGEN_ALWAYS_INLINE
+ void run(Evaluator& eval, Index first, Index last, Index step_size) {
+ for (Index i = first; i < last; i += step_size) {
+ eval.evalScalar(i);
+ }
+ }
+};
+
+template <typename Evaluator, typename Index>
+struct EigenMetaKernelEval<Evaluator, Index, true> {
+ static __device__ EIGEN_ALWAYS_INLINE
+ void run(Evaluator& eval, Index first, Index last, Index step_size) {
+ const Index PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size;
+ const Index vectorized_size = (last / PacketSize) * PacketSize;
+ const Index vectorized_step_size = step_size * PacketSize;
+
+ // Use the vector path
+ for (Index i = first * PacketSize; i < vectorized_size;
+ i += vectorized_step_size) {
+ eval.evalPacket(i);
+ }
+ for (Index i = vectorized_size + first; i < last; i += step_size) {
+ eval.evalScalar(i);
+ }
+ }
+};
+
+template <typename Evaluator, typename Index>
+__global__ void
+__launch_bounds__(1024)
+EigenMetaKernel(Evaluator eval, Index size) {
+
+ const Index first_index = blockIdx.x * blockDim.x + threadIdx.x;
+ const Index step_size = blockDim.x * gridDim.x;
+
+ const bool vectorizable = Evaluator::PacketAccess & Evaluator::IsAligned;
+ EigenMetaKernelEval<Evaluator, Index, vectorizable>::run(eval, first_index, size, step_size);
+}
+
+/*static*/
+template <typename Expression, bool Vectorizable>
+inline void TensorExecutor<Expression, GpuDevice, Vectorizable>::run(
+ const Expression& expr, const GpuDevice& device) {
+ TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
+ const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
+ if (needs_assign) {
+ const int block_size = device.maxCudaThreadsPerBlock();
+ const int max_blocks = device.getNumCudaMultiProcessors() *
+ device.maxCudaThreadsPerMultiProcessor() / block_size;
+ const Index size = array_prod(evaluator.dimensions());
+ // Create a least one block to ensure we won't crash when tensorflow calls with tensors of size 0.
+ const int num_blocks = numext::maxi<int>(numext::mini<int>(max_blocks, divup<int>(size, block_size)), 1);
+
+ LAUNCH_CUDA_KERNEL(
+ (EigenMetaKernel<TensorEvaluator<Expression, GpuDevice>, Index>),
+ num_blocks, block_size, 0, device, evaluator, size);
+ }
+ evaluator.cleanup();
+}
+
+#endif // __CUDACC__
+#endif // EIGEN_USE_GPU
+
+// SYCL Executor policy
+#ifdef EIGEN_USE_SYCL
+
+template <typename Expression, bool Vectorizable>
+class TensorExecutor<Expression, SyclDevice, Vectorizable> {
+public:
+ static inline void run(const Expression &expr, const SyclDevice &device) {
+ // call TensorSYCL module
+ TensorSycl::run(expr, device);
+ }
+};
+
+#endif
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h b/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h
new file mode 100644
index 000000000..85dfc7a69
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h
@@ -0,0 +1,371 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_EXPR_H
+#define EIGEN_CXX11_TENSOR_TENSOR_EXPR_H
+
+namespace Eigen {
+
+/** \class TensorExpr
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor expression classes.
+ *
+ * The TensorCwiseNullaryOp class applies a nullary operators to an expression.
+ * This is typically used to generate constants.
+ *
+ * The TensorCwiseUnaryOp class represents an expression where a unary operator
+ * (e.g. cwiseSqrt) is applied to an expression.
+ *
+ * The TensorCwiseBinaryOp class represents an expression where a binary
+ * operator (e.g. addition) is applied to a lhs and a rhs expression.
+ *
+ */
+namespace internal {
+template<typename NullaryOp, typename XprType>
+struct traits<TensorCwiseNullaryOp<NullaryOp, XprType> >
+ : traits<XprType>
+{
+ typedef traits<XprType> XprTraits;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::Nested XprTypeNested;
+ typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+
+ enum {
+ Flags = 0
+ };
+};
+
+} // end namespace internal
+
+
+
+template<typename NullaryOp, typename XprType>
+class TensorCwiseNullaryOp : public TensorBase<TensorCwiseNullaryOp<NullaryOp, XprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorCwiseNullaryOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef TensorCwiseNullaryOp<NullaryOp, XprType> Nested;
+ typedef typename Eigen::internal::traits<TensorCwiseNullaryOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorCwiseNullaryOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCwiseNullaryOp(const XprType& xpr, const NullaryOp& func = NullaryOp())
+ : m_xpr(xpr), m_functor(func) {}
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ nestedExpression() const { return m_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ const NullaryOp& functor() const { return m_functor; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const NullaryOp m_functor;
+};
+
+
+
+namespace internal {
+template<typename UnaryOp, typename XprType>
+struct traits<TensorCwiseUnaryOp<UnaryOp, XprType> >
+ : traits<XprType>
+{
+ // TODO(phli): Add InputScalar, InputPacket. Check references to
+ // current Scalar/Packet to see if the intent is Input or Output.
+ typedef typename result_of<UnaryOp(typename XprType::Scalar)>::type Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprType::Nested XprTypeNested;
+ typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename UnaryOp, typename XprType>
+struct eval<TensorCwiseUnaryOp<UnaryOp, XprType>, Eigen::Dense>
+{
+ typedef const TensorCwiseUnaryOp<UnaryOp, XprType>& type;
+};
+
+template<typename UnaryOp, typename XprType>
+struct nested<TensorCwiseUnaryOp<UnaryOp, XprType>, 1, typename eval<TensorCwiseUnaryOp<UnaryOp, XprType> >::type>
+{
+ typedef TensorCwiseUnaryOp<UnaryOp, XprType> type;
+};
+
+} // end namespace internal
+
+
+
+template<typename UnaryOp, typename XprType>
+class TensorCwiseUnaryOp : public TensorBase<TensorCwiseUnaryOp<UnaryOp, XprType>, ReadOnlyAccessors>
+{
+ public:
+ // TODO(phli): Add InputScalar, InputPacket. Check references to
+ // current Scalar/Packet to see if the intent is Input or Output.
+ typedef typename Eigen::internal::traits<TensorCwiseUnaryOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef Scalar CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorCwiseUnaryOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorCwiseUnaryOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorCwiseUnaryOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp())
+ : m_xpr(xpr), m_functor(func) {}
+
+ EIGEN_DEVICE_FUNC
+ const UnaryOp& functor() const { return m_functor; }
+
+ /** \returns the nested expression */
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ nestedExpression() const { return m_xpr; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const UnaryOp m_functor;
+};
+
+
+namespace internal {
+template<typename BinaryOp, typename LhsXprType, typename RhsXprType>
+struct traits<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType> >
+{
+ // Type promotion to handle the case where the types of the lhs and the rhs
+ // are different.
+ // TODO(phli): Add Lhs/RhsScalar, Lhs/RhsPacket. Check references to
+ // current Scalar/Packet to see if the intent is Inputs or Output.
+ typedef typename result_of<
+ BinaryOp(typename LhsXprType::Scalar,
+ typename RhsXprType::Scalar)>::type Scalar;
+ typedef traits<LhsXprType> XprTraits;
+ typedef typename promote_storage_type<
+ typename traits<LhsXprType>::StorageKind,
+ typename traits<RhsXprType>::StorageKind>::ret StorageKind;
+ typedef typename promote_index_type<
+ typename traits<LhsXprType>::Index,
+ typename traits<RhsXprType>::Index>::type Index;
+ typedef typename LhsXprType::Nested LhsNested;
+ typedef typename RhsXprType::Nested RhsNested;
+ typedef typename remove_reference<LhsNested>::type _LhsNested;
+ typedef typename remove_reference<RhsNested>::type _RhsNested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+
+ enum {
+ Flags = 0
+ };
+};
+
+template<typename BinaryOp, typename LhsXprType, typename RhsXprType>
+struct eval<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>, Eigen::Dense>
+{
+ typedef const TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>& type;
+};
+
+template<typename BinaryOp, typename LhsXprType, typename RhsXprType>
+struct nested<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>, 1, typename eval<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType> >::type>
+{
+ typedef TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType> type;
+};
+
+} // end namespace internal
+
+
+
+template<typename BinaryOp, typename LhsXprType, typename RhsXprType>
+class TensorCwiseBinaryOp : public TensorBase<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>, ReadOnlyAccessors>
+{
+ public:
+ // TODO(phli): Add Lhs/RhsScalar, Lhs/RhsPacket. Check references to
+ // current Scalar/Packet to see if the intent is Inputs or Output.
+ typedef typename Eigen::internal::traits<TensorCwiseBinaryOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef Scalar CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorCwiseBinaryOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorCwiseBinaryOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorCwiseBinaryOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCwiseBinaryOp(const LhsXprType& lhs, const RhsXprType& rhs, const BinaryOp& func = BinaryOp())
+ : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_functor(func) {}
+
+ EIGEN_DEVICE_FUNC
+ const BinaryOp& functor() const { return m_functor; }
+
+ /** \returns the nested expressions */
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename LhsXprType::Nested>::type&
+ lhsExpression() const { return m_lhs_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename RhsXprType::Nested>::type&
+ rhsExpression() const { return m_rhs_xpr; }
+
+ protected:
+ typename LhsXprType::Nested m_lhs_xpr;
+ typename RhsXprType::Nested m_rhs_xpr;
+ const BinaryOp m_functor;
+};
+
+
+namespace internal {
+template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType>
+struct traits<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType> >
+{
+ // Type promotion to handle the case where the types of the args are different.
+ typedef typename result_of<
+ TernaryOp(typename Arg1XprType::Scalar,
+ typename Arg2XprType::Scalar,
+ typename Arg3XprType::Scalar)>::type Scalar;
+ typedef traits<Arg1XprType> XprTraits;
+ typedef typename traits<Arg1XprType>::StorageKind StorageKind;
+ typedef typename traits<Arg1XprType>::Index Index;
+ typedef typename Arg1XprType::Nested Arg1Nested;
+ typedef typename Arg2XprType::Nested Arg2Nested;
+ typedef typename Arg3XprType::Nested Arg3Nested;
+ typedef typename remove_reference<Arg1Nested>::type _Arg1Nested;
+ typedef typename remove_reference<Arg2Nested>::type _Arg2Nested;
+ typedef typename remove_reference<Arg3Nested>::type _Arg3Nested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+
+ enum {
+ Flags = 0
+ };
+};
+
+template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType>
+struct eval<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType>, Eigen::Dense>
+{
+ typedef const TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType>& type;
+};
+
+template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType>
+struct nested<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType>, 1, typename eval<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType> >::type>
+{
+ typedef TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType> type;
+};
+
+} // end namespace internal
+
+
+
+template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType>
+class TensorCwiseTernaryOp : public TensorBase<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorCwiseTernaryOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef Scalar CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorCwiseTernaryOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorCwiseTernaryOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorCwiseTernaryOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCwiseTernaryOp(const Arg1XprType& arg1, const Arg2XprType& arg2, const Arg3XprType& arg3, const TernaryOp& func = TernaryOp())
+ : m_arg1_xpr(arg1), m_arg2_xpr(arg2), m_arg3_xpr(arg3), m_functor(func) {}
+
+ EIGEN_DEVICE_FUNC
+ const TernaryOp& functor() const { return m_functor; }
+
+ /** \returns the nested expressions */
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename Arg1XprType::Nested>::type&
+ arg1Expression() const { return m_arg1_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename Arg2XprType::Nested>::type&
+ arg2Expression() const { return m_arg2_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename Arg3XprType::Nested>::type&
+ arg3Expression() const { return m_arg3_xpr; }
+
+ protected:
+ typename Arg1XprType::Nested m_arg1_xpr;
+ typename Arg2XprType::Nested m_arg2_xpr;
+ typename Arg3XprType::Nested m_arg3_xpr;
+ const TernaryOp m_functor;
+};
+
+
+namespace internal {
+template<typename IfXprType, typename ThenXprType, typename ElseXprType>
+struct traits<TensorSelectOp<IfXprType, ThenXprType, ElseXprType> >
+ : traits<ThenXprType>
+{
+ typedef typename traits<ThenXprType>::Scalar Scalar;
+ typedef traits<ThenXprType> XprTraits;
+ typedef typename promote_storage_type<typename traits<ThenXprType>::StorageKind,
+ typename traits<ElseXprType>::StorageKind>::ret StorageKind;
+ typedef typename promote_index_type<typename traits<ElseXprType>::Index,
+ typename traits<ThenXprType>::Index>::type Index;
+ typedef typename IfXprType::Nested IfNested;
+ typedef typename ThenXprType::Nested ThenNested;
+ typedef typename ElseXprType::Nested ElseNested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename IfXprType, typename ThenXprType, typename ElseXprType>
+struct eval<TensorSelectOp<IfXprType, ThenXprType, ElseXprType>, Eigen::Dense>
+{
+ typedef const TensorSelectOp<IfXprType, ThenXprType, ElseXprType>& type;
+};
+
+template<typename IfXprType, typename ThenXprType, typename ElseXprType>
+struct nested<TensorSelectOp<IfXprType, ThenXprType, ElseXprType>, 1, typename eval<TensorSelectOp<IfXprType, ThenXprType, ElseXprType> >::type>
+{
+ typedef TensorSelectOp<IfXprType, ThenXprType, ElseXprType> type;
+};
+
+} // end namespace internal
+
+
+template<typename IfXprType, typename ThenXprType, typename ElseXprType>
+class TensorSelectOp : public TensorBase<TensorSelectOp<IfXprType, ThenXprType, ElseXprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorSelectOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename internal::promote_storage_type<typename ThenXprType::CoeffReturnType,
+ typename ElseXprType::CoeffReturnType>::ret CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorSelectOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorSelectOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorSelectOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC
+ TensorSelectOp(const IfXprType& a_condition,
+ const ThenXprType& a_then,
+ const ElseXprType& a_else)
+ : m_condition(a_condition), m_then(a_then), m_else(a_else)
+ { }
+
+ EIGEN_DEVICE_FUNC
+ const IfXprType& ifExpression() const { return m_condition; }
+
+ EIGEN_DEVICE_FUNC
+ const ThenXprType& thenExpression() const { return m_then; }
+
+ EIGEN_DEVICE_FUNC
+ const ElseXprType& elseExpression() const { return m_else; }
+
+ protected:
+ typename IfXprType::Nested m_condition;
+ typename ThenXprType::Nested m_then;
+ typename ElseXprType::Nested m_else;
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_EXPR_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h b/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h
new file mode 100644
index 000000000..08eb5595a
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h
@@ -0,0 +1,651 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Jianwei Cui <thucjw@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_FFT_H
+#define EIGEN_CXX11_TENSOR_TENSOR_FFT_H
+
+// This code requires the ability to initialize arrays of constant
+// values directly inside a class.
+#if __cplusplus >= 201103L || EIGEN_COMP_MSVC >= 1900
+
+namespace Eigen {
+
+/** \class TensorFFT
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor FFT class.
+ *
+ * TODO:
+ * Vectorize the Cooley Tukey and the Bluestein algorithm
+ * Add support for multithreaded evaluation
+ * Improve the performance on GPU
+ */
+
+template <bool NeedUprade> struct MakeComplex {
+ template <typename T>
+ EIGEN_DEVICE_FUNC
+ T operator() (const T& val) const { return val; }
+};
+
+template <> struct MakeComplex<true> {
+ template <typename T>
+ EIGEN_DEVICE_FUNC
+ std::complex<T> operator() (const T& val) const { return std::complex<T>(val, 0); }
+};
+
+template <> struct MakeComplex<false> {
+ template <typename T>
+ EIGEN_DEVICE_FUNC
+ std::complex<T> operator() (const std::complex<T>& val) const { return val; }
+};
+
+template <int ResultType> struct PartOf {
+ template <typename T> T operator() (const T& val) const { return val; }
+};
+
+template <> struct PartOf<RealPart> {
+ template <typename T> T operator() (const std::complex<T>& val) const { return val.real(); }
+};
+
+template <> struct PartOf<ImagPart> {
+ template <typename T> T operator() (const std::complex<T>& val) const { return val.imag(); }
+};
+
+namespace internal {
+template <typename FFT, typename XprType, int FFTResultType, int FFTDir>
+struct traits<TensorFFTOp<FFT, XprType, FFTResultType, FFTDir> > : public traits<XprType> {
+ typedef traits<XprType> XprTraits;
+ typedef typename NumTraits<typename XprTraits::Scalar>::Real RealScalar;
+ typedef typename std::complex<RealScalar> ComplexScalar;
+ typedef typename XprTraits::Scalar InputScalar;
+ typedef typename conditional<FFTResultType == RealPart || FFTResultType == ImagPart, RealScalar, ComplexScalar>::type OutputScalar;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+};
+
+template <typename FFT, typename XprType, int FFTResultType, int FFTDirection>
+struct eval<TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection>, Eigen::Dense> {
+ typedef const TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection>& type;
+};
+
+template <typename FFT, typename XprType, int FFTResultType, int FFTDirection>
+struct nested<TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection>, 1, typename eval<TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection> >::type> {
+ typedef TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection> type;
+};
+
+} // end namespace internal
+
+template <typename FFT, typename XprType, int FFTResultType, int FFTDir>
+class TensorFFTOp : public TensorBase<TensorFFTOp<FFT, XprType, FFTResultType, FFTDir>, ReadOnlyAccessors> {
+ public:
+ typedef typename Eigen::internal::traits<TensorFFTOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename std::complex<RealScalar> ComplexScalar;
+ typedef typename internal::conditional<FFTResultType == RealPart || FFTResultType == ImagPart, RealScalar, ComplexScalar>::type OutputScalar;
+ typedef OutputScalar CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorFFTOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorFFTOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorFFTOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorFFTOp(const XprType& expr, const FFT& fft)
+ : m_xpr(expr), m_fft(fft) {}
+
+ EIGEN_DEVICE_FUNC
+ const FFT& fft() const { return m_fft; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type& expression() const {
+ return m_xpr;
+ }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const FFT m_fft;
+};
+
+// Eval as rvalue
+template <typename FFT, typename ArgType, typename Device, int FFTResultType, int FFTDir>
+struct TensorEvaluator<const TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir>, Device> {
+ typedef TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename std::complex<RealScalar> ComplexScalar;
+ typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
+ typedef internal::traits<XprType> XprTraits;
+ typedef typename XprTraits::Scalar InputScalar;
+ typedef typename internal::conditional<FFTResultType == RealPart || FFTResultType == ImagPart, RealScalar, ComplexScalar>::type OutputScalar;
+ typedef OutputScalar CoeffReturnType;
+ typedef typename PacketType<OutputScalar, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = true,
+ BlockAccess = false,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_fft(op.fft()), m_impl(op.expression(), device), m_data(NULL), m_device(device) {
+ const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
+ for (int i = 0; i < NumDims; ++i) {
+ eigen_assert(input_dims[i] > 0);
+ m_dimensions[i] = input_dims[i];
+ }
+
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_strides[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ m_strides[i] = m_strides[i - 1] * m_dimensions[i - 1];
+ }
+ } else {
+ m_strides[NumDims - 1] = 1;
+ for (int i = NumDims - 2; i >= 0; --i) {
+ m_strides[i] = m_strides[i + 1] * m_dimensions[i + 1];
+ }
+ }
+ m_size = m_dimensions.TotalSize();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
+ return m_dimensions;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(OutputScalar* data) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ if (data) {
+ evalToBuf(data);
+ return false;
+ } else {
+ m_data = (CoeffReturnType*)m_device.allocate(sizeof(CoeffReturnType) * m_size);
+ evalToBuf(m_data);
+ return true;
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ if (m_data) {
+ m_device.deallocate(m_data);
+ m_data = NULL;
+ }
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffReturnType coeff(Index index) const {
+ return m_data[index];
+ }
+
+ template <int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketReturnType
+ packet(Index index) const {
+ return internal::ploadt<PacketReturnType, LoadMode>(m_data + index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return m_data; }
+
+
+ private:
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalToBuf(OutputScalar* data) {
+ const bool write_to_out = internal::is_same<OutputScalar, ComplexScalar>::value;
+ ComplexScalar* buf = write_to_out ? (ComplexScalar*)data : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * m_size);
+
+ for (Index i = 0; i < m_size; ++i) {
+ buf[i] = MakeComplex<internal::is_same<InputScalar, RealScalar>::value>()(m_impl.coeff(i));
+ }
+
+ for (size_t i = 0; i < m_fft.size(); ++i) {
+ Index dim = m_fft[i];
+ eigen_assert(dim >= 0 && dim < NumDims);
+ Index line_len = m_dimensions[dim];
+ eigen_assert(line_len >= 1);
+ ComplexScalar* line_buf = (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * line_len);
+ const bool is_power_of_two = isPowerOfTwo(line_len);
+ const Index good_composite = is_power_of_two ? 0 : findGoodComposite(line_len);
+ const Index log_len = is_power_of_two ? getLog2(line_len) : getLog2(good_composite);
+
+ ComplexScalar* a = is_power_of_two ? NULL : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * good_composite);
+ ComplexScalar* b = is_power_of_two ? NULL : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * good_composite);
+ ComplexScalar* pos_j_base_powered = is_power_of_two ? NULL : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * (line_len + 1));
+ if (!is_power_of_two) {
+ // Compute twiddle factors
+ // t_n = exp(sqrt(-1) * pi * n^2 / line_len)
+ // for n = 0, 1,..., line_len-1.
+ // For n > 2 we use the recurrence t_n = t_{n-1}^2 / t_{n-2} * t_1^2
+ pos_j_base_powered[0] = ComplexScalar(1, 0);
+ if (line_len > 1) {
+ const RealScalar pi_over_len(EIGEN_PI / line_len);
+ const ComplexScalar pos_j_base = ComplexScalar(
+ std::cos(pi_over_len), std::sin(pi_over_len));
+ pos_j_base_powered[1] = pos_j_base;
+ if (line_len > 2) {
+ const ComplexScalar pos_j_base_sq = pos_j_base * pos_j_base;
+ for (int j = 2; j < line_len + 1; ++j) {
+ pos_j_base_powered[j] = pos_j_base_powered[j - 1] *
+ pos_j_base_powered[j - 1] /
+ pos_j_base_powered[j - 2] * pos_j_base_sq;
+ }
+ }
+ }
+ }
+
+ for (Index partial_index = 0; partial_index < m_size / line_len; ++partial_index) {
+ const Index base_offset = getBaseOffsetFromIndex(partial_index, dim);
+
+ // get data into line_buf
+ const Index stride = m_strides[dim];
+ if (stride == 1) {
+ memcpy(line_buf, &buf[base_offset], line_len*sizeof(ComplexScalar));
+ } else {
+ Index offset = base_offset;
+ for (int j = 0; j < line_len; ++j, offset += stride) {
+ line_buf[j] = buf[offset];
+ }
+ }
+
+ // processs the line
+ if (is_power_of_two) {
+ processDataLineCooleyTukey(line_buf, line_len, log_len);
+ }
+ else {
+ processDataLineBluestein(line_buf, line_len, good_composite, log_len, a, b, pos_j_base_powered);
+ }
+
+ // write back
+ if (FFTDir == FFT_FORWARD && stride == 1) {
+ memcpy(&buf[base_offset], line_buf, line_len*sizeof(ComplexScalar));
+ } else {
+ Index offset = base_offset;
+ const ComplexScalar div_factor = ComplexScalar(1.0 / line_len, 0);
+ for (int j = 0; j < line_len; ++j, offset += stride) {
+ buf[offset] = (FFTDir == FFT_FORWARD) ? line_buf[j] : line_buf[j] * div_factor;
+ }
+ }
+ }
+ m_device.deallocate(line_buf);
+ if (!is_power_of_two) {
+ m_device.deallocate(a);
+ m_device.deallocate(b);
+ m_device.deallocate(pos_j_base_powered);
+ }
+ }
+
+ if(!write_to_out) {
+ for (Index i = 0; i < m_size; ++i) {
+ data[i] = PartOf<FFTResultType>()(buf[i]);
+ }
+ m_device.deallocate(buf);
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static bool isPowerOfTwo(Index x) {
+ eigen_assert(x > 0);
+ return !(x & (x - 1));
+ }
+
+ // The composite number for padding, used in Bluestein's FFT algorithm
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static Index findGoodComposite(Index n) {
+ Index i = 2;
+ while (i < 2 * n - 1) i *= 2;
+ return i;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static Index getLog2(Index m) {
+ Index log2m = 0;
+ while (m >>= 1) log2m++;
+ return log2m;
+ }
+
+ // Call Cooley Tukey algorithm directly, data length must be power of 2
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void processDataLineCooleyTukey(ComplexScalar* line_buf, Index line_len, Index log_len) {
+ eigen_assert(isPowerOfTwo(line_len));
+ scramble_FFT(line_buf, line_len);
+ compute_1D_Butterfly<FFTDir>(line_buf, line_len, log_len);
+ }
+
+ // Call Bluestein's FFT algorithm, m is a good composite number greater than (2 * n - 1), used as the padding length
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void processDataLineBluestein(ComplexScalar* line_buf, Index line_len, Index good_composite, Index log_len, ComplexScalar* a, ComplexScalar* b, const ComplexScalar* pos_j_base_powered) {
+ Index n = line_len;
+ Index m = good_composite;
+ ComplexScalar* data = line_buf;
+
+ for (Index i = 0; i < n; ++i) {
+ if(FFTDir == FFT_FORWARD) {
+ a[i] = data[i] * numext::conj(pos_j_base_powered[i]);
+ }
+ else {
+ a[i] = data[i] * pos_j_base_powered[i];
+ }
+ }
+ for (Index i = n; i < m; ++i) {
+ a[i] = ComplexScalar(0, 0);
+ }
+
+ for (Index i = 0; i < n; ++i) {
+ if(FFTDir == FFT_FORWARD) {
+ b[i] = pos_j_base_powered[i];
+ }
+ else {
+ b[i] = numext::conj(pos_j_base_powered[i]);
+ }
+ }
+ for (Index i = n; i < m - n; ++i) {
+ b[i] = ComplexScalar(0, 0);
+ }
+ for (Index i = m - n; i < m; ++i) {
+ if(FFTDir == FFT_FORWARD) {
+ b[i] = pos_j_base_powered[m-i];
+ }
+ else {
+ b[i] = numext::conj(pos_j_base_powered[m-i]);
+ }
+ }
+
+ scramble_FFT(a, m);
+ compute_1D_Butterfly<FFT_FORWARD>(a, m, log_len);
+
+ scramble_FFT(b, m);
+ compute_1D_Butterfly<FFT_FORWARD>(b, m, log_len);
+
+ for (Index i = 0; i < m; ++i) {
+ a[i] *= b[i];
+ }
+
+ scramble_FFT(a, m);
+ compute_1D_Butterfly<FFT_REVERSE>(a, m, log_len);
+
+ //Do the scaling after ifft
+ for (Index i = 0; i < m; ++i) {
+ a[i] /= m;
+ }
+
+ for (Index i = 0; i < n; ++i) {
+ if(FFTDir == FFT_FORWARD) {
+ data[i] = a[i] * numext::conj(pos_j_base_powered[i]);
+ }
+ else {
+ data[i] = a[i] * pos_j_base_powered[i];
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static void scramble_FFT(ComplexScalar* data, Index n) {
+ eigen_assert(isPowerOfTwo(n));
+ Index j = 1;
+ for (Index i = 1; i < n; ++i){
+ if (j > i) {
+ std::swap(data[j-1], data[i-1]);
+ }
+ Index m = n >> 1;
+ while (m >= 2 && j > m) {
+ j -= m;
+ m >>= 1;
+ }
+ j += m;
+ }
+ }
+
+ template <int Dir>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_2(ComplexScalar* data) {
+ ComplexScalar tmp = data[1];
+ data[1] = data[0] - data[1];
+ data[0] += tmp;
+ }
+
+ template <int Dir>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_4(ComplexScalar* data) {
+ ComplexScalar tmp[4];
+ tmp[0] = data[0] + data[1];
+ tmp[1] = data[0] - data[1];
+ tmp[2] = data[2] + data[3];
+ if (Dir == FFT_FORWARD) {
+ tmp[3] = ComplexScalar(0.0, -1.0) * (data[2] - data[3]);
+ } else {
+ tmp[3] = ComplexScalar(0.0, 1.0) * (data[2] - data[3]);
+ }
+ data[0] = tmp[0] + tmp[2];
+ data[1] = tmp[1] + tmp[3];
+ data[2] = tmp[0] - tmp[2];
+ data[3] = tmp[1] - tmp[3];
+ }
+
+ template <int Dir>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_8(ComplexScalar* data) {
+ ComplexScalar tmp_1[8];
+ ComplexScalar tmp_2[8];
+
+ tmp_1[0] = data[0] + data[1];
+ tmp_1[1] = data[0] - data[1];
+ tmp_1[2] = data[2] + data[3];
+ if (Dir == FFT_FORWARD) {
+ tmp_1[3] = (data[2] - data[3]) * ComplexScalar(0, -1);
+ } else {
+ tmp_1[3] = (data[2] - data[3]) * ComplexScalar(0, 1);
+ }
+ tmp_1[4] = data[4] + data[5];
+ tmp_1[5] = data[4] - data[5];
+ tmp_1[6] = data[6] + data[7];
+ if (Dir == FFT_FORWARD) {
+ tmp_1[7] = (data[6] - data[7]) * ComplexScalar(0, -1);
+ } else {
+ tmp_1[7] = (data[6] - data[7]) * ComplexScalar(0, 1);
+ }
+ tmp_2[0] = tmp_1[0] + tmp_1[2];
+ tmp_2[1] = tmp_1[1] + tmp_1[3];
+ tmp_2[2] = tmp_1[0] - tmp_1[2];
+ tmp_2[3] = tmp_1[1] - tmp_1[3];
+ tmp_2[4] = tmp_1[4] + tmp_1[6];
+// SQRT2DIV2 = sqrt(2)/2
+#define SQRT2DIV2 0.7071067811865476
+ if (Dir == FFT_FORWARD) {
+ tmp_2[5] = (tmp_1[5] + tmp_1[7]) * ComplexScalar(SQRT2DIV2, -SQRT2DIV2);
+ tmp_2[6] = (tmp_1[4] - tmp_1[6]) * ComplexScalar(0, -1);
+ tmp_2[7] = (tmp_1[5] - tmp_1[7]) * ComplexScalar(-SQRT2DIV2, -SQRT2DIV2);
+ } else {
+ tmp_2[5] = (tmp_1[5] + tmp_1[7]) * ComplexScalar(SQRT2DIV2, SQRT2DIV2);
+ tmp_2[6] = (tmp_1[4] - tmp_1[6]) * ComplexScalar(0, 1);
+ tmp_2[7] = (tmp_1[5] - tmp_1[7]) * ComplexScalar(-SQRT2DIV2, SQRT2DIV2);
+ }
+ data[0] = tmp_2[0] + tmp_2[4];
+ data[1] = tmp_2[1] + tmp_2[5];
+ data[2] = tmp_2[2] + tmp_2[6];
+ data[3] = tmp_2[3] + tmp_2[7];
+ data[4] = tmp_2[0] - tmp_2[4];
+ data[5] = tmp_2[1] - tmp_2[5];
+ data[6] = tmp_2[2] - tmp_2[6];
+ data[7] = tmp_2[3] - tmp_2[7];
+ }
+
+ template <int Dir>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_1D_merge(
+ ComplexScalar* data, Index n, Index n_power_of_2) {
+ // Original code:
+ // RealScalar wtemp = std::sin(M_PI/n);
+ // RealScalar wpi = -std::sin(2 * M_PI/n);
+ const RealScalar wtemp = m_sin_PI_div_n_LUT[n_power_of_2];
+ const RealScalar wpi = (Dir == FFT_FORWARD)
+ ? m_minus_sin_2_PI_div_n_LUT[n_power_of_2]
+ : -m_minus_sin_2_PI_div_n_LUT[n_power_of_2];
+
+ const ComplexScalar wp(wtemp, wpi);
+ const ComplexScalar wp_one = wp + ComplexScalar(1, 0);
+ const ComplexScalar wp_one_2 = wp_one * wp_one;
+ const ComplexScalar wp_one_3 = wp_one_2 * wp_one;
+ const ComplexScalar wp_one_4 = wp_one_3 * wp_one;
+ const Index n2 = n / 2;
+ ComplexScalar w(1.0, 0.0);
+ for (Index i = 0; i < n2; i += 4) {
+ ComplexScalar temp0(data[i + n2] * w);
+ ComplexScalar temp1(data[i + 1 + n2] * w * wp_one);
+ ComplexScalar temp2(data[i + 2 + n2] * w * wp_one_2);
+ ComplexScalar temp3(data[i + 3 + n2] * w * wp_one_3);
+ w = w * wp_one_4;
+
+ data[i + n2] = data[i] - temp0;
+ data[i] += temp0;
+
+ data[i + 1 + n2] = data[i + 1] - temp1;
+ data[i + 1] += temp1;
+
+ data[i + 2 + n2] = data[i + 2] - temp2;
+ data[i + 2] += temp2;
+
+ data[i + 3 + n2] = data[i + 3] - temp3;
+ data[i + 3] += temp3;
+ }
+ }
+
+ template <int Dir>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void compute_1D_Butterfly(
+ ComplexScalar* data, Index n, Index n_power_of_2) {
+ eigen_assert(isPowerOfTwo(n));
+ if (n > 8) {
+ compute_1D_Butterfly<Dir>(data, n / 2, n_power_of_2 - 1);
+ compute_1D_Butterfly<Dir>(data + n / 2, n / 2, n_power_of_2 - 1);
+ butterfly_1D_merge<Dir>(data, n, n_power_of_2);
+ } else if (n == 8) {
+ butterfly_8<Dir>(data);
+ } else if (n == 4) {
+ butterfly_4<Dir>(data);
+ } else if (n == 2) {
+ butterfly_2<Dir>(data);
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index getBaseOffsetFromIndex(Index index, Index omitted_dim) const {
+ Index result = 0;
+
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > omitted_dim; --i) {
+ const Index partial_m_stride = m_strides[i] / m_dimensions[omitted_dim];
+ const Index idx = index / partial_m_stride;
+ index -= idx * partial_m_stride;
+ result += idx * m_strides[i];
+ }
+ result += index;
+ }
+ else {
+ for (Index i = 0; i < omitted_dim; ++i) {
+ const Index partial_m_stride = m_strides[i] / m_dimensions[omitted_dim];
+ const Index idx = index / partial_m_stride;
+ index -= idx * partial_m_stride;
+ result += idx * m_strides[i];
+ }
+ result += index;
+ }
+ // Value of index_coords[omitted_dim] is not determined to this step
+ return result;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index getIndexFromOffset(Index base, Index omitted_dim, Index offset) const {
+ Index result = base + offset * m_strides[omitted_dim] ;
+ return result;
+ }
+
+ protected:
+ Index m_size;
+ const FFT& m_fft;
+ Dimensions m_dimensions;
+ array<Index, NumDims> m_strides;
+ TensorEvaluator<ArgType, Device> m_impl;
+ CoeffReturnType* m_data;
+ const Device& m_device;
+
+ // This will support a maximum FFT size of 2^32 for each dimension
+ // m_sin_PI_div_n_LUT[i] = (-2) * std::sin(M_PI / std::pow(2,i)) ^ 2;
+ const RealScalar m_sin_PI_div_n_LUT[32] = {
+ RealScalar(0.0),
+ RealScalar(-2),
+ RealScalar(-0.999999999999999),
+ RealScalar(-0.292893218813453),
+ RealScalar(-0.0761204674887130),
+ RealScalar(-0.0192147195967696),
+ RealScalar(-0.00481527332780311),
+ RealScalar(-0.00120454379482761),
+ RealScalar(-3.01181303795779e-04),
+ RealScalar(-7.52981608554592e-05),
+ RealScalar(-1.88247173988574e-05),
+ RealScalar(-4.70619042382852e-06),
+ RealScalar(-1.17654829809007e-06),
+ RealScalar(-2.94137117780840e-07),
+ RealScalar(-7.35342821488550e-08),
+ RealScalar(-1.83835707061916e-08),
+ RealScalar(-4.59589268710903e-09),
+ RealScalar(-1.14897317243732e-09),
+ RealScalar(-2.87243293150586e-10),
+ RealScalar( -7.18108232902250e-11),
+ RealScalar(-1.79527058227174e-11),
+ RealScalar(-4.48817645568941e-12),
+ RealScalar(-1.12204411392298e-12),
+ RealScalar(-2.80511028480785e-13),
+ RealScalar(-7.01277571201985e-14),
+ RealScalar(-1.75319392800498e-14),
+ RealScalar(-4.38298482001247e-15),
+ RealScalar(-1.09574620500312e-15),
+ RealScalar(-2.73936551250781e-16),
+ RealScalar(-6.84841378126949e-17),
+ RealScalar(-1.71210344531737e-17),
+ RealScalar(-4.28025861329343e-18)
+ };
+
+ // m_minus_sin_2_PI_div_n_LUT[i] = -std::sin(2 * M_PI / std::pow(2,i));
+ const RealScalar m_minus_sin_2_PI_div_n_LUT[32] = {
+ RealScalar(0.0),
+ RealScalar(0.0),
+ RealScalar(-1.00000000000000e+00),
+ RealScalar(-7.07106781186547e-01),
+ RealScalar(-3.82683432365090e-01),
+ RealScalar(-1.95090322016128e-01),
+ RealScalar(-9.80171403295606e-02),
+ RealScalar(-4.90676743274180e-02),
+ RealScalar(-2.45412285229123e-02),
+ RealScalar(-1.22715382857199e-02),
+ RealScalar(-6.13588464915448e-03),
+ RealScalar(-3.06795676296598e-03),
+ RealScalar(-1.53398018628477e-03),
+ RealScalar(-7.66990318742704e-04),
+ RealScalar(-3.83495187571396e-04),
+ RealScalar(-1.91747597310703e-04),
+ RealScalar(-9.58737990959773e-05),
+ RealScalar(-4.79368996030669e-05),
+ RealScalar(-2.39684498084182e-05),
+ RealScalar(-1.19842249050697e-05),
+ RealScalar(-5.99211245264243e-06),
+ RealScalar(-2.99605622633466e-06),
+ RealScalar(-1.49802811316901e-06),
+ RealScalar(-7.49014056584716e-07),
+ RealScalar(-3.74507028292384e-07),
+ RealScalar(-1.87253514146195e-07),
+ RealScalar(-9.36267570730981e-08),
+ RealScalar(-4.68133785365491e-08),
+ RealScalar(-2.34066892682746e-08),
+ RealScalar(-1.17033446341373e-08),
+ RealScalar(-5.85167231706864e-09),
+ RealScalar(-2.92583615853432e-09)
+ };
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_HAS_CONSTEXPR
+
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_FFT_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h b/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h
new file mode 100644
index 000000000..fcee5f60d
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h
@@ -0,0 +1,389 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_FIXED_SIZE_H
+#define EIGEN_CXX11_TENSOR_TENSOR_FIXED_SIZE_H
+
+namespace Eigen {
+
+/** \class TensorFixedSize
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief The fixed sized version of the tensor class.
+ *
+ * The fixed sized equivalent of
+ * Eigen::Tensor<float, 3> t(3, 5, 7);
+ * is
+ * Eigen::TensorFixedSize<float, Size<3,5,7>> t;
+ */
+
+template<typename Scalar_, typename Dimensions_, int Options_, typename IndexType>
+class TensorFixedSize : public TensorBase<TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType> >
+{
+ public:
+ typedef TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType> Self;
+ typedef TensorBase<TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType> > Base;
+ typedef typename Eigen::internal::nested<Self>::type Nested;
+ typedef typename internal::traits<Self>::StorageKind StorageKind;
+ typedef typename internal::traits<Self>::Index Index;
+ typedef Scalar_ Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef typename Base::CoeffReturnType CoeffReturnType;
+
+ static const int Options = Options_;
+
+ enum {
+ IsAligned = bool(EIGEN_MAX_ALIGN_BYTES>0),
+ Layout = Options_ & RowMajor ? RowMajor : ColMajor,
+ CoordAccess = true,
+ RawAccess = true
+ };
+
+ typedef Dimensions_ Dimensions;
+ static const std::size_t NumIndices = Dimensions::count;
+
+ protected:
+ TensorStorage<Scalar, Dimensions, Options> m_storage;
+
+ public:
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const { return NumIndices; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(std::size_t n) const { return m_storage.dimensions()[n]; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_storage.dimensions(); }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_storage.size(); }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); }
+
+ // This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
+ // work, because that uses base().coeffRef() - and we don't yet
+ // implement a similar class hierarchy
+ inline Self& base() { return *this; }
+ inline const Self& base() const { return *this; }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index firstIndex, IndexTypes... otherIndices) const
+ {
+ // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return coeff(array<Index, NumIndices>{{firstIndex, otherIndices...}});
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& coeff(const array<Index, NumIndices>& indices) const
+ {
+ eigen_internal_assert(checkIndexRange(indices));
+ return m_storage.data()[linearizedIndex(indices)];
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const
+ {
+ eigen_internal_assert(index >= 0 && index < size());
+ return m_storage.data()[index];
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& coeff() const
+ {
+ EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return m_storage.data()[0];
+ }
+
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index firstIndex, IndexTypes... otherIndices)
+ {
+ // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return coeffRef(array<Index, NumIndices>{{firstIndex, otherIndices...}});
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices)
+ {
+ eigen_internal_assert(checkIndexRange(indices));
+ return m_storage.data()[linearizedIndex(indices)];
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
+ {
+ eigen_internal_assert(index >= 0 && index < size());
+ return m_storage.data()[index];
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& coeffRef()
+ {
+ EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return m_storage.data()[0];
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index firstIndex, IndexTypes... otherIndices) const
+ {
+ // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return this->operator()(array<Index, NumIndices>{{firstIndex, otherIndices...}});
+ }
+#else
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const
+ {
+ if (Options&RowMajor) {
+ const Index index = i1 + i0 * m_storage.dimensions()[1];
+ return m_storage.data()[index];
+ } else {
+ const Index index = i0 + i1 * m_storage.dimensions()[0];
+ return m_storage.data()[index];
+ }
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const
+ {
+ if (Options&RowMajor) {
+ const Index index = i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0);
+ return m_storage.data()[index];
+ } else {
+ const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * i2);
+ return m_storage.data()[index];
+ }
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const
+ {
+ if (Options&RowMajor) {
+ const Index index = i3 + m_storage.dimensions()[3] * (i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0));
+ return m_storage.data()[index];
+ } else {
+ const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * (i2 + m_storage.dimensions()[2] * i3));
+ return m_storage.data()[index];
+ }
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const
+ {
+ if (Options&RowMajor) {
+ const Index index = i4 + m_storage.dimensions()[4] * (i3 + m_storage.dimensions()[3] * (i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0)));
+ return m_storage.data()[index];
+ } else {
+ const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * (i2 + m_storage.dimensions()[2] * (i3 + m_storage.dimensions()[3] * i4)));
+ return m_storage.data()[index];
+ }
+ }
+#endif
+
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const
+ {
+ eigen_assert(checkIndexRange(indices));
+ return coeff(indices);
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const
+ {
+ eigen_internal_assert(index >= 0 && index < size());
+ return coeff(index);
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()() const
+ {
+ EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return coeff();
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator[](Index index) const
+ {
+ // The bracket operator is only for vectors, use the parenthesis operator instead.
+ EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return coeff(index);
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index firstIndex, IndexTypes... otherIndices)
+ {
+ // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return operator()(array<Index, NumIndices>{{firstIndex, otherIndices...}});
+ }
+#else
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1)
+ {
+ if (Options&RowMajor) {
+ const Index index = i1 + i0 * m_storage.dimensions()[1];
+ return m_storage.data()[index];
+ } else {
+ const Index index = i0 + i1 * m_storage.dimensions()[0];
+ return m_storage.data()[index];
+ }
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2)
+ {
+ if (Options&RowMajor) {
+ const Index index = i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0);
+ return m_storage.data()[index];
+ } else {
+ const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * i2);
+ return m_storage.data()[index];
+ }
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3)
+ {
+ if (Options&RowMajor) {
+ const Index index = i3 + m_storage.dimensions()[3] * (i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0));
+ return m_storage.data()[index];
+ } else {
+ const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * (i2 + m_storage.dimensions()[2] * i3));
+ return m_storage.data()[index];
+ }
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4)
+ {
+ if (Options&RowMajor) {
+ const Index index = i4 + m_storage.dimensions()[4] * (i3 + m_storage.dimensions()[3] * (i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0)));
+ return m_storage.data()[index];
+ } else {
+ const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * (i2 + m_storage.dimensions()[2] * (i3 + m_storage.dimensions()[3] * i4)));
+ return m_storage.data()[index];
+ }
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices)
+ {
+ eigen_assert(checkIndexRange(indices));
+ return coeffRef(indices);
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index index)
+ {
+ eigen_assert(index >= 0 && index < size());
+ return coeffRef(index);
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()()
+ {
+ EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return coeffRef();
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator[](Index index)
+ {
+ // The bracket operator is only for vectors, use the parenthesis operator instead
+ EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return coeffRef(index);
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorFixedSize()
+ : m_storage()
+ {
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorFixedSize(const Self& other)
+ : m_storage(other.m_storage)
+ {
+ }
+
+#if EIGEN_HAS_RVALUE_REFERENCES
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorFixedSize(Self&& other)
+ : m_storage(other.m_storage)
+ {
+ }
+#endif
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorFixedSize(const TensorBase<OtherDerived, ReadOnlyAccessors>& other)
+ {
+ typedef TensorAssignOp<TensorFixedSize, const OtherDerived> Assign;
+ Assign assign(*this, other.derived());
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ }
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorFixedSize(const TensorBase<OtherDerived, WriteAccessors>& other)
+ {
+ typedef TensorAssignOp<TensorFixedSize, const OtherDerived> Assign;
+ Assign assign(*this, other.derived());
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorFixedSize& operator=(const TensorFixedSize& other)
+ {
+ // FIXME: check that the dimensions of other match the dimensions of *this.
+ // Unfortunately this isn't possible yet when the rhs is an expression.
+ typedef TensorAssignOp<Self, const TensorFixedSize> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorFixedSize& operator=(const OtherDerived& other)
+ {
+ // FIXME: check that the dimensions of other match the dimensions of *this.
+ // Unfortunately this isn't possible yet when the rhs is an expression.
+ typedef TensorAssignOp<Self, const OtherDerived> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ protected:
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE bool checkIndexRange(const array<Index, NumIndices>& /*indices*/) const
+ {
+ using internal::array_apply_and_reduce;
+ using internal::array_zip_and_reduce;
+ using internal::greater_equal_zero_op;
+ using internal::logical_and_op;
+ using internal::lesser_op;
+
+ return true;
+ // check whether the indices are all >= 0
+ /* array_apply_and_reduce<logical_and_op, greater_equal_zero_op>(indices) &&
+ // check whether the indices fit in the dimensions
+ array_zip_and_reduce<logical_and_op, lesser_op>(indices, m_storage.dimensions());*/
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Index linearizedIndex(const array<Index, NumIndices>& indices) const
+ {
+ if (Options&RowMajor) {
+ return m_storage.dimensions().IndexOfRowMajor(indices);
+ } else {
+ return m_storage.dimensions().IndexOfColMajor(indices);
+ }
+ }
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_FIXED_SIZE_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h b/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h
new file mode 100644
index 000000000..bbd5eb374
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h
@@ -0,0 +1,167 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H
+#define EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H
+
+namespace Eigen {
+
+/** \class TensorForcedEval
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor reshaping class.
+ *
+ *
+ */
+/// template <class> class MakePointer_ is added to convert the host pointer to the device pointer.
+/// It is added due to the fact that for our device compiler T* is not allowed.
+/// If we wanted to use the same Evaluator functions we have to convert that type to our pointer T.
+/// This is done through our MakePointer_ class. By default the Type in the MakePointer_<T> is T* .
+/// Therefore, by adding the default value, we managed to convert the type and it does not break any
+/// existing code as its default value is T*.
+namespace internal {
+template<typename XprType, template <class> class MakePointer_>
+struct traits<TensorForcedEvalOp<XprType, MakePointer_> >
+{
+ // Type promotion to handle the case where the types of the lhs and the rhs are different.
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename traits<XprType>::StorageKind StorageKind;
+ typedef typename traits<XprType>::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+
+ enum {
+ Flags = 0
+ };
+ template <class T> struct MakePointer {
+ // Intermediate typedef to workaround MSVC issue.
+ typedef MakePointer_<T> MakePointerT;
+ typedef typename MakePointerT::Type Type;
+ };
+};
+
+template<typename XprType, template <class> class MakePointer_>
+struct eval<TensorForcedEvalOp<XprType, MakePointer_>, Eigen::Dense>
+{
+ typedef const TensorForcedEvalOp<XprType, MakePointer_>& type;
+};
+
+template<typename XprType, template <class> class MakePointer_>
+struct nested<TensorForcedEvalOp<XprType, MakePointer_>, 1, typename eval<TensorForcedEvalOp<XprType, MakePointer_> >::type>
+{
+ typedef TensorForcedEvalOp<XprType, MakePointer_> type;
+};
+
+} // end namespace internal
+
+
+
+template<typename XprType, template <class> class MakePointer_>
+class TensorForcedEvalOp : public TensorBase<TensorForcedEvalOp<XprType, MakePointer_>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorForcedEvalOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorForcedEvalOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorForcedEvalOp(const XprType& expr)
+ : m_xpr(expr) {}
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+};
+
+
+template<typename ArgType, typename Device, template <class> class MakePointer_>
+struct TensorEvaluator<const TensorForcedEvalOp<ArgType, MakePointer_>, Device>
+{
+ typedef TensorForcedEvalOp<ArgType, MakePointer_> XprType;
+ typedef typename ArgType::Scalar Scalar;
+ typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
+ typedef typename XprType::Index Index;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = true,
+ PacketAccess = (PacketSize > 1),
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ RawAccess = true
+ };
+
+ EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
+ /// op_ is used for sycl
+ : m_impl(op.expression(), device), m_op(op.expression()), m_device(device), m_buffer(NULL)
+ { }
+
+ EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
+ const Index numValues = internal::array_prod(m_impl.dimensions());
+ m_buffer = (CoeffReturnType*)m_device.allocate(numValues * sizeof(CoeffReturnType));
+ // Should initialize the memory in case we're dealing with non POD types.
+ if (NumTraits<CoeffReturnType>::RequireInitialization) {
+ for (Index i = 0; i < numValues; ++i) {
+ new(m_buffer+i) CoeffReturnType();
+ }
+ }
+ typedef TensorEvalToOp< const typename internal::remove_const<ArgType>::type > EvalTo;
+ EvalTo evalToTmp(m_buffer, m_op);
+ const bool PacketAccess = internal::IsVectorizable<Device, const ArgType>::value;
+ internal::TensorExecutor<const EvalTo, typename internal::remove_const<Device>::type, PacketAccess>::run(evalToTmp, m_device);
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_device.deallocate(m_buffer);
+ m_buffer = NULL;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ return m_buffer[index];
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ return internal::ploadt<PacketReturnType, LoadMode>(m_buffer + index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
+ }
+
+ EIGEN_DEVICE_FUNC typename MakePointer<Scalar>::Type data() const { return m_buffer; }
+
+ /// required by sycl in order to extract the sycl accessor
+ const TensorEvaluator<ArgType, Device>& impl() { return m_impl; }
+ /// used by sycl in order to build the sycl buffer
+ const Device& device() const{return m_device;}
+ private:
+ TensorEvaluator<ArgType, Device> m_impl;
+ const ArgType m_op;
+ const Device& m_device;
+ typename MakePointer<CoeffReturnType>::Type m_buffer;
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h b/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h
new file mode 100644
index 000000000..52b803d7f
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h
@@ -0,0 +1,109 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H
+#define EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H
+
+namespace Eigen {
+
+// MakePointer class is used as a container of the adress space of the pointer
+// on the host and on the device. From the host side it generates the T* pointer
+// and when EIGEN_USE_SYCL is used it construct a buffer with a map_allocator to
+// T* m_data on the host. It is always called on the device.
+// Specialisation of MakePointer class for creating the sycl buffer with
+// map_allocator.
+template<typename T> struct MakePointer {
+ typedef T* Type;
+};
+
+template<typename PlainObjectType, int Options_ = Unaligned, template <class> class MakePointer_ = MakePointer> class TensorMap;
+template<typename Scalar_, int NumIndices_, int Options_ = 0, typename IndexType = DenseIndex> class Tensor;
+template<typename Scalar_, typename Dimensions, int Options_ = 0, typename IndexType = DenseIndex> class TensorFixedSize;
+template<typename PlainObjectType> class TensorRef;
+template<typename Derived, int AccessLevel> class TensorBase;
+
+template<typename NullaryOp, typename PlainObjectType> class TensorCwiseNullaryOp;
+template<typename UnaryOp, typename XprType> class TensorCwiseUnaryOp;
+template<typename BinaryOp, typename LeftXprType, typename RightXprType> class TensorCwiseBinaryOp;
+template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType> class TensorCwiseTernaryOp;
+template<typename IfXprType, typename ThenXprType, typename ElseXprType> class TensorSelectOp;
+template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_ = MakePointer > class TensorReductionOp;
+template<typename XprType> class TensorIndexTupleOp;
+template<typename ReduceOp, typename Dims, typename XprType> class TensorTupleReducerOp;
+template<typename Axis, typename LeftXprType, typename RightXprType> class TensorConcatenationOp;
+template<typename Dimensions, typename LeftXprType, typename RightXprType> class TensorContractionOp;
+template<typename TargetType, typename XprType> class TensorConversionOp;
+template<typename Dimensions, typename InputXprType, typename KernelXprType> class TensorConvolutionOp;
+template<typename FFT, typename XprType, int FFTDataType, int FFTDirection> class TensorFFTOp;
+template<typename PatchDim, typename XprType> class TensorPatchOp;
+template<DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorImagePatchOp;
+template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorVolumePatchOp;
+template<typename Broadcast, typename XprType> class TensorBroadcastingOp;
+template<DenseIndex DimId, typename XprType> class TensorChippingOp;
+template<typename NewDimensions, typename XprType> class TensorReshapingOp;
+template<typename XprType> class TensorLayoutSwapOp;
+template<typename StartIndices, typename Sizes, typename XprType> class TensorSlicingOp;
+template<typename ReverseDimensions, typename XprType> class TensorReverseOp;
+template<typename PaddingDimensions, typename XprType> class TensorPaddingOp;
+template<typename Shuffle, typename XprType> class TensorShufflingOp;
+template<typename Strides, typename XprType> class TensorStridingOp;
+template<typename StartIndices, typename StopIndices, typename Strides, typename XprType> class TensorStridingSlicingOp;
+template<typename Strides, typename XprType> class TensorInflationOp;
+template<typename Generator, typename XprType> class TensorGeneratorOp;
+template<typename LeftXprType, typename RightXprType> class TensorAssignOp;
+template<typename Op, typename XprType> class TensorScanOp;
+
+template<typename CustomUnaryFunc, typename XprType> class TensorCustomUnaryOp;
+template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType> class TensorCustomBinaryOp;
+
+template<typename XprType, template <class> class MakePointer_ = MakePointer> class TensorEvalToOp;
+template<typename XprType, template <class> class MakePointer_ = MakePointer> class TensorForcedEvalOp;
+
+template<typename ExpressionType, typename DeviceType> class TensorDevice;
+template<typename Derived, typename Device> struct TensorEvaluator;
+
+struct DefaultDevice;
+struct ThreadPoolDevice;
+struct GpuDevice;
+struct SyclDevice;
+
+enum FFTResultType {
+ RealPart = 0,
+ ImagPart = 1,
+ BothParts = 2
+};
+
+enum FFTDirection {
+ FFT_FORWARD = 0,
+ FFT_REVERSE = 1
+};
+
+
+namespace internal {
+
+template <typename Device, typename Expression>
+struct IsVectorizable {
+ static const bool value = TensorEvaluator<Expression, Device>::PacketAccess;
+};
+
+template <typename Expression>
+struct IsVectorizable<GpuDevice, Expression> {
+ static const bool value = TensorEvaluator<Expression, GpuDevice>::PacketAccess &&
+ TensorEvaluator<Expression, GpuDevice>::IsAligned;
+};
+
+template <typename Expression, typename Device,
+ bool Vectorizable = IsVectorizable<Device, Expression>::value>
+class TensorExecutor;
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h b/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h
new file mode 100644
index 000000000..d73f6dc68
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h
@@ -0,0 +1,489 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_FUNCTORS_H
+#define EIGEN_CXX11_TENSOR_TENSOR_FUNCTORS_H
+
+namespace Eigen {
+namespace internal {
+
+
+/** \internal
+ * \brief Template functor to compute the modulo between an array and a scalar.
+ */
+template <typename Scalar>
+struct scalar_mod_op {
+ EIGEN_DEVICE_FUNC scalar_mod_op(const Scalar& divisor) : m_divisor(divisor) {}
+ EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a % m_divisor; }
+ const Scalar m_divisor;
+};
+template <typename Scalar>
+struct functor_traits<scalar_mod_op<Scalar> >
+{ enum { Cost = scalar_div_cost<Scalar,false>::value, PacketAccess = false }; };
+
+
+/** \internal
+ * \brief Template functor to compute the modulo between 2 arrays.
+ */
+template <typename Scalar>
+struct scalar_mod2_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_mod2_op);
+ EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a, const Scalar& b) const { return a % b; }
+};
+template <typename Scalar>
+struct functor_traits<scalar_mod2_op<Scalar> >
+{ enum { Cost = scalar_div_cost<Scalar,false>::value, PacketAccess = false }; };
+
+template <typename Scalar>
+struct scalar_fmod_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_fmod_op);
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar
+ operator()(const Scalar& a, const Scalar& b) const {
+ return numext::fmod(a, b);
+ }
+};
+template <typename Scalar>
+struct functor_traits<scalar_fmod_op<Scalar> > {
+ enum { Cost = 13, // Reciprocal throughput of FPREM on Haswell.
+ PacketAccess = false };
+};
+
+
+/** \internal
+ * \brief Template functor to compute the sigmoid of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::sigmoid()
+ */
+template <typename T>
+struct scalar_sigmoid_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sigmoid_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& x) const {
+ const T one = T(1);
+ return one / (one + numext::exp(-x));
+ }
+
+ template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Packet packetOp(const Packet& x) const {
+ const Packet one = pset1<Packet>(T(1));
+ return pdiv(one, padd(one, pexp(pnegate(x))));
+ }
+};
+
+template <typename T>
+struct functor_traits<scalar_sigmoid_op<T> > {
+ enum {
+ Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost * 6,
+ PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasDiv &&
+ packet_traits<T>::HasNegate && packet_traits<T>::HasExp
+ };
+};
+
+
+template<typename Reducer, typename Device>
+struct reducer_traits {
+ enum {
+ Cost = 1,
+ PacketAccess = false
+ };
+};
+
+// Standard reduction functors
+template <typename T> struct SumReducer
+{
+ static const bool PacketAccess = packet_traits<T>::HasAdd;
+ static const bool IsStateful = false;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const {
+ internal::scalar_sum_op<T> sum_op;
+ *accum = sum_op(*accum, t);
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) const {
+ (*accum) = padd<Packet>(*accum, p);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
+ internal::scalar_cast_op<int, T> conv;
+ return conv(0);
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const {
+ return pset1<Packet>(initialize());
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const {
+ return accum;
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const {
+ return vaccum;
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const {
+ internal::scalar_sum_op<T> sum_op;
+ return sum_op(saccum, predux(vaccum));
+ }
+};
+
+template <typename T, typename Device>
+struct reducer_traits<SumReducer<T>, Device> {
+ enum {
+ Cost = NumTraits<T>::AddCost,
+ PacketAccess = PacketType<T, Device>::HasAdd
+ };
+};
+
+
+template <typename T> struct MeanReducer
+{
+ static const bool PacketAccess = packet_traits<T>::HasAdd && !NumTraits<T>::IsInteger;
+ static const bool IsStateful = true;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ MeanReducer() : scalarCount_(0), packetCount_(0) { }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) {
+ internal::scalar_sum_op<T> sum_op;
+ *accum = sum_op(*accum, t);
+ scalarCount_++;
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) {
+ (*accum) = padd<Packet>(*accum, p);
+ packetCount_++;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
+ internal::scalar_cast_op<int, T> conv;
+ return conv(0);
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const {
+ return pset1<Packet>(initialize());
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const {
+ return accum / scalarCount_;
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const {
+ return pdiv(vaccum, pset1<Packet>(packetCount_));
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const {
+ internal::scalar_sum_op<T> sum_op;
+ return sum_op(saccum, predux(vaccum)) / (scalarCount_ + packetCount_ * unpacket_traits<Packet>::size);
+ }
+
+ protected:
+ DenseIndex scalarCount_;
+ DenseIndex packetCount_;
+};
+
+template <typename T, typename Device>
+struct reducer_traits<MeanReducer<T>, Device> {
+ enum {
+ Cost = NumTraits<T>::AddCost,
+ PacketAccess = PacketType<T, Device>::HasAdd
+ };
+};
+
+
+template <typename T, bool IsMax = true, bool IsInteger = true>
+struct MinMaxBottomValue {
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T bottom_value() {
+ return Eigen::NumTraits<T>::lowest();
+ }
+};
+template <typename T>
+struct MinMaxBottomValue<T, true, false> {
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T bottom_value() {
+ return -Eigen::NumTraits<T>::infinity();
+ }
+};
+template <typename T>
+struct MinMaxBottomValue<T, false, true> {
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T bottom_value() {
+ return Eigen::NumTraits<T>::highest();
+ }
+};
+template <typename T>
+struct MinMaxBottomValue<T, false, false> {
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T bottom_value() {
+ return Eigen::NumTraits<T>::infinity();
+ }
+};
+
+
+template <typename T> struct MaxReducer
+{
+ static const bool PacketAccess = packet_traits<T>::HasMax;
+ static const bool IsStateful = false;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const {
+ if (t > *accum) { *accum = t; }
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) const {
+ (*accum) = pmax<Packet>(*accum, p);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
+ return MinMaxBottomValue<T, true, Eigen::NumTraits<T>::IsInteger>::bottom_value();
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const {
+ return pset1<Packet>(initialize());
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const {
+ return accum;
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const {
+ return vaccum;
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const {
+ return numext::maxi(saccum, predux_max(vaccum));
+ }
+};
+
+template <typename T, typename Device>
+struct reducer_traits<MaxReducer<T>, Device> {
+ enum {
+ Cost = NumTraits<T>::AddCost,
+ PacketAccess = PacketType<T, Device>::HasMax
+ };
+};
+
+
+template <typename T> struct MinReducer
+{
+ static const bool PacketAccess = packet_traits<T>::HasMin;
+ static const bool IsStateful = false;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const {
+ if (t < *accum) { *accum = t; }
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) const {
+ (*accum) = pmin<Packet>(*accum, p);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
+ return MinMaxBottomValue<T, false, Eigen::NumTraits<T>::IsInteger>::bottom_value();
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const {
+ return pset1<Packet>(initialize());
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const {
+ return accum;
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const {
+ return vaccum;
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const {
+ return numext::mini(saccum, predux_min(vaccum));
+ }
+};
+
+template <typename T, typename Device>
+struct reducer_traits<MinReducer<T>, Device> {
+ enum {
+ Cost = NumTraits<T>::AddCost,
+ PacketAccess = PacketType<T, Device>::HasMin
+ };
+};
+
+
+template <typename T> struct ProdReducer
+{
+ static const bool PacketAccess = packet_traits<T>::HasMul;
+ static const bool IsStateful = false;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const {
+ internal::scalar_product_op<T> prod_op;
+ (*accum) = prod_op(*accum, t);
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) const {
+ (*accum) = pmul<Packet>(*accum, p);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
+ internal::scalar_cast_op<int, T> conv;
+ return conv(1);
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const {
+ return pset1<Packet>(initialize());
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const {
+ return accum;
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const {
+ return vaccum;
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const {
+ internal::scalar_product_op<T> prod_op;
+ return prod_op(saccum, predux_mul(vaccum));
+ }
+};
+
+template <typename T, typename Device>
+struct reducer_traits<ProdReducer<T>, Device> {
+ enum {
+ Cost = NumTraits<T>::MulCost,
+ PacketAccess = PacketType<T, Device>::HasMul
+ };
+};
+
+
+struct AndReducer
+{
+ static const bool PacketAccess = false;
+ static const bool IsStateful = false;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(bool t, bool* accum) const {
+ *accum = *accum && t;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool initialize() const {
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool finalize(bool accum) const {
+ return accum;
+ }
+};
+
+template <typename Device>
+struct reducer_traits<AndReducer, Device> {
+ enum {
+ Cost = 1,
+ PacketAccess = false
+ };
+};
+
+
+struct OrReducer {
+ static const bool PacketAccess = false;
+ static const bool IsStateful = false;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(bool t, bool* accum) const {
+ *accum = *accum || t;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool initialize() const {
+ return false;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool finalize(bool accum) const {
+ return accum;
+ }
+};
+
+template <typename Device>
+struct reducer_traits<OrReducer, Device> {
+ enum {
+ Cost = 1,
+ PacketAccess = false
+ };
+};
+
+
+// Argmin/Argmax reducers
+template <typename T> struct ArgMaxTupleReducer
+{
+ static const bool PacketAccess = false;
+ static const bool IsStateful = false;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const {
+ if (t.second > accum->second) { *accum = t; }
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
+ return T(0, NumTraits<typename T::second_type>::lowest());
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T& accum) const {
+ return accum;
+ }
+};
+
+template <typename T, typename Device>
+struct reducer_traits<ArgMaxTupleReducer<T>, Device> {
+ enum {
+ Cost = NumTraits<T>::AddCost,
+ PacketAccess = false
+ };
+};
+
+
+template <typename T> struct ArgMinTupleReducer
+{
+ static const bool PacketAccess = false;
+ static const bool IsStateful = false;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T& t, T* accum) const {
+ if (t.second < accum->second) { *accum = t; }
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
+ return T(0, NumTraits<typename T::second_type>::highest());
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T& accum) const {
+ return accum;
+ }
+};
+
+template <typename T, typename Device>
+struct reducer_traits<ArgMinTupleReducer<T>, Device> {
+ enum {
+ Cost = NumTraits<T>::AddCost,
+ PacketAccess = false
+ };
+};
+
+
+template <typename T, typename Index, size_t NumDims>
+class GaussianGenerator {
+ public:
+ static const bool PacketAccess = false;
+
+ EIGEN_DEVICE_FUNC GaussianGenerator(const array<T, NumDims>& means,
+ const array<T, NumDims>& std_devs)
+ : m_means(means)
+ {
+ for (size_t i = 0; i < NumDims; ++i) {
+ m_two_sigmas[i] = std_devs[i] * std_devs[i] * 2;
+ }
+ }
+
+ EIGEN_DEVICE_FUNC T operator()(const array<Index, NumDims>& coordinates) const {
+ T tmp = T(0);
+ for (size_t i = 0; i < NumDims; ++i) {
+ T offset = coordinates[i] - m_means[i];
+ tmp += offset * offset / m_two_sigmas[i];
+ }
+ return numext::exp(-tmp);
+ }
+
+ private:
+ array<T, NumDims> m_means;
+ array<T, NumDims> m_two_sigmas;
+};
+
+template <typename T, typename Index, size_t NumDims>
+struct functor_traits<GaussianGenerator<T, Index, NumDims> > {
+ enum {
+ Cost = NumDims * (2 * NumTraits<T>::AddCost + NumTraits<T>::MulCost +
+ functor_traits<scalar_quotient_op<T, T> >::Cost) +
+ functor_traits<scalar_exp_op<T> >::Cost,
+ PacketAccess = GaussianGenerator<T, Index, NumDims>::PacketAccess
+ };
+};
+
+} // end namespace internal
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_FUNCTORS_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h b/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h
new file mode 100644
index 000000000..eb1d4934e
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h
@@ -0,0 +1,185 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
+#define EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
+
+namespace Eigen {
+
+/** \class TensorGenerator
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor generator class.
+ *
+ *
+ */
+namespace internal {
+template<typename Generator, typename XprType>
+struct traits<TensorGeneratorOp<Generator, XprType> > : public traits<XprType>
+{
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename Generator, typename XprType>
+struct eval<TensorGeneratorOp<Generator, XprType>, Eigen::Dense>
+{
+ typedef const TensorGeneratorOp<Generator, XprType>& type;
+};
+
+template<typename Generator, typename XprType>
+struct nested<TensorGeneratorOp<Generator, XprType>, 1, typename eval<TensorGeneratorOp<Generator, XprType> >::type>
+{
+ typedef TensorGeneratorOp<Generator, XprType> type;
+};
+
+} // end namespace internal
+
+
+
+template<typename Generator, typename XprType>
+class TensorGeneratorOp : public TensorBase<TensorGeneratorOp<Generator, XprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorGeneratorOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorGeneratorOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorGeneratorOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorGeneratorOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorGeneratorOp(const XprType& expr, const Generator& generator)
+ : m_xpr(expr), m_generator(generator) {}
+
+ EIGEN_DEVICE_FUNC
+ const Generator& generator() const { return m_generator; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const Generator m_generator;
+};
+
+
+// Eval as rvalue
+template<typename Generator, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorGeneratorOp<Generator, ArgType>, Device>
+{
+ typedef TensorGeneratorOp<Generator, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
+ static const int NumDims = internal::array_size<Dimensions>::value;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ enum {
+ IsAligned = false,
+ PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1),
+ BlockAccess = false,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_generator(op.generator())
+ {
+ TensorEvaluator<ArgType, Device> impl(op.expression(), device);
+ m_dimensions = impl.dimensions();
+
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_strides[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ m_strides[i] = m_strides[i - 1] * m_dimensions[i - 1];
+ }
+ } else {
+ m_strides[NumDims - 1] = 1;
+ for (int i = NumDims - 2; i >= 0; --i) {
+ m_strides[i] = m_strides[i + 1] * m_dimensions[i + 1];
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ array<Index, NumDims> coords;
+ extract_coordinates(index, coords);
+ return m_generator(coords);
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
+ EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+packetSize-1 < dimensions().TotalSize());
+
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[packetSize];
+ for (int i = 0; i < packetSize; ++i) {
+ values[i] = coeff(index+i);
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool) const {
+ // TODO(rmlarsen): This is just a placeholder. Define interface to make
+ // generators return their cost.
+ return TensorOpCost(0, 0, TensorOpCost::AddCost<Scalar>() +
+ TensorOpCost::MulCost<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ protected:
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ void extract_coordinates(Index index, array<Index, NumDims>& coords) const {
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ const Index idx = index / m_strides[i];
+ index -= idx * m_strides[i];
+ coords[i] = idx;
+ }
+ coords[0] = index;
+ } else {
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const Index idx = index / m_strides[i];
+ index -= idx * m_strides[i];
+ coords[i] = idx;
+ }
+ coords[NumDims-1] = index;
+ }
+ }
+
+ Dimensions m_dimensions;
+ array<Index, NumDims> m_strides;
+ Generator m_generator;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h b/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h
new file mode 100644
index 000000000..665b861cf
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h
@@ -0,0 +1,33 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016 Eugene Brevdo <ebrevdo@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_GLOBAL_FUNCTIONS_H
+#define EIGEN_CXX11_TENSOR_TENSOR_GLOBAL_FUNCTIONS_H
+
+namespace Eigen {
+
+/** \cpp11 \returns an expression of the coefficient-wise betainc(\a x, \a a, \a b) to the given tensors.
+ *
+ * This function computes the regularized incomplete beta function (integral).
+ *
+ */
+template <typename ADerived, typename BDerived, typename XDerived>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const
+ TensorCwiseTernaryOp<internal::scalar_betainc_op<typename XDerived::Scalar>,
+ const ADerived, const BDerived, const XDerived>
+ betainc(const ADerived& a, const BDerived& b, const XDerived& x) {
+ return TensorCwiseTernaryOp<
+ internal::scalar_betainc_op<typename XDerived::Scalar>, const ADerived,
+ const BDerived, const XDerived>(
+ a, b, x, internal::scalar_betainc_op<typename XDerived::Scalar>());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_GLOBAL_FUNCTIONS_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h b/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h
new file mode 100644
index 000000000..a901c5dd4
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h
@@ -0,0 +1,79 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_IO_H
+#define EIGEN_CXX11_TENSOR_TENSOR_IO_H
+
+namespace Eigen {
+
+namespace internal {
+
+// Print the tensor as a 2d matrix
+template <typename Tensor, int Rank>
+struct TensorPrinter {
+ static void run (std::ostream& os, const Tensor& tensor) {
+ typedef typename internal::remove_const<typename Tensor::Scalar>::type Scalar;
+ typedef typename Tensor::Index Index;
+ const Index total_size = internal::array_prod(tensor.dimensions());
+ if (total_size > 0) {
+ const Index first_dim = Eigen::internal::array_get<0>(tensor.dimensions());
+ static const int layout = Tensor::Layout;
+ Map<const Array<Scalar, Dynamic, Dynamic, layout> > matrix(const_cast<Scalar*>(tensor.data()), first_dim, total_size/first_dim);
+ os << matrix;
+ }
+ }
+};
+
+
+// Print the tensor as a vector
+template <typename Tensor>
+struct TensorPrinter<Tensor, 1> {
+ static void run (std::ostream& os, const Tensor& tensor) {
+ typedef typename internal::remove_const<typename Tensor::Scalar>::type Scalar;
+ typedef typename Tensor::Index Index;
+ const Index total_size = internal::array_prod(tensor.dimensions());
+ if (total_size > 0) {
+ Map<const Array<Scalar, Dynamic, 1> > array(const_cast<Scalar*>(tensor.data()), total_size);
+ os << array;
+ }
+ }
+};
+
+
+// Print the tensor as a scalar
+template <typename Tensor>
+struct TensorPrinter<Tensor, 0> {
+ static void run (std::ostream& os, const Tensor& tensor) {
+ os << tensor.coeff(0);
+ }
+};
+}
+
+template <typename T>
+std::ostream& operator << (std::ostream& os, const TensorBase<T, ReadOnlyAccessors>& expr) {
+ typedef TensorEvaluator<const TensorForcedEvalOp<const T>, DefaultDevice> Evaluator;
+ typedef typename Evaluator::Dimensions Dimensions;
+
+ // Evaluate the expression if needed
+ TensorForcedEvalOp<const T> eval = expr.eval();
+ Evaluator tensor(eval, DefaultDevice());
+ tensor.evalSubExprsIfNeeded(NULL);
+
+ // Print the result
+ static const int rank = internal::array_size<Dimensions>::value;
+ internal::TensorPrinter<Evaluator, rank>::run(os, tensor);
+
+ // Cleanup.
+ tensor.cleanup();
+ return os;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_IO_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h b/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h
new file mode 100644
index 000000000..566856ed2
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h
@@ -0,0 +1,509 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
+#define EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
+
+namespace Eigen {
+
+/** \class TensorImagePatch
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Patch extraction specialized for image processing.
+ * This assumes that the input has a least 3 dimensions ordered as follow:
+ * 1st dimension: channels (of size d)
+ * 2nd dimension: rows (of size r)
+ * 3rd dimension: columns (of size c)
+ * There can be additional dimensions such as time (for video) or batch (for
+ * bulk processing after the first 3.
+ * Calling the image patch code with patch_rows and patch_cols is equivalent
+ * to calling the regular patch extraction code with parameters d, patch_rows,
+ * patch_cols, and 1 for all the additional dimensions.
+ */
+namespace internal {
+template<DenseIndex Rows, DenseIndex Cols, typename XprType>
+struct traits<TensorImagePatchOp<Rows, Cols, XprType> > : public traits<XprType>
+{
+ typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions + 1;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<DenseIndex Rows, DenseIndex Cols, typename XprType>
+struct eval<TensorImagePatchOp<Rows, Cols, XprType>, Eigen::Dense>
+{
+ typedef const TensorImagePatchOp<Rows, Cols, XprType>& type;
+};
+
+template<DenseIndex Rows, DenseIndex Cols, typename XprType>
+struct nested<TensorImagePatchOp<Rows, Cols, XprType>, 1, typename eval<TensorImagePatchOp<Rows, Cols, XprType> >::type>
+{
+ typedef TensorImagePatchOp<Rows, Cols, XprType> type;
+};
+
+} // end namespace internal
+
+template<DenseIndex Rows, DenseIndex Cols, typename XprType>
+class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorImagePatchOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorImagePatchOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorImagePatchOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorImagePatchOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
+ DenseIndex row_strides, DenseIndex col_strides,
+ DenseIndex in_row_strides, DenseIndex in_col_strides,
+ DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
+ PaddingType padding_type, Scalar padding_value)
+ : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
+ m_row_strides(row_strides), m_col_strides(col_strides),
+ m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
+ m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
+ m_padding_explicit(false), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0),
+ m_padding_type(padding_type), m_padding_value(padding_value) {}
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
+ DenseIndex row_strides, DenseIndex col_strides,
+ DenseIndex in_row_strides, DenseIndex in_col_strides,
+ DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
+ DenseIndex padding_top, DenseIndex padding_bottom,
+ DenseIndex padding_left, DenseIndex padding_right,
+ Scalar padding_value)
+ : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
+ m_row_strides(row_strides), m_col_strides(col_strides),
+ m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
+ m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
+ m_padding_explicit(true), m_padding_top(padding_top), m_padding_bottom(padding_bottom),
+ m_padding_left(padding_left), m_padding_right(padding_right),
+ m_padding_type(PADDING_VALID), m_padding_value(padding_value) {}
+
+ EIGEN_DEVICE_FUNC
+ DenseIndex patch_rows() const { return m_patch_rows; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex patch_cols() const { return m_patch_cols; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex row_strides() const { return m_row_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex col_strides() const { return m_col_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex in_row_strides() const { return m_in_row_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex in_col_strides() const { return m_in_col_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex row_inflate_strides() const { return m_row_inflate_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex col_inflate_strides() const { return m_col_inflate_strides; }
+ EIGEN_DEVICE_FUNC
+ bool padding_explicit() const { return m_padding_explicit; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex padding_top() const { return m_padding_top; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex padding_bottom() const { return m_padding_bottom; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex padding_left() const { return m_padding_left; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex padding_right() const { return m_padding_right; }
+ EIGEN_DEVICE_FUNC
+ PaddingType padding_type() const { return m_padding_type; }
+ EIGEN_DEVICE_FUNC
+ Scalar padding_value() const { return m_padding_value; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const DenseIndex m_patch_rows;
+ const DenseIndex m_patch_cols;
+ const DenseIndex m_row_strides;
+ const DenseIndex m_col_strides;
+ const DenseIndex m_in_row_strides;
+ const DenseIndex m_in_col_strides;
+ const DenseIndex m_row_inflate_strides;
+ const DenseIndex m_col_inflate_strides;
+ const bool m_padding_explicit;
+ const DenseIndex m_padding_top;
+ const DenseIndex m_padding_bottom;
+ const DenseIndex m_padding_left;
+ const DenseIndex m_padding_right;
+ const PaddingType m_padding_type;
+ const Scalar m_padding_value;
+};
+
+// Eval as rvalue
+template<DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
+{
+ typedef TensorImagePatchOp<Rows, Cols, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
+ static const int NumDims = NumInputDims + 1;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
+ typedef TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>,
+ Device> Self;
+ typedef TensorEvaluator<ArgType, Device> Impl;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device)
+ {
+ EIGEN_STATIC_ASSERT((NumDims >= 4), YOU_MADE_A_PROGRAMMING_MISTAKE);
+
+ m_paddingValue = op.padding_value();
+
+ const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
+
+ // Caches a few variables.
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_inputDepth = input_dims[0];
+ m_inputRows = input_dims[1];
+ m_inputCols = input_dims[2];
+ } else {
+ m_inputDepth = input_dims[NumInputDims-1];
+ m_inputRows = input_dims[NumInputDims-2];
+ m_inputCols = input_dims[NumInputDims-3];
+ }
+
+ m_row_strides = op.row_strides();
+ m_col_strides = op.col_strides();
+
+ // Input strides and effective input/patch size
+ m_in_row_strides = op.in_row_strides();
+ m_in_col_strides = op.in_col_strides();
+ m_row_inflate_strides = op.row_inflate_strides();
+ m_col_inflate_strides = op.col_inflate_strides();
+ // The "effective" input rows and input cols are the input rows and cols
+ // after inflating them with zeros.
+ // For examples, a 2x3 matrix with row_inflate_strides and
+ // col_inflate_strides of 2 comes from:
+ // A B C
+ // D E F
+ //
+ // to a matrix is 3 x 5:
+ //
+ // A . B . C
+ // . . . . .
+ // D . E . F
+
+ m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
+ m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
+ m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
+ m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
+
+ if (op.padding_explicit()) {
+ m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
+ m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
+ m_rowPaddingTop = op.padding_top();
+ m_colPaddingLeft = op.padding_left();
+ } else {
+ // Computing padding from the type
+ switch (op.padding_type()) {
+ case PADDING_VALID:
+ m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
+ m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
+ // Calculate the padding
+ m_rowPaddingTop = numext::maxi<Index>(0, ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2);
+ m_colPaddingLeft = numext::maxi<Index>(0, ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2);
+ break;
+ case PADDING_SAME:
+ m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
+ m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
+ // Calculate the padding
+ m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2;
+ m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2;
+ break;
+ default:
+ eigen_assert(false && "unexpected padding");
+ }
+ }
+ eigen_assert(m_outputRows > 0);
+ eigen_assert(m_outputCols > 0);
+
+ // Dimensions for result of extraction.
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ // ColMajor
+ // 0: depth
+ // 1: patch_rows
+ // 2: patch_cols
+ // 3: number of patches
+ // 4 and beyond: anything else (such as batch).
+ m_dimensions[0] = input_dims[0];
+ m_dimensions[1] = op.patch_rows();
+ m_dimensions[2] = op.patch_cols();
+ m_dimensions[3] = m_outputRows * m_outputCols;
+ for (int i = 4; i < NumDims; ++i) {
+ m_dimensions[i] = input_dims[i-1];
+ }
+ } else {
+ // RowMajor
+ // NumDims-1: depth
+ // NumDims-2: patch_rows
+ // NumDims-3: patch_cols
+ // NumDims-4: number of patches
+ // NumDims-5 and beyond: anything else (such as batch).
+ m_dimensions[NumDims-1] = input_dims[NumInputDims-1];
+ m_dimensions[NumDims-2] = op.patch_rows();
+ m_dimensions[NumDims-3] = op.patch_cols();
+ m_dimensions[NumDims-4] = m_outputRows * m_outputCols;
+ for (int i = NumDims-5; i >= 0; --i) {
+ m_dimensions[i] = input_dims[i];
+ }
+ }
+
+ // Strides for moving the patch in various dimensions.
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_colStride = m_dimensions[1];
+ m_patchStride = m_colStride * m_dimensions[2] * m_dimensions[0];
+ m_otherStride = m_patchStride * m_dimensions[3];
+ } else {
+ m_colStride = m_dimensions[NumDims-2];
+ m_patchStride = m_colStride * m_dimensions[NumDims-3] * m_dimensions[NumDims-1];
+ m_otherStride = m_patchStride * m_dimensions[NumDims-4];
+ }
+
+ // Strides for navigating through the input tensor.
+ m_rowInputStride = m_inputDepth;
+ m_colInputStride = m_inputDepth * m_inputRows;
+ m_patchInputStride = m_inputDepth * m_inputRows * m_inputCols;
+
+ // Fast representations of different variables.
+ m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
+ m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
+ m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
+ m_fastInflateRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
+ m_fastInflateColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
+ m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
+
+ // Number of patches in the width dimension.
+ m_fastOutputRows = internal::TensorIntDivisor<Index>(m_outputRows);
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
+ } else {
+ m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ // Patch index corresponding to the passed in index.
+ const Index patchIndex = index / m_fastPatchStride;
+ // Find the offset of the element wrt the location of the first element.
+ const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
+
+ // Other ways to index this element.
+ const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride;
+ const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
+
+ // Calculate col index in the input original tensor.
+ const Index colIndex = patch2DIndex / m_fastOutputRows;
+ const Index colOffset = patchOffset / m_fastColStride;
+ const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
+ const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInflateColStride) : 0);
+ if (inputCol < 0 || inputCol >= m_input_cols_eff ||
+ ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
+ return Scalar(m_paddingValue);
+ }
+
+ // Calculate row index in the original input tensor.
+ const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
+ const Index rowOffset = patchOffset - colOffset * m_colStride;
+ const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
+ const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInflateRowStride) : 0);
+ if (inputRow < 0 || inputRow >= m_input_rows_eff ||
+ ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
+ return Scalar(m_paddingValue);
+ }
+
+ const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
+ const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
+
+ const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + otherIndex * m_patchInputStride;
+ return m_impl.coeff(inputIndex);
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
+
+ if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1) {
+ return packetWithPossibleZero(index);
+ }
+
+ const Index indices[2] = {index, index + PacketSize - 1};
+ const Index patchIndex = indices[0] / m_fastPatchStride;
+ if (patchIndex != indices[1] / m_fastPatchStride) {
+ return packetWithPossibleZero(index);
+ }
+ const Index otherIndex = (NumDims == 4) ? 0 : indices[0] / m_fastOtherStride;
+ eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
+
+ // Find the offset of the element wrt the location of the first element.
+ const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
+ (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
+
+ const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
+ eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
+
+ const Index colIndex = patch2DIndex / m_fastOutputRows;
+ const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride};
+
+ // Calculate col indices in the original input tensor.
+ const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] -
+ m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
+ if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
+ return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
+ }
+
+ if (inputCols[0] == inputCols[1]) {
+ const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
+ const Index rowOffsets[2] = {patchOffsets[0] - colOffsets[0]*m_colStride, patchOffsets[1] - colOffsets[1]*m_colStride};
+ eigen_assert(rowOffsets[0] <= rowOffsets[1]);
+ // Calculate col indices in the original input tensor.
+ const Index inputRows[2] = {rowIndex * m_row_strides + rowOffsets[0] -
+ m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
+
+ if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
+ return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
+ }
+
+ if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) {
+ // no padding
+ const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
+ const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
+ const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex * m_patchInputStride;
+ return m_impl.template packet<Unaligned>(inputIndex);
+ }
+ }
+
+ return packetWithPossibleZero(index);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
+
+ Index rowPaddingTop() const { return m_rowPaddingTop; }
+ Index colPaddingLeft() const { return m_colPaddingLeft; }
+ Index outputRows() const { return m_outputRows; }
+ Index outputCols() const { return m_outputCols; }
+ Index userRowStride() const { return m_row_strides; }
+ Index userColStride() const { return m_col_strides; }
+ Index userInRowStride() const { return m_in_row_strides; }
+ Index userInColStride() const { return m_in_col_strides; }
+ Index rowInflateStride() const { return m_row_inflate_strides; }
+ Index colInflateStride() const { return m_col_inflate_strides; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ // We conservatively estimate the cost for the code path where the computed
+ // index is inside the original image and
+ // TensorEvaluator<ArgType, Device>::CoordAccess is false.
+ const double compute_cost = 3 * TensorOpCost::DivCost<Index>() +
+ 6 * TensorOpCost::MulCost<Index>() +
+ 8 * TensorOpCost::MulCost<Index>();
+ return m_impl.costPerCoeff(vectorized) +
+ TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
+ }
+
+ protected:
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
+ {
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
+ for (int i = 0; i < PacketSize; ++i) {
+ values[i] = coeff(index+i);
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+
+ Dimensions m_dimensions;
+
+ Index m_otherStride;
+ Index m_patchStride;
+ Index m_colStride;
+ Index m_row_strides;
+ Index m_col_strides;
+
+ Index m_in_row_strides;
+ Index m_in_col_strides;
+ Index m_row_inflate_strides;
+ Index m_col_inflate_strides;
+
+ Index m_input_rows_eff;
+ Index m_input_cols_eff;
+ Index m_patch_rows_eff;
+ Index m_patch_cols_eff;
+
+ internal::TensorIntDivisor<Index> m_fastOtherStride;
+ internal::TensorIntDivisor<Index> m_fastPatchStride;
+ internal::TensorIntDivisor<Index> m_fastColStride;
+ internal::TensorIntDivisor<Index> m_fastInflateRowStride;
+ internal::TensorIntDivisor<Index> m_fastInflateColStride;
+ internal::TensorIntDivisor<Index> m_fastInputColsEff;
+
+ Index m_rowInputStride;
+ Index m_colInputStride;
+ Index m_patchInputStride;
+
+ Index m_inputDepth;
+ Index m_inputRows;
+ Index m_inputCols;
+
+ Index m_outputRows;
+ Index m_outputCols;
+
+ Index m_rowPaddingTop;
+ Index m_colPaddingLeft;
+
+ internal::TensorIntDivisor<Index> m_fastOutputRows;
+ internal::TensorIntDivisor<Index> m_fastOutputDepth;
+
+ Scalar m_paddingValue;
+
+ TensorEvaluator<ArgType, Device> m_impl;
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h b/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h
new file mode 100644
index 000000000..3209fecd3
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h
@@ -0,0 +1,725 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_INDEX_LIST_H
+#define EIGEN_CXX11_TENSOR_TENSOR_INDEX_LIST_H
+
+
+#if EIGEN_HAS_CONSTEXPR && EIGEN_HAS_VARIADIC_TEMPLATES
+
+#define EIGEN_HAS_INDEX_LIST
+
+namespace Eigen {
+
+/** \internal
+ *
+ * \class TensorIndexList
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Set of classes used to encode a set of Tensor dimensions/indices.
+ *
+ * The indices in the list can be known at compile time or at runtime. A mix
+ * of static and dynamic indices can also be provided if needed. The tensor
+ * code will attempt to take advantage of the indices that are known at
+ * compile time to optimize the code it generates.
+ *
+ * This functionality requires a c++11 compliant compiler. If your compiler
+ * is older you need to use arrays of indices instead.
+ *
+ * Several examples are provided in the cxx11_tensor_index_list.cpp file.
+ *
+ * \sa Tensor
+ */
+
+template <DenseIndex n>
+struct type2index {
+ static const DenseIndex value = n;
+ EIGEN_DEVICE_FUNC constexpr operator DenseIndex() const { return n; }
+ EIGEN_DEVICE_FUNC void set(DenseIndex val) {
+ eigen_assert(val == n);
+ }
+};
+
+// This can be used with IndexPairList to get compile-time constant pairs,
+// such as IndexPairList<type2indexpair<1,2>, type2indexpair<3,4>>().
+template <DenseIndex f, DenseIndex s>
+struct type2indexpair {
+ static const DenseIndex first = f;
+ static const DenseIndex second = s;
+
+ constexpr EIGEN_DEVICE_FUNC operator IndexPair<DenseIndex>() const {
+ return IndexPair<DenseIndex>(f, s);
+ }
+
+ EIGEN_DEVICE_FUNC void set(const IndexPair<DenseIndex>& val) {
+ eigen_assert(val.first == f);
+ eigen_assert(val.second == s);
+ }
+};
+
+
+template<DenseIndex n> struct NumTraits<type2index<n> >
+{
+ typedef DenseIndex Real;
+ enum {
+ IsComplex = 0,
+ RequireInitialization = false,
+ ReadCost = 1,
+ AddCost = 1,
+ MulCost = 1
+ };
+
+ EIGEN_DEVICE_FUNC static inline Real epsilon() { return 0; }
+ EIGEN_DEVICE_FUNC static inline Real dummy_precision() { return 0; }
+ EIGEN_DEVICE_FUNC static inline Real highest() { return n; }
+ EIGEN_DEVICE_FUNC static inline Real lowest() { return n; }
+};
+
+namespace internal {
+template <typename T>
+EIGEN_DEVICE_FUNC void update_value(T& val, DenseIndex new_val) {
+ val = new_val;
+}
+template <DenseIndex n>
+EIGEN_DEVICE_FUNC void update_value(type2index<n>& val, DenseIndex new_val) {
+ val.set(new_val);
+}
+
+template <typename T>
+EIGEN_DEVICE_FUNC void update_value(T& val, IndexPair<DenseIndex> new_val) {
+ val = new_val;
+}
+template <DenseIndex f, DenseIndex s>
+EIGEN_DEVICE_FUNC void update_value(type2indexpair<f, s>& val, IndexPair<DenseIndex> new_val) {
+ val.set(new_val);
+}
+
+
+template <typename T>
+struct is_compile_time_constant {
+ static constexpr bool value = false;
+};
+
+template <DenseIndex idx>
+struct is_compile_time_constant<type2index<idx> > {
+ static constexpr bool value = true;
+};
+template <DenseIndex idx>
+struct is_compile_time_constant<const type2index<idx> > {
+ static constexpr bool value = true;
+};
+template <DenseIndex idx>
+struct is_compile_time_constant<type2index<idx>& > {
+ static constexpr bool value = true;
+};
+template <DenseIndex idx>
+struct is_compile_time_constant<const type2index<idx>& > {
+ static constexpr bool value = true;
+};
+
+template <DenseIndex f, DenseIndex s>
+struct is_compile_time_constant<type2indexpair<f, s> > {
+ static constexpr bool value = true;
+};
+template <DenseIndex f, DenseIndex s>
+struct is_compile_time_constant<const type2indexpair<f, s> > {
+ static constexpr bool value = true;
+};
+template <DenseIndex f, DenseIndex s>
+struct is_compile_time_constant<type2indexpair<f, s>& > {
+ static constexpr bool value = true;
+};
+template <DenseIndex f, DenseIndex s>
+struct is_compile_time_constant<const type2indexpair<f, s>& > {
+ static constexpr bool value = true;
+};
+
+
+template<typename... T>
+struct IndexTuple;
+
+template<typename T, typename... O>
+struct IndexTuple<T, O...> {
+ EIGEN_DEVICE_FUNC constexpr IndexTuple() : head(), others() { }
+ EIGEN_DEVICE_FUNC constexpr IndexTuple(const T& v, const O... o) : head(v), others(o...) { }
+
+ constexpr static int count = 1 + sizeof...(O);
+ T head;
+ IndexTuple<O...> others;
+ typedef T Head;
+ typedef IndexTuple<O...> Other;
+};
+
+template<typename T>
+ struct IndexTuple<T> {
+ EIGEN_DEVICE_FUNC constexpr IndexTuple() : head() { }
+ EIGEN_DEVICE_FUNC constexpr IndexTuple(const T& v) : head(v) { }
+
+ constexpr static int count = 1;
+ T head;
+ typedef T Head;
+};
+
+
+template<int N, typename... T>
+struct IndexTupleExtractor;
+
+template<int N, typename T, typename... O>
+struct IndexTupleExtractor<N, T, O...> {
+
+ typedef typename IndexTupleExtractor<N-1, O...>::ValType ValType;
+
+ EIGEN_DEVICE_FUNC static constexpr ValType& get_val(IndexTuple<T, O...>& val) {
+ return IndexTupleExtractor<N-1, O...>::get_val(val.others);
+ }
+
+ EIGEN_DEVICE_FUNC static constexpr const ValType& get_val(const IndexTuple<T, O...>& val) {
+ return IndexTupleExtractor<N-1, O...>::get_val(val.others);
+ }
+ template <typename V>
+ EIGEN_DEVICE_FUNC static void set_val(IndexTuple<T, O...>& val, V& new_val) {
+ IndexTupleExtractor<N-1, O...>::set_val(val.others, new_val);
+ }
+
+};
+
+template<typename T, typename... O>
+ struct IndexTupleExtractor<0, T, O...> {
+
+ typedef T ValType;
+
+ EIGEN_DEVICE_FUNC static constexpr ValType& get_val(IndexTuple<T, O...>& val) {
+ return val.head;
+ }
+ EIGEN_DEVICE_FUNC static constexpr const ValType& get_val(const IndexTuple<T, O...>& val) {
+ return val.head;
+ }
+ template <typename V>
+ EIGEN_DEVICE_FUNC static void set_val(IndexTuple<T, O...>& val, V& new_val) {
+ val.head = new_val;
+ }
+};
+
+
+
+template <int N, typename T, typename... O>
+EIGEN_DEVICE_FUNC constexpr typename IndexTupleExtractor<N, T, O...>::ValType& array_get(IndexTuple<T, O...>& tuple) {
+ return IndexTupleExtractor<N, T, O...>::get_val(tuple);
+}
+template <int N, typename T, typename... O>
+EIGEN_DEVICE_FUNC constexpr const typename IndexTupleExtractor<N, T, O...>::ValType& array_get(const IndexTuple<T, O...>& tuple) {
+ return IndexTupleExtractor<N, T, O...>::get_val(tuple);
+}
+template <typename T, typename... O>
+ struct array_size<IndexTuple<T, O...> > {
+ static const size_t value = IndexTuple<T, O...>::count;
+};
+template <typename T, typename... O>
+ struct array_size<const IndexTuple<T, O...> > {
+ static const size_t value = IndexTuple<T, O...>::count;
+};
+
+
+
+
+template <DenseIndex Idx, typename ValueT>
+struct tuple_coeff {
+ template <typename... T>
+ EIGEN_DEVICE_FUNC static constexpr ValueT get(const DenseIndex i, const IndexTuple<T...>& t) {
+ // return array_get<Idx>(t) * (i == Idx) + tuple_coeff<Idx-1>::get(i, t) * (i != Idx);
+ return (i == Idx ? array_get<Idx>(t) : tuple_coeff<Idx-1, ValueT>::get(i, t));
+ }
+ template <typename... T>
+ EIGEN_DEVICE_FUNC static void set(const DenseIndex i, IndexTuple<T...>& t, const ValueT& value) {
+ if (i == Idx) {
+ update_value(array_get<Idx>(t), value);
+ } else {
+ tuple_coeff<Idx-1, ValueT>::set(i, t, value);
+ }
+ }
+
+ template <typename... T>
+ EIGEN_DEVICE_FUNC static constexpr bool value_known_statically(const DenseIndex i, const IndexTuple<T...>& t) {
+ return ((i == Idx) & is_compile_time_constant<typename IndexTupleExtractor<Idx, T...>::ValType>::value) ||
+ tuple_coeff<Idx-1, ValueT>::value_known_statically(i, t);
+ }
+
+ template <typename... T>
+ EIGEN_DEVICE_FUNC static constexpr bool values_up_to_known_statically(const IndexTuple<T...>& t) {
+ return is_compile_time_constant<typename IndexTupleExtractor<Idx, T...>::ValType>::value &&
+ tuple_coeff<Idx-1, ValueT>::values_up_to_known_statically(t);
+ }
+
+ template <typename... T>
+ EIGEN_DEVICE_FUNC static constexpr bool values_up_to_statically_known_to_increase(const IndexTuple<T...>& t) {
+ return is_compile_time_constant<typename IndexTupleExtractor<Idx, T...>::ValType>::value &&
+ is_compile_time_constant<typename IndexTupleExtractor<Idx, T...>::ValType>::value &&
+ array_get<Idx>(t) > array_get<Idx-1>(t) &&
+ tuple_coeff<Idx-1, ValueT>::values_up_to_statically_known_to_increase(t);
+ }
+};
+
+template <typename ValueT>
+struct tuple_coeff<0, ValueT> {
+ template <typename... T>
+ EIGEN_DEVICE_FUNC static constexpr ValueT get(const DenseIndex /*i*/, const IndexTuple<T...>& t) {
+ // eigen_assert (i == 0); // gcc fails to compile assertions in constexpr
+ return array_get<0>(t)/* * (i == 0)*/;
+ }
+ template <typename... T>
+ EIGEN_DEVICE_FUNC static void set(const DenseIndex i, IndexTuple<T...>& t, const ValueT value) {
+ eigen_assert (i == 0);
+ update_value(array_get<0>(t), value);
+ }
+ template <typename... T>
+ EIGEN_DEVICE_FUNC static constexpr bool value_known_statically(const DenseIndex i, const IndexTuple<T...>&) {
+ return is_compile_time_constant<typename IndexTupleExtractor<0, T...>::ValType>::value & (i == 0);
+ }
+
+ template <typename... T>
+ EIGEN_DEVICE_FUNC static constexpr bool values_up_to_known_statically(const IndexTuple<T...>&) {
+ return is_compile_time_constant<typename IndexTupleExtractor<0, T...>::ValType>::value;
+ }
+
+ template <typename... T>
+ EIGEN_DEVICE_FUNC static constexpr bool values_up_to_statically_known_to_increase(const IndexTuple<T...>&) {
+ return true;
+ }
+};
+} // namespace internal
+
+
+
+template<typename FirstType, typename... OtherTypes>
+struct IndexList : internal::IndexTuple<FirstType, OtherTypes...> {
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC constexpr DenseIndex operator[] (const DenseIndex i) const {
+ return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::get(i, *this);
+ }
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC constexpr DenseIndex get(const DenseIndex i) const {
+ return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::get(i, *this);
+ }
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC void set(const DenseIndex i, const DenseIndex value) {
+ return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::set(i, *this, value);
+ }
+
+ EIGEN_DEVICE_FUNC constexpr IndexList(const internal::IndexTuple<FirstType, OtherTypes...>& other) : internal::IndexTuple<FirstType, OtherTypes...>(other) { }
+ EIGEN_DEVICE_FUNC constexpr IndexList(FirstType& first, OtherTypes... other) : internal::IndexTuple<FirstType, OtherTypes...>(first, other...) { }
+ EIGEN_DEVICE_FUNC constexpr IndexList() : internal::IndexTuple<FirstType, OtherTypes...>() { }
+
+ EIGEN_DEVICE_FUNC constexpr bool value_known_statically(const DenseIndex i) const {
+ return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::value_known_statically(i, *this);
+ }
+ EIGEN_DEVICE_FUNC constexpr bool all_values_known_statically() const {
+ return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::values_up_to_known_statically(*this);
+ }
+
+ EIGEN_DEVICE_FUNC constexpr bool values_statically_known_to_increase() const {
+ return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::values_up_to_statically_known_to_increase(*this);
+ }
+};
+
+
+template<typename FirstType, typename... OtherTypes>
+constexpr IndexList<FirstType, OtherTypes...> make_index_list(FirstType val1, OtherTypes... other_vals) {
+ return IndexList<FirstType, OtherTypes...>(val1, other_vals...);
+}
+
+
+template<typename FirstType, typename... OtherTypes>
+struct IndexPairList : internal::IndexTuple<FirstType, OtherTypes...> {
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC constexpr IndexPair<DenseIndex> operator[] (const DenseIndex i) const {
+ return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, IndexPair<DenseIndex>>::get(i, *this);
+ }
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC void set(const DenseIndex i, const IndexPair<DenseIndex> value) {
+ return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...>>::value-1, IndexPair<DenseIndex> >::set(i, *this, value);
+ }
+
+ EIGEN_DEVICE_FUNC constexpr IndexPairList(const internal::IndexTuple<FirstType, OtherTypes...>& other) : internal::IndexTuple<FirstType, OtherTypes...>(other) { }
+ EIGEN_DEVICE_FUNC constexpr IndexPairList() : internal::IndexTuple<FirstType, OtherTypes...>() { }
+
+ EIGEN_DEVICE_FUNC constexpr bool value_known_statically(const DenseIndex i) const {
+ return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::value_known_statically(i, *this);
+ }
+};
+
+namespace internal {
+
+template<typename FirstType, typename... OtherTypes> size_t array_prod(const IndexList<FirstType, OtherTypes...>& sizes) {
+ size_t result = 1;
+ for (int i = 0; i < array_size<IndexList<FirstType, OtherTypes...> >::value; ++i) {
+ result *= sizes[i];
+ }
+ return result;
+}
+
+template<typename FirstType, typename... OtherTypes> struct array_size<IndexList<FirstType, OtherTypes...> > {
+ static const size_t value = array_size<IndexTuple<FirstType, OtherTypes...> >::value;
+};
+template<typename FirstType, typename... OtherTypes> struct array_size<const IndexList<FirstType, OtherTypes...> > {
+ static const size_t value = array_size<IndexTuple<FirstType, OtherTypes...> >::value;
+};
+
+template<typename FirstType, typename... OtherTypes> struct array_size<IndexPairList<FirstType, OtherTypes...> > {
+ static const size_t value = std::tuple_size<std::tuple<FirstType, OtherTypes...> >::value;
+};
+template<typename FirstType, typename... OtherTypes> struct array_size<const IndexPairList<FirstType, OtherTypes...> > {
+ static const size_t value = std::tuple_size<std::tuple<FirstType, OtherTypes...> >::value;
+};
+
+template<DenseIndex N, typename FirstType, typename... OtherTypes> EIGEN_DEVICE_FUNC constexpr DenseIndex array_get(IndexList<FirstType, OtherTypes...>& a) {
+ return IndexTupleExtractor<N, FirstType, OtherTypes...>::get_val(a);
+}
+template<DenseIndex N, typename FirstType, typename... OtherTypes> EIGEN_DEVICE_FUNC constexpr DenseIndex array_get(const IndexList<FirstType, OtherTypes...>& a) {
+ return IndexTupleExtractor<N, FirstType, OtherTypes...>::get_val(a);
+}
+
+template <typename T>
+struct index_known_statically_impl {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex) {
+ return false;
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+struct index_known_statically_impl<IndexList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i) {
+ return IndexList<FirstType, OtherTypes...>().value_known_statically(i);
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+struct index_known_statically_impl<const IndexList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i) {
+ return IndexList<FirstType, OtherTypes...>().value_known_statically(i);
+ }
+};
+
+
+template <typename T>
+struct all_indices_known_statically_impl {
+ static constexpr bool run() {
+ return false;
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+struct all_indices_known_statically_impl<IndexList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run() {
+ return IndexList<FirstType, OtherTypes...>().all_values_known_statically();
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+struct all_indices_known_statically_impl<const IndexList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run() {
+ return IndexList<FirstType, OtherTypes...>().all_values_known_statically();
+ }
+};
+
+
+template <typename T>
+struct indices_statically_known_to_increase_impl {
+ EIGEN_DEVICE_FUNC static constexpr bool run() {
+ return false;
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+ struct indices_statically_known_to_increase_impl<IndexList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run() {
+ return Eigen::IndexList<FirstType, OtherTypes...>().values_statically_known_to_increase();
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+ struct indices_statically_known_to_increase_impl<const IndexList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run() {
+ return Eigen::IndexList<FirstType, OtherTypes...>().values_statically_known_to_increase();
+ }
+};
+
+
+template <typename Tx>
+struct index_statically_eq_impl {
+ EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) {
+ return false;
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+struct index_statically_eq_impl<IndexList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return IndexList<FirstType, OtherTypes...>().value_known_statically(i) &
+ (IndexList<FirstType, OtherTypes...>().get(i) == value);
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+struct index_statically_eq_impl<const IndexList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return IndexList<FirstType, OtherTypes...>().value_known_statically(i) &
+ (IndexList<FirstType, OtherTypes...>().get(i) == value);
+ }
+};
+
+
+template <typename T>
+struct index_statically_ne_impl {
+ EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) {
+ return false;
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+struct index_statically_ne_impl<IndexList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return IndexList<FirstType, OtherTypes...>().value_known_statically(i) &
+ (IndexList<FirstType, OtherTypes...>().get(i) != value);
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+struct index_statically_ne_impl<const IndexList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return IndexList<FirstType, OtherTypes...>().value_known_statically(i) &
+ (IndexList<FirstType, OtherTypes...>().get(i) != value);
+ }
+};
+
+
+template <typename T>
+struct index_statically_gt_impl {
+ EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) {
+ return false;
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+struct index_statically_gt_impl<IndexList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return IndexList<FirstType, OtherTypes...>().value_known_statically(i) &
+ (IndexList<FirstType, OtherTypes...>().get(i) > value);
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+struct index_statically_gt_impl<const IndexList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return IndexList<FirstType, OtherTypes...>().value_known_statically(i) &
+ (IndexList<FirstType, OtherTypes...>().get(i) > value);
+ }
+};
+
+
+
+template <typename T>
+struct index_statically_lt_impl {
+ EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) {
+ return false;
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+struct index_statically_lt_impl<IndexList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return IndexList<FirstType, OtherTypes...>().value_known_statically(i) &
+ (IndexList<FirstType, OtherTypes...>().get(i) < value);
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+struct index_statically_lt_impl<const IndexList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return IndexList<FirstType, OtherTypes...>().value_known_statically(i) &
+ (IndexList<FirstType, OtherTypes...>().get(i) < value);
+ }
+};
+
+
+
+template <typename Tx>
+struct index_pair_first_statically_eq_impl {
+ EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) {
+ return false;
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+struct index_pair_first_statically_eq_impl<IndexPairList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return IndexPairList<FirstType, OtherTypes...>().value_known_statically(i) &
+ (IndexPairList<FirstType, OtherTypes...>().operator[](i).first == value);
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+struct index_pair_first_statically_eq_impl<const IndexPairList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return IndexPairList<FirstType, OtherTypes...>().value_known_statically(i) &
+ (IndexPairList<FirstType, OtherTypes...>().operator[](i).first == value);
+ }
+};
+
+
+
+template <typename Tx>
+struct index_pair_second_statically_eq_impl {
+ EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) {
+ return false;
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+struct index_pair_second_statically_eq_impl<IndexPairList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return IndexPairList<FirstType, OtherTypes...>().value_known_statically(i) &
+ (IndexPairList<FirstType, OtherTypes...>().operator[](i).second == value);
+ }
+};
+
+template <typename FirstType, typename... OtherTypes>
+struct index_pair_second_statically_eq_impl<const IndexPairList<FirstType, OtherTypes...> > {
+ EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
+ return IndexPairList<FirstType, OtherTypes...>().value_known_statically(i) &
+ (IndexPairList<FirstType, OtherTypes...>().operator[](i).second == value);
+ }
+};
+
+
+} // end namespace internal
+} // end namespace Eigen
+
+#else
+
+namespace Eigen {
+namespace internal {
+
+template <typename T>
+struct index_known_statically_impl {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex) {
+ return false;
+ }
+};
+
+template <typename T>
+struct all_indices_known_statically_impl {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() {
+ return false;
+ }
+};
+
+template <typename T>
+struct indices_statically_known_to_increase_impl {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() {
+ return false;
+ }
+};
+
+template <typename T>
+struct index_statically_eq_impl {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) {
+ return false;
+ }
+};
+
+template <typename T>
+struct index_statically_ne_impl {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) {
+ return false;
+ }
+};
+
+template <typename T>
+struct index_statically_gt_impl {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) {
+ return false;
+ }
+};
+
+template <typename T>
+struct index_statically_lt_impl {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) {
+ return false;
+ }
+};
+
+template <typename Tx>
+struct index_pair_first_statically_eq_impl {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) {
+ return false;
+ }
+};
+
+template <typename Tx>
+struct index_pair_second_statically_eq_impl {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) {
+ return false;
+ }
+};
+
+
+
+} // end namespace internal
+} // end namespace Eigen
+
+#endif
+
+
+namespace Eigen {
+namespace internal {
+template <typename T>
+static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_known_statically(DenseIndex i) {
+ return index_known_statically_impl<T>::run(i);
+}
+
+template <typename T>
+static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool all_indices_known_statically() {
+ return all_indices_known_statically_impl<T>::run();
+}
+
+template <typename T>
+static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool indices_statically_known_to_increase() {
+ return indices_statically_known_to_increase_impl<T>::run();
+}
+
+template <typename T>
+static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_statically_eq(DenseIndex i, DenseIndex value) {
+ return index_statically_eq_impl<T>::run(i, value);
+}
+
+template <typename T>
+static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_statically_ne(DenseIndex i, DenseIndex value) {
+ return index_statically_ne_impl<T>::run(i, value);
+}
+
+template <typename T>
+static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_statically_gt(DenseIndex i, DenseIndex value) {
+ return index_statically_gt_impl<T>::run(i, value);
+}
+
+template <typename T>
+static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_statically_lt(DenseIndex i, DenseIndex value) {
+ return index_statically_lt_impl<T>::run(i, value);
+}
+
+template <typename T>
+static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_pair_first_statically_eq(DenseIndex i, DenseIndex value) {
+ return index_pair_first_statically_eq_impl<T>::run(i, value);
+}
+
+template <typename T>
+static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_pair_second_statically_eq(DenseIndex i, DenseIndex value) {
+ return index_pair_second_statically_eq_impl<T>::run(i, value);
+}
+
+} // end namespace internal
+} // end namespace Eigen
+
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_INDEX_LIST_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h b/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h
new file mode 100644
index 000000000..f391fb9ee
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h
@@ -0,0 +1,229 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Ke Yang <yangke@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
+#define EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
+
+namespace Eigen {
+
+/** \class TensorInflation
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor inflation class.
+ *
+ *
+ */
+namespace internal {
+template<typename Strides, typename XprType>
+struct traits<TensorInflationOp<Strides, XprType> > : public traits<XprType>
+{
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename Strides, typename XprType>
+struct eval<TensorInflationOp<Strides, XprType>, Eigen::Dense>
+{
+ typedef const TensorInflationOp<Strides, XprType>& type;
+};
+
+template<typename Strides, typename XprType>
+struct nested<TensorInflationOp<Strides, XprType>, 1, typename eval<TensorInflationOp<Strides, XprType> >::type>
+{
+ typedef TensorInflationOp<Strides, XprType> type;
+};
+
+} // end namespace internal
+
+template<typename Strides, typename XprType>
+class TensorInflationOp : public TensorBase<TensorInflationOp<Strides, XprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorInflationOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorInflationOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorInflationOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorInflationOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorInflationOp(const XprType& expr, const Strides& strides)
+ : m_xpr(expr), m_strides(strides) {}
+
+ EIGEN_DEVICE_FUNC
+ const Strides& strides() const { return m_strides; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const Strides m_strides;
+};
+
+// Eval as rvalue
+template<typename Strides, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorInflationOp<Strides, ArgType>, Device>
+{
+ typedef TensorInflationOp<Strides, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ BlockAccess = false,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device), m_strides(op.strides())
+ {
+ m_dimensions = m_impl.dimensions();
+ // Expand each dimension to the inflated dimension.
+ for (int i = 0; i < NumDims; ++i) {
+ m_dimensions[i] = (m_dimensions[i] - 1) * op.strides()[i] + 1;
+ }
+
+ // Remember the strides for fast division.
+ for (int i = 0; i < NumDims; ++i) {
+ m_fastStrides[i] = internal::TensorIntDivisor<Index>(m_strides[i]);
+ }
+
+ const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_outputStrides[0] = 1;
+ m_inputStrides[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
+ m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
+ }
+ } else { // RowMajor
+ m_outputStrides[NumDims-1] = 1;
+ m_inputStrides[NumDims-1] = 1;
+ for (int i = NumDims - 2; i >= 0; --i) {
+ m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
+ m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ // Computes the input index given the output index. Returns true if the output
+ // index doesn't fall into a hole.
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool getInputIndex(Index index, Index* inputIndex) const
+ {
+ eigen_assert(index < dimensions().TotalSize());
+ *inputIndex = 0;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ const Index idx = index / m_outputStrides[i];
+ if (idx != idx / m_fastStrides[i] * m_strides[i]) {
+ return false;
+ }
+ *inputIndex += idx / m_strides[i] * m_inputStrides[i];
+ index -= idx * m_outputStrides[i];
+ }
+ if (index != index / m_fastStrides[0] * m_strides[0]) {
+ return false;
+ }
+ *inputIndex += index / m_strides[0];
+ return true;
+ } else {
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const Index idx = index / m_outputStrides[i];
+ if (idx != idx / m_fastStrides[i] * m_strides[i]) {
+ return false;
+ }
+ *inputIndex += idx / m_strides[i] * m_inputStrides[i];
+ index -= idx * m_outputStrides[i];
+ }
+ if (index != index / m_fastStrides[NumDims-1] * m_strides[NumDims-1]) {
+ return false;
+ }
+ *inputIndex += index / m_strides[NumDims - 1];
+ }
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ Index inputIndex = 0;
+ if (getInputIndex(index, &inputIndex)) {
+ return m_impl.coeff(inputIndex);
+ } else {
+ return Scalar(0);
+ }
+ }
+
+ // TODO(yangke): optimize this function so that we can detect and produce
+ // all-zero packets
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
+
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
+ for (int i = 0; i < PacketSize; ++i) {
+ values[i] = coeff(index+i);
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ const double compute_cost = NumDims * (3 * TensorOpCost::DivCost<Index>() +
+ 3 * TensorOpCost::MulCost<Index>() +
+ 2 * TensorOpCost::AddCost<Index>());
+ const double input_size = m_impl.dimensions().TotalSize();
+ const double output_size = m_dimensions.TotalSize();
+ if (output_size == 0)
+ return TensorOpCost();
+ return m_impl.costPerCoeff(vectorized) +
+ TensorOpCost(sizeof(CoeffReturnType) * input_size / output_size, 0,
+ compute_cost, vectorized, PacketSize);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ protected:
+ Dimensions m_dimensions;
+ array<Index, NumDims> m_outputStrides;
+ array<Index, NumDims> m_inputStrides;
+ TensorEvaluator<ArgType, Device> m_impl;
+ const Strides m_strides;
+ array<internal::TensorIntDivisor<Index>, NumDims> m_fastStrides;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h b/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h
new file mode 100644
index 000000000..33edc49e3
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h
@@ -0,0 +1,82 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_INITIALIZER_H
+#define EIGEN_CXX11_TENSOR_TENSOR_INITIALIZER_H
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+
+#include <initializer_list>
+
+namespace Eigen {
+
+/** \class TensorInitializer
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Helper template to initialize Tensors from std::initializer_lists.
+ */
+namespace internal {
+
+template <typename Derived, int N>
+struct Initializer {
+ typedef std::initializer_list<
+ typename Initializer<Derived, N - 1>::InitList> InitList;
+
+ static void run(TensorEvaluator<Derived, DefaultDevice>& tensor,
+ Eigen::array<typename traits<Derived>::Index, traits<Derived>::NumDimensions>* indices,
+ const InitList& vals) {
+ int i = 0;
+ for (auto v : vals) {
+ (*indices)[traits<Derived>::NumDimensions - N] = i++;
+ Initializer<Derived, N - 1>::run(tensor, indices, v);
+ }
+ }
+};
+
+template <typename Derived>
+struct Initializer<Derived, 1> {
+ typedef std::initializer_list<typename traits<Derived>::Scalar> InitList;
+
+ static void run(TensorEvaluator<Derived, DefaultDevice>& tensor,
+ Eigen::array<typename traits<Derived>::Index, traits<Derived>::NumDimensions>* indices,
+ const InitList& vals) {
+ int i = 0;
+ // There is likely a faster way to do that than iterating.
+ for (auto v : vals) {
+ (*indices)[traits<Derived>::NumDimensions - 1] = i++;
+ tensor.coeffRef(*indices) = v;
+ }
+ }
+};
+
+template <typename Derived>
+struct Initializer<Derived, 0> {
+ typedef typename traits<Derived>::Scalar InitList;
+
+ static void run(TensorEvaluator<Derived, DefaultDevice>& tensor,
+ Eigen::array<typename traits<Derived>::Index, traits<Derived>::NumDimensions>*,
+ const InitList& v) {
+ tensor.coeffRef(0) = v;
+ }
+};
+
+
+template <typename Derived, int N>
+void initialize_tensor(TensorEvaluator<Derived, DefaultDevice>& tensor,
+ const typename Initializer<Derived, traits<Derived>::NumDimensions>::InitList& vals) {
+ Eigen::array<typename traits<Derived>::Index, traits<Derived>::NumDimensions> indices;
+ Initializer<Derived, traits<Derived>::NumDimensions>::run(tensor, &indices, vals);
+}
+
+} // namespace internal
+} // namespace Eigen
+
+#endif // EIGEN_HAS_VARIADIC_TEMPLATES
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_INITIALIZER_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h b/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h
new file mode 100644
index 000000000..ede3939c2
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h
@@ -0,0 +1,253 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H
+#define EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H
+
+
+namespace Eigen {
+
+/** \internal
+ *
+ * \class TensorIntDiv
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Fast integer division by a constant.
+ *
+ * See the paper from Granlund and Montgomery for explanation.
+ * (at http://dx.doi.org/10.1145/773473.178249)
+ *
+ * \sa Tensor
+ */
+
+namespace internal {
+
+namespace {
+
+ // Note: result is undefined if val == 0
+ template <typename T>
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+ typename internal::enable_if<sizeof(T)==4,int>::type count_leading_zeros(const T val)
+ {
+#ifdef __CUDA_ARCH__
+ return __clz(val);
+#elif EIGEN_COMP_MSVC
+ unsigned long index;
+ _BitScanReverse(&index, val);
+ return 31 - index;
+#else
+ EIGEN_STATIC_ASSERT(sizeof(unsigned long long) == 8, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return __builtin_clz(static_cast<uint32_t>(val));
+#endif
+ }
+
+ template <typename T>
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+ typename internal::enable_if<sizeof(T)==8,int>::type count_leading_zeros(const T val)
+ {
+#ifdef __CUDA_ARCH__
+ return __clzll(val);
+#elif EIGEN_COMP_MSVC && EIGEN_ARCH_x86_64
+ unsigned long index;
+ _BitScanReverse64(&index, val);
+ return 63 - index;
+#elif EIGEN_COMP_MSVC
+ // MSVC's _BitScanReverse64 is not available for 32bits builds.
+ unsigned int lo = (unsigned int)(val&0xffffffff);
+ unsigned int hi = (unsigned int)((val>>32)&0xffffffff);
+ int n;
+ if(hi==0)
+ n = 32 + count_leading_zeros<unsigned int>(lo);
+ else
+ n = count_leading_zeros<unsigned int>(hi);
+ return n;
+#else
+ EIGEN_STATIC_ASSERT(sizeof(unsigned long long) == 8, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return __builtin_clzll(static_cast<uint64_t>(val));
+#endif
+ }
+
+ template <typename T>
+ struct UnsignedTraits {
+ typedef typename conditional<sizeof(T) == 8, uint64_t, uint32_t>::type type;
+ };
+
+ template <typename T>
+ struct DividerTraits {
+ typedef typename UnsignedTraits<T>::type type;
+ static const int N = sizeof(T) * 8;
+ };
+
+ template <typename T>
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint32_t muluh(const uint32_t a, const T b) {
+#if defined(__CUDA_ARCH__)
+ return __umulhi(a, b);
+#else
+ return (static_cast<uint64_t>(a) * b) >> 32;
+#endif
+ }
+
+ template <typename T>
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint64_t muluh(const uint64_t a, const T b) {
+#if defined(__CUDA_ARCH__)
+ return __umul64hi(a, b);
+#elif defined(__SIZEOF_INT128__)
+ __uint128_t v = static_cast<__uint128_t>(a) * static_cast<__uint128_t>(b);
+ return static_cast<uint64_t>(v >> 64);
+#else
+ return (TensorUInt128<static_val<0>, uint64_t>(a) * TensorUInt128<static_val<0>, uint64_t>(b)).upper();
+#endif
+ }
+
+ template <int N, typename T>
+ struct DividerHelper {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint32_t computeMultiplier(const int log_div, const T divider) {
+ EIGEN_STATIC_ASSERT(N == 32, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ return static_cast<uint32_t>((static_cast<uint64_t>(1) << (N+log_div)) / divider - (static_cast<uint64_t>(1) << N) + 1);
+ }
+ };
+
+ template <typename T>
+ struct DividerHelper<64, T> {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint64_t computeMultiplier(const int log_div, const T divider) {
+#if defined(__SIZEOF_INT128__) && !defined(__CUDA_ARCH__)
+ return static_cast<uint64_t>((static_cast<__uint128_t>(1) << (64+log_div)) / static_cast<__uint128_t>(divider) - (static_cast<__uint128_t>(1) << 64) + 1);
+#else
+ const uint64_t shift = 1ULL << log_div;
+ TensorUInt128<uint64_t, uint64_t> result = TensorUInt128<uint64_t, static_val<0> >(shift, 0) / TensorUInt128<static_val<0>, uint64_t>(divider)
+ - TensorUInt128<static_val<1>, static_val<0> >(1, 0)
+ + TensorUInt128<static_val<0>, static_val<1> >(1);
+ return static_cast<uint64_t>(result);
+#endif
+ }
+ };
+}
+
+
+template <typename T, bool div_gt_one = false>
+struct TensorIntDivisor {
+ public:
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor() {
+ multiplier = 0;
+ shift1 = 0;
+ shift2 = 0;
+ }
+
+ // Must have 0 < divider < 2^31. This is relaxed to
+ // 0 < divider < 2^63 when using 64-bit indices on platforms that support
+ // the __uint128_t type.
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor(const T divider) {
+ const int N = DividerTraits<T>::N;
+ eigen_assert(static_cast<typename UnsignedTraits<T>::type>(divider) < NumTraits<UnsignedType>::highest()/2);
+ eigen_assert(divider > 0);
+
+ // fast ln2
+ const int leading_zeros = count_leading_zeros(static_cast<UnsignedType>(divider));
+ int log_div = N - leading_zeros;
+ // if divider is a power of two then log_div is 1 more than it should be.
+ if ((static_cast<typename UnsignedTraits<T>::type>(1) << (log_div-1)) == static_cast<typename UnsignedTraits<T>::type>(divider))
+ log_div--;
+
+ multiplier = DividerHelper<N, T>::computeMultiplier(log_div, divider);
+ shift1 = log_div > 1 ? 1 : log_div;
+ shift2 = log_div > 1 ? log_div-1 : 0;
+ }
+
+ // Must have 0 <= numerator. On platforms that dont support the __uint128_t
+ // type numerator should also be less than 2^32-1.
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T divide(const T numerator) const {
+ eigen_assert(static_cast<typename UnsignedTraits<T>::type>(numerator) < NumTraits<UnsignedType>::highest()/2);
+ //eigen_assert(numerator >= 0); // this is implicitly asserted by the line above
+
+ UnsignedType t1 = muluh(multiplier, numerator);
+ UnsignedType t = (static_cast<UnsignedType>(numerator) - t1) >> shift1;
+ return (t1 + t) >> shift2;
+ }
+
+ private:
+ typedef typename DividerTraits<T>::type UnsignedType;
+ UnsignedType multiplier;
+ int32_t shift1;
+ int32_t shift2;
+};
+
+
+// Optimized version for signed 32 bit integers.
+// Derived from Hacker's Delight.
+// Only works for divisors strictly greater than one
+template <>
+class TensorIntDivisor<int32_t, true> {
+ public:
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor() {
+ magic = 0;
+ shift = 0;
+ }
+ // Must have 2 <= divider
+ EIGEN_DEVICE_FUNC TensorIntDivisor(int32_t divider) {
+ eigen_assert(divider >= 2);
+ calcMagic(divider);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE int divide(const int32_t n) const {
+#ifdef __CUDA_ARCH__
+ return (__umulhi(magic, n) >> shift);
+#else
+ uint64_t v = static_cast<uint64_t>(magic) * static_cast<uint64_t>(n);
+ return (static_cast<uint32_t>(v >> 32) >> shift);
+#endif
+ }
+
+private:
+ // Compute the magic numbers. See Hacker's Delight section 10 for an in
+ // depth explanation.
+ EIGEN_DEVICE_FUNC void calcMagic(int32_t d) {
+ const unsigned two31 = 0x80000000; // 2**31.
+ unsigned ad = d;
+ unsigned t = two31 + (ad >> 31);
+ unsigned anc = t - 1 - t%ad; // Absolute value of nc.
+ int p = 31; // Init. p.
+ unsigned q1 = two31/anc; // Init. q1 = 2**p/|nc|.
+ unsigned r1 = two31 - q1*anc; // Init. r1 = rem(2**p, |nc|).
+ unsigned q2 = two31/ad; // Init. q2 = 2**p/|d|.
+ unsigned r2 = two31 - q2*ad; // Init. r2 = rem(2**p, |d|).
+ unsigned delta = 0;
+ do {
+ p = p + 1;
+ q1 = 2*q1; // Update q1 = 2**p/|nc|.
+ r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
+ if (r1 >= anc) { // (Must be an unsigned
+ q1 = q1 + 1; // comparison here).
+ r1 = r1 - anc;}
+ q2 = 2*q2; // Update q2 = 2**p/|d|.
+ r2 = 2*r2; // Update r2 = rem(2**p, |d|).
+ if (r2 >= ad) { // (Must be an unsigned
+ q2 = q2 + 1; // comparison here).
+ r2 = r2 - ad;}
+ delta = ad - r2;
+ } while (q1 < delta || (q1 == delta && r1 == 0));
+
+ magic = (unsigned)(q2 + 1);
+ shift = p - 32;
+ }
+
+ uint32_t magic;
+ int32_t shift;
+};
+
+
+template <typename T, bool div_gt_one>
+static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator / (const T& numerator, const TensorIntDivisor<T, div_gt_one>& divisor) {
+ return divisor.divide(numerator);
+}
+
+
+} // end namespace internal
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h b/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h
new file mode 100644
index 000000000..cd0109ef4
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h
@@ -0,0 +1,209 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H
+#define EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H
+
+namespace Eigen {
+
+/** \class TensorLayoutSwap
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Swap the layout from col-major to row-major, or row-major
+ * to col-major, and invert the order of the dimensions.
+ *
+ * Beware: the dimensions are reversed by this operation. If you want to
+ * preserve the ordering of the dimensions, you need to combine this
+ * operation with a shuffle.
+ *
+ * \example:
+ * Tensor<float, 2, ColMajor> input(2, 4);
+ * Tensor<float, 2, RowMajor> output = input.swap_layout();
+ * eigen_assert(output.dimension(0) == 4);
+ * eigen_assert(output.dimension(1) == 2);
+ *
+ * array<int, 2> shuffle(1, 0);
+ * output = input.swap_layout().shuffle(shuffle);
+ * eigen_assert(output.dimension(0) == 2);
+ * eigen_assert(output.dimension(1) == 4);
+ *
+ */
+namespace internal {
+template<typename XprType>
+struct traits<TensorLayoutSwapOp<XprType> > : public traits<XprType>
+{
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = traits<XprType>::NumDimensions;
+ static const int Layout = (traits<XprType>::Layout == ColMajor) ? RowMajor : ColMajor;
+};
+
+template<typename XprType>
+struct eval<TensorLayoutSwapOp<XprType>, Eigen::Dense>
+{
+ typedef const TensorLayoutSwapOp<XprType>& type;
+};
+
+template<typename XprType>
+struct nested<TensorLayoutSwapOp<XprType>, 1, typename eval<TensorLayoutSwapOp<XprType> >::type>
+{
+ typedef TensorLayoutSwapOp<XprType> type;
+};
+
+} // end namespace internal
+
+
+
+template<typename XprType>
+class TensorLayoutSwapOp : public TensorBase<TensorLayoutSwapOp<XprType>, WriteAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorLayoutSwapOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorLayoutSwapOp(const XprType& expr)
+ : m_xpr(expr) {}
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorLayoutSwapOp& operator = (const TensorLayoutSwapOp& other)
+ {
+ typedef TensorAssignOp<TensorLayoutSwapOp, const TensorLayoutSwapOp> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorLayoutSwapOp& operator = (const OtherDerived& other)
+ {
+ typedef TensorAssignOp<TensorLayoutSwapOp, const OtherDerived> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ protected:
+ typename XprType::Nested m_xpr;
+};
+
+
+// Eval as rvalue
+template<typename ArgType, typename Device>
+struct TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device>
+{
+ typedef TensorLayoutSwapOp<ArgType> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
+ typedef DSizes<Index, NumDims> Dimensions;
+
+ enum {
+ IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = (static_cast<int>(TensorEvaluator<ArgType, Device>::Layout) == static_cast<int>(ColMajor)) ? RowMajor : ColMajor,
+ CoordAccess = false, // to be implemented
+ RawAccess = TensorEvaluator<ArgType, Device>::RawAccess
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device)
+ {
+ for(int i = 0; i < NumDims; ++i) {
+ m_dimensions[i] = m_impl.dimensions()[NumDims-1-i];
+ }
+ }
+
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
+ return m_impl.evalSubExprsIfNeeded(data);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ return m_impl.coeff(index);
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ return m_impl.template packet<LoadMode>(index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ return m_impl.costPerCoeff(vectorized);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return m_impl.data(); }
+
+ const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
+
+ protected:
+ TensorEvaluator<ArgType, Device> m_impl;
+ Dimensions m_dimensions;
+};
+
+
+// Eval as lvalue
+template<typename ArgType, typename Device>
+ struct TensorEvaluator<TensorLayoutSwapOp<ArgType>, Device>
+ : public TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device>
+{
+ typedef TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device> Base;
+ typedef TensorLayoutSwapOp<ArgType> XprType;
+
+ enum {
+ IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = (static_cast<int>(TensorEvaluator<ArgType, Device>::Layout) == static_cast<int>(ColMajor)) ? RowMajor : ColMajor,
+ CoordAccess = false // to be implemented
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : Base(op, device)
+ { }
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
+ {
+ return this->m_impl.coeffRef(index);
+ }
+ template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ void writePacket(Index index, const PacketReturnType& x)
+ {
+ this->m_impl.template writePacket<StoreMode>(index, x);
+ }
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h b/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h
new file mode 100644
index 000000000..ee0078bbc
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h
@@ -0,0 +1,54 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_META_MACROS_H
+#define EIGEN_CXX11_TENSOR_TENSOR_META_MACROS_H
+
+
+/** use this macro in sfinae selection in templated functions
+ *
+ * template<typename T,
+ * typename std::enable_if< isBanana<T>::value , int >::type = 0
+ * >
+ * void foo(){}
+ *
+ * becomes =>
+ *
+ * template<typename TopoType,
+ * SFINAE_ENABLE_IF( isBanana<T>::value )
+ * >
+ * void foo(){}
+ */
+
+// SFINAE requires variadic templates
+#ifndef __CUDACC__
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ // SFINAE doesn't work for gcc <= 4.7
+ #ifdef EIGEN_COMP_GNUC
+ #if EIGEN_GNUC_AT_LEAST(4,8)
+ #define EIGEN_HAS_SFINAE
+ #endif
+ #else
+ #define EIGEN_HAS_SFINAE
+ #endif
+#endif
+#endif
+
+#define EIGEN_SFINAE_ENABLE_IF( __condition__ ) \
+ typename internal::enable_if< ( __condition__ ) , int >::type = 0
+
+
+#if EIGEN_HAS_CONSTEXPR
+#define EIGEN_CONSTEXPR constexpr
+#else
+#define EIGEN_CONSTEXPR
+#endif
+
+
+#endif
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h b/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h
new file mode 100644
index 000000000..a8e55757e
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h
@@ -0,0 +1,321 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_MAP_H
+#define EIGEN_CXX11_TENSOR_TENSOR_MAP_H
+
+namespace Eigen {
+
+/** \class TensorMap
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief A tensor expression mapping an existing array of data.
+ *
+ */
+/// template <class> class MakePointer_ is added to convert the host pointer to the device pointer.
+/// It is added due to the fact that for our device compiler T* is not allowed.
+/// If we wanted to use the same Evaluator functions we have to convert that type to our pointer T.
+/// This is done through our MakePointer_ class. By default the Type in the MakePointer_<T> is T* .
+/// Therefore, by adding the default value, we managed to convert the type and it does not break any
+/// existing code as its default value is T*.
+template<typename PlainObjectType, int Options_, template <class> class MakePointer_> class TensorMap : public TensorBase<TensorMap<PlainObjectType, Options_, MakePointer_> >
+{
+ public:
+ typedef TensorMap<PlainObjectType, Options_, MakePointer_> Self;
+ typedef typename PlainObjectType::Base Base;
+ typedef typename Eigen::internal::nested<Self>::type Nested;
+ typedef typename internal::traits<PlainObjectType>::StorageKind StorageKind;
+ typedef typename internal::traits<PlainObjectType>::Index Index;
+ typedef typename internal::traits<PlainObjectType>::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef typename Base::CoeffReturnType CoeffReturnType;
+
+ /* typedef typename internal::conditional<
+ bool(internal::is_lvalue<PlainObjectType>::value),
+ Scalar *,
+ const Scalar *>::type
+ PointerType;*/
+ typedef typename MakePointer_<Scalar>::Type PointerType;
+ typedef PointerType PointerArgType;
+
+ static const int Options = Options_;
+
+ static const Index NumIndices = PlainObjectType::NumIndices;
+ typedef typename PlainObjectType::Dimensions Dimensions;
+
+ enum {
+ IsAligned = ((int(Options_)&Aligned)==Aligned),
+ Layout = PlainObjectType::Layout,
+ CoordAccess = true,
+ RawAccess = true
+ };
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr) : m_data(dataPtr), m_dimensions() {
+ // The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT((0 == NumIndices || NumIndices == Dynamic), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index firstDimension, IndexTypes... otherDimensions) : m_data(dataPtr), m_dimensions(firstDimension, otherDimensions...) {
+ // The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT((sizeof...(otherDimensions) + 1 == NumIndices || NumIndices == Dynamic), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+#else
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index firstDimension) : m_data(dataPtr), m_dimensions(firstDimension) {
+ // The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
+ EIGEN_STATIC_ASSERT((1 == NumIndices || NumIndices == Dynamic), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index dim1, Index dim2) : m_data(dataPtr), m_dimensions(dim1, dim2) {
+ EIGEN_STATIC_ASSERT(2 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index dim1, Index dim2, Index dim3) : m_data(dataPtr), m_dimensions(dim1, dim2, dim3) {
+ EIGEN_STATIC_ASSERT(3 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index dim1, Index dim2, Index dim3, Index dim4) : m_data(dataPtr), m_dimensions(dim1, dim2, dim3, dim4) {
+ EIGEN_STATIC_ASSERT(4 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index dim1, Index dim2, Index dim3, Index dim4, Index dim5) : m_data(dataPtr), m_dimensions(dim1, dim2, dim3, dim4, dim5) {
+ EIGEN_STATIC_ASSERT(5 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, const array<Index, NumIndices>& dimensions)
+ : m_data(dataPtr), m_dimensions(dimensions)
+ { }
+
+ template <typename Dimensions>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, const Dimensions& dimensions)
+ : m_data(dataPtr), m_dimensions(dimensions)
+ { }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PlainObjectType& tensor)
+ : m_data(tensor.data()), m_dimensions(tensor.dimensions())
+ { }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Index rank() const { return m_dimensions.rank(); }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Index dimension(Index n) const { return m_dimensions[n]; }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Index size() const { return m_dimensions.TotalSize(); }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE PointerType data() { return m_data; }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const PointerType data() const { return m_data; }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const
+ {
+ // eigen_assert(checkIndexRange(indices));
+ if (PlainObjectType::Options&RowMajor) {
+ const Index index = m_dimensions.IndexOfRowMajor(indices);
+ return m_data[index];
+ } else {
+ const Index index = m_dimensions.IndexOfColMajor(indices);
+ return m_data[index];
+ }
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()() const
+ {
+ EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return m_data[0];
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const
+ {
+ eigen_internal_assert(index >= 0 && index < size());
+ return m_data[index];
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
+ {
+ EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ if (PlainObjectType::Options&RowMajor) {
+ const Index index = m_dimensions.IndexOfRowMajor(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
+ return m_data[index];
+ } else {
+ const Index index = m_dimensions.IndexOfColMajor(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
+ return m_data[index];
+ }
+ }
+#else
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const
+ {
+ if (PlainObjectType::Options&RowMajor) {
+ const Index index = i1 + i0 * m_dimensions[1];
+ return m_data[index];
+ } else {
+ const Index index = i0 + i1 * m_dimensions[0];
+ return m_data[index];
+ }
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const
+ {
+ if (PlainObjectType::Options&RowMajor) {
+ const Index index = i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0);
+ return m_data[index];
+ } else {
+ const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * i2);
+ return m_data[index];
+ }
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const
+ {
+ if (PlainObjectType::Options&RowMajor) {
+ const Index index = i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0));
+ return m_data[index];
+ } else {
+ const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * i3));
+ return m_data[index];
+ }
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const
+ {
+ if (PlainObjectType::Options&RowMajor) {
+ const Index index = i4 + m_dimensions[4] * (i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0)));
+ return m_data[index];
+ } else {
+ const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * (i3 + m_dimensions[3] * i4)));
+ return m_data[index];
+ }
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices)
+ {
+ // eigen_assert(checkIndexRange(indices));
+ if (PlainObjectType::Options&RowMajor) {
+ const Index index = m_dimensions.IndexOfRowMajor(indices);
+ return m_data[index];
+ } else {
+ const Index index = m_dimensions.IndexOfColMajor(indices);
+ return m_data[index];
+ }
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()()
+ {
+ EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return m_data[0];
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index index)
+ {
+ eigen_internal_assert(index >= 0 && index < size());
+ return m_data[index];
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
+ {
+ static_assert(sizeof...(otherIndices) + 2 == NumIndices || NumIndices == Dynamic, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
+ const std::size_t NumDims = sizeof...(otherIndices) + 2;
+ if (PlainObjectType::Options&RowMajor) {
+ const Index index = m_dimensions.IndexOfRowMajor(array<Index, NumDims>{{firstIndex, secondIndex, otherIndices...}});
+ return m_data[index];
+ } else {
+ const Index index = m_dimensions.IndexOfColMajor(array<Index, NumDims>{{firstIndex, secondIndex, otherIndices...}});
+ return m_data[index];
+ }
+ }
+#else
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1)
+ {
+ if (PlainObjectType::Options&RowMajor) {
+ const Index index = i1 + i0 * m_dimensions[1];
+ return m_data[index];
+ } else {
+ const Index index = i0 + i1 * m_dimensions[0];
+ return m_data[index];
+ }
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2)
+ {
+ if (PlainObjectType::Options&RowMajor) {
+ const Index index = i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0);
+ return m_data[index];
+ } else {
+ const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * i2);
+ return m_data[index];
+ }
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3)
+ {
+ if (PlainObjectType::Options&RowMajor) {
+ const Index index = i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0));
+ return m_data[index];
+ } else {
+ const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * i3));
+ return m_data[index];
+ }
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4)
+ {
+ if (PlainObjectType::Options&RowMajor) {
+ const Index index = i4 + m_dimensions[4] * (i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0)));
+ return m_data[index];
+ } else {
+ const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * (i3 + m_dimensions[3] * i4)));
+ return m_data[index];
+ }
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Self& operator=(const Self& other)
+ {
+ typedef TensorAssignOp<Self, const Self> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Self& operator=(const OtherDerived& other)
+ {
+ typedef TensorAssignOp<Self, const OtherDerived> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ private:
+ typename MakePointer_<Scalar>::Type m_data;
+ Dimensions m_dimensions;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_MAP_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h b/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h
new file mode 100644
index 000000000..615559d44
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h
@@ -0,0 +1,218 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_META_H
+#define EIGEN_CXX11_TENSOR_TENSOR_META_H
+
+namespace Eigen {
+
+template<bool cond> struct Cond {};
+
+template<typename T1, typename T2> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+const T1& choose(Cond<true>, const T1& first, const T2&) {
+ return first;
+}
+
+template<typename T1, typename T2> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+const T2& choose(Cond<false>, const T1&, const T2& second) {
+ return second;
+}
+
+
+template <typename T, typename X, typename Y>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T divup(const X x, const Y y) {
+ return static_cast<T>((x + y - 1) / y);
+}
+
+template <typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T divup(const T x, const T y) {
+ return static_cast<T>((x + y - 1) / y);
+}
+
+template <size_t n> struct max_n_1 {
+ static const size_t size = n;
+};
+template <> struct max_n_1<0> {
+ static const size_t size = 1;
+};
+
+
+// Default packet types
+template <typename Scalar, typename Device>
+struct PacketType : internal::packet_traits<Scalar> {
+ typedef typename internal::packet_traits<Scalar>::type type;
+};
+
+// For CUDA packet types when using a GpuDevice
+#if defined(EIGEN_USE_GPU) && defined(__CUDACC__) && defined(EIGEN_HAS_CUDA_FP16)
+template <>
+struct PacketType<half, GpuDevice> {
+ typedef half2 type;
+ static const int size = 2;
+ enum {
+ HasAdd = 1,
+ HasSub = 1,
+ HasMul = 1,
+ HasNegate = 1,
+ HasAbs = 1,
+ HasArg = 0,
+ HasAbs2 = 0,
+ HasMin = 1,
+ HasMax = 1,
+ HasConj = 0,
+ HasSetLinear = 0,
+ HasBlend = 0,
+
+ HasDiv = 1,
+ HasSqrt = 1,
+ HasRsqrt = 1,
+ HasExp = 1,
+ HasLog = 1,
+ HasLog1p = 0,
+ HasLog10 = 0,
+ HasPow = 1,
+ };
+};
+#endif
+
+#if defined(EIGEN_USE_SYCL)
+template <typename T>
+ struct PacketType<T, SyclDevice> {
+ typedef T type;
+ static const int size = 1;
+ enum {
+ HasAdd = 0,
+ HasSub = 0,
+ HasMul = 0,
+ HasNegate = 0,
+ HasAbs = 0,
+ HasArg = 0,
+ HasAbs2 = 0,
+ HasMin = 0,
+ HasMax = 0,
+ HasConj = 0,
+ HasSetLinear = 0,
+ HasBlend = 0
+ };
+};
+#endif
+
+
+// Tuple mimics std::pair but works on e.g. nvcc.
+template <typename U, typename V> struct Tuple {
+ public:
+ U first;
+ V second;
+
+ typedef U first_type;
+ typedef V second_type;
+
+ EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Tuple() : first(), second() {}
+
+ EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Tuple(const U& f, const V& s) : first(f), second(s) {}
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Tuple& operator= (const Tuple& rhs) {
+ if (&rhs == this) return *this;
+ first = rhs.first;
+ second = rhs.second;
+ return *this;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ void swap(Tuple& rhs) {
+ using numext::swap;
+ swap(first, rhs.first);
+ swap(second, rhs.second);
+ }
+};
+
+template <typename U, typename V>
+EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+bool operator==(const Tuple<U, V>& x, const Tuple<U, V>& y) {
+ return (x.first == y.first && x.second == y.second);
+}
+
+template <typename U, typename V>
+EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+bool operator!=(const Tuple<U, V>& x, const Tuple<U, V>& y) {
+ return !(x == y);
+}
+
+
+// Can't use std::pairs on cuda devices
+template <typename Idx> struct IndexPair {
+ EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE IndexPair() : first(0), second(0) {}
+ EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE IndexPair(Idx f, Idx s) : first(f), second(s) {}
+
+ EIGEN_DEVICE_FUNC void set(IndexPair<Idx> val) {
+ first = val.first;
+ second = val.second;
+ }
+
+ Idx first;
+ Idx second;
+};
+
+
+#ifdef EIGEN_HAS_SFINAE
+namespace internal {
+
+ template<typename IndexType, Index... Is>
+ EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ array<Index, sizeof...(Is)> customIndices2Array(IndexType& idx, numeric_list<Index, Is...>) {
+ return { idx[Is]... };
+ }
+ template<typename IndexType>
+ EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ array<Index, 0> customIndices2Array(IndexType&, numeric_list<Index>) {
+ return array<Index, 0>();
+ }
+
+ /** Make an array (for index/dimensions) out of a custom index */
+ template<typename Index, std::size_t NumIndices, typename IndexType>
+ EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ array<Index, NumIndices> customIndices2Array(IndexType& idx) {
+ return customIndices2Array(idx, typename gen_numeric_list<Index, NumIndices>::type{});
+ }
+
+
+ template <typename B, typename D>
+ struct is_base_of
+ {
+
+ typedef char (&yes)[1];
+ typedef char (&no)[2];
+
+ template <typename BB, typename DD>
+ struct Host
+ {
+ operator BB*() const;
+ operator DD*();
+ };
+
+ template<typename T>
+ static yes check(D*, T);
+ static no check(B*, int);
+
+ static const bool value = sizeof(check(Host<B,D>(), int())) == sizeof(yes);
+ };
+
+}
+#endif
+
+
+
+} // namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_META_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h b/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h
new file mode 100644
index 000000000..d34f1e328
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h
@@ -0,0 +1,888 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H
+#define EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H
+
+namespace Eigen {
+
+/** \class TensorReshaping
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor reshaping class.
+ *
+ *
+ */
+namespace internal {
+template<typename NewDimensions, typename XprType>
+struct traits<TensorReshapingOp<NewDimensions, XprType> > : public traits<XprType>
+{
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = array_size<NewDimensions>::value;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename NewDimensions, typename XprType>
+struct eval<TensorReshapingOp<NewDimensions, XprType>, Eigen::Dense>
+{
+ typedef const TensorReshapingOp<NewDimensions, XprType>& type;
+};
+
+template<typename NewDimensions, typename XprType>
+struct nested<TensorReshapingOp<NewDimensions, XprType>, 1, typename eval<TensorReshapingOp<NewDimensions, XprType> >::type>
+{
+ typedef TensorReshapingOp<NewDimensions, XprType> type;
+};
+
+} // end namespace internal
+
+
+
+template<typename NewDimensions, typename XprType>
+class TensorReshapingOp : public TensorBase<TensorReshapingOp<NewDimensions, XprType>, WriteAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorReshapingOp>::Scalar Scalar;
+ typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorReshapingOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorReshapingOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorReshapingOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReshapingOp(const XprType& expr, const NewDimensions& dims)
+ : m_xpr(expr), m_dims(dims) {}
+
+ EIGEN_DEVICE_FUNC
+ const NewDimensions& dimensions() const { return m_dims; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorReshapingOp& operator = (const TensorReshapingOp& other)
+ {
+ typedef TensorAssignOp<TensorReshapingOp, const TensorReshapingOp> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorReshapingOp& operator = (const OtherDerived& other)
+ {
+ typedef TensorAssignOp<TensorReshapingOp, const OtherDerived> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const NewDimensions m_dims;
+};
+
+
+// Eval as rvalue
+template<typename NewDimensions, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
+{
+ typedef TensorReshapingOp<NewDimensions, ArgType> XprType;
+ typedef NewDimensions Dimensions;
+
+ enum {
+ IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = TensorEvaluator<ArgType, Device>::RawAccess
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device), m_dimensions(op.dimensions())
+ {
+ // The total size of the reshaped tensor must be equal to the total size
+ // of the input tensor.
+ eigen_assert(internal::array_prod(m_impl.dimensions()) == internal::array_prod(op.dimensions()));
+ }
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
+ return m_impl.evalSubExprsIfNeeded(data);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ return m_impl.coeff(index);
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ return m_impl.template packet<LoadMode>(index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ return m_impl.costPerCoeff(vectorized);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return const_cast<Scalar*>(m_impl.data()); }
+
+ EIGEN_DEVICE_FUNC const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
+
+ protected:
+ TensorEvaluator<ArgType, Device> m_impl;
+ NewDimensions m_dimensions;
+};
+
+
+// Eval as lvalue
+template<typename NewDimensions, typename ArgType, typename Device>
+ struct TensorEvaluator<TensorReshapingOp<NewDimensions, ArgType>, Device>
+ : public TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
+
+{
+ typedef TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device> Base;
+ typedef TensorReshapingOp<NewDimensions, ArgType> XprType;
+ typedef NewDimensions Dimensions;
+
+ enum {
+ IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = TensorEvaluator<ArgType, Device>::RawAccess
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : Base(op, device)
+ { }
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
+ {
+ return this->m_impl.coeffRef(index);
+ }
+ template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ void writePacket(Index index, const PacketReturnType& x)
+ {
+ this->m_impl.template writePacket<StoreMode>(index, x);
+ }
+};
+
+
+/** \class TensorSlicing
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor slicing class.
+ *
+ *
+ */
+namespace internal {
+template<typename StartIndices, typename Sizes, typename XprType>
+struct traits<TensorSlicingOp<StartIndices, Sizes, XprType> > : public traits<XprType>
+{
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = array_size<StartIndices>::value;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename StartIndices, typename Sizes, typename XprType>
+struct eval<TensorSlicingOp<StartIndices, Sizes, XprType>, Eigen::Dense>
+{
+ typedef const TensorSlicingOp<StartIndices, Sizes, XprType>& type;
+};
+
+template<typename StartIndices, typename Sizes, typename XprType>
+struct nested<TensorSlicingOp<StartIndices, Sizes, XprType>, 1, typename eval<TensorSlicingOp<StartIndices, Sizes, XprType> >::type>
+{
+ typedef TensorSlicingOp<StartIndices, Sizes, XprType> type;
+};
+
+} // end namespace internal
+
+
+
+template<typename StartIndices, typename Sizes, typename XprType>
+class TensorSlicingOp : public TensorBase<TensorSlicingOp<StartIndices, Sizes, XprType> >
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorSlicingOp>::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorSlicingOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorSlicingOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorSlicingOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorSlicingOp(const XprType& expr, const StartIndices& indices, const Sizes& sizes)
+ : m_xpr(expr), m_indices(indices), m_sizes(sizes) {}
+
+ EIGEN_DEVICE_FUNC
+ const StartIndices& startIndices() const { return m_indices; }
+ EIGEN_DEVICE_FUNC
+ const Sizes& sizes() const { return m_sizes; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorSlicingOp& operator = (const OtherDerived& other)
+ {
+ typedef TensorAssignOp<TensorSlicingOp, const OtherDerived> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorSlicingOp& operator = (const TensorSlicingOp& other)
+ {
+ typedef TensorAssignOp<TensorSlicingOp, const TensorSlicingOp> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const StartIndices m_indices;
+ const Sizes m_sizes;
+};
+
+
+// Fixme: figure out the exact threshold
+namespace {
+template <typename Index, typename Device> struct MemcpyTriggerForSlicing {
+ EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const Device& device) : threshold_(2 * device.numThreads()) { }
+ EIGEN_DEVICE_FUNC bool operator ()(Index val) const { return val > threshold_; }
+
+ private:
+ Index threshold_;
+};
+
+// It is very expensive to start the memcpy kernel on GPU: we therefore only
+// use it for large copies.
+#ifdef EIGEN_USE_GPU
+template <typename Index> struct MemcpyTriggerForSlicing<Index, GpuDevice> {
+ EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const GpuDevice&) { }
+ EIGEN_DEVICE_FUNC bool operator ()(Index val) const { return val > 4*1024*1024; }
+};
+#endif
+}
+
+// Eval as rvalue
+template<typename StartIndices, typename Sizes, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
+{
+ typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType;
+ static const int NumDims = internal::array_size<Sizes>::value;
+
+ enum {
+ // Alignment can't be guaranteed at compile time since it depends on the
+ // slice offsets and sizes.
+ IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device), m_device(device), m_dimensions(op.sizes()), m_offsets(op.startIndices())
+ {
+ for (std::size_t i = 0; i < internal::array_size<Dimensions>::value; ++i) {
+ eigen_assert(m_impl.dimensions()[i] >= op.sizes()[i] + op.startIndices()[i]);
+ }
+
+ const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
+ const Sizes& output_dims = op.sizes();
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_inputStrides[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
+ }
+
+ // Don't initialize m_fastOutputStrides[0] since it won't ever be accessed.
+ m_outputStrides[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1];
+ m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
+ }
+ } else {
+ m_inputStrides[NumDims-1] = 1;
+ for (int i = NumDims - 2; i >= 0; --i) {
+ m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
+ }
+
+ // Don't initialize m_fastOutputStrides[NumDims-1] since it won't ever be accessed.
+ m_outputStrides[NumDims-1] = 1;
+ for (int i = NumDims - 2; i >= 0; --i) {
+ m_outputStrides[i] = m_outputStrides[i+1] * output_dims[i+1];
+ m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
+ }
+ }
+ }
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ typedef Sizes Dimensions;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization && data && m_impl.data()) {
+ Index contiguous_values = 1;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = 0; i < NumDims; ++i) {
+ contiguous_values *= dimensions()[i];
+ if (dimensions()[i] != m_impl.dimensions()[i]) {
+ break;
+ }
+ }
+ } else {
+ for (int i = NumDims-1; i >= 0; --i) {
+ contiguous_values *= dimensions()[i];
+ if (dimensions()[i] != m_impl.dimensions()[i]) {
+ break;
+ }
+ }
+ }
+ // Use memcpy if it's going to be faster than using the regular evaluation.
+ const MemcpyTriggerForSlicing<Index, Device> trigger(m_device);
+ if (trigger(contiguous_values)) {
+ Scalar* src = (Scalar*)m_impl.data();
+ for (int i = 0; i < internal::array_prod(dimensions()); i += contiguous_values) {
+ Index offset = srcCoeff(i);
+ m_device.memcpy((void*)(data+i), src+offset, contiguous_values * sizeof(Scalar));
+ }
+ return false;
+ }
+ }
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ return m_impl.coeff(srcCoeff(index));
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
+ EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+packetSize-1 < internal::array_prod(dimensions()));
+
+ Index inputIndices[] = {0, 0};
+ Index indices[] = {index, index + packetSize - 1};
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ const Index idx0 = indices[0] / m_fastOutputStrides[i];
+ const Index idx1 = indices[1] / m_fastOutputStrides[i];
+ inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i];
+ inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i];
+ indices[0] -= idx0 * m_outputStrides[i];
+ indices[1] -= idx1 * m_outputStrides[i];
+ }
+ inputIndices[0] += (indices[0] + m_offsets[0]);
+ inputIndices[1] += (indices[1] + m_offsets[0]);
+ } else {
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const Index idx0 = indices[0] / m_fastOutputStrides[i];
+ const Index idx1 = indices[1] / m_fastOutputStrides[i];
+ inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i];
+ inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i];
+ indices[0] -= idx0 * m_outputStrides[i];
+ indices[1] -= idx1 * m_outputStrides[i];
+ }
+ inputIndices[0] += (indices[0] + m_offsets[NumDims-1]);
+ inputIndices[1] += (indices[1] + m_offsets[NumDims-1]);
+ }
+ if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
+ PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
+ return rslt;
+ }
+ else {
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[packetSize];
+ values[0] = m_impl.coeff(inputIndices[0]);
+ values[packetSize-1] = m_impl.coeff(inputIndices[1]);
+ for (int i = 1; i < packetSize-1; ++i) {
+ values[i] = coeff(index+i);
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, NumDims);
+ }
+
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const {
+ Scalar* result = m_impl.data();
+ if (result) {
+ Index offset = 0;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = 0; i < NumDims; ++i) {
+ if (m_dimensions[i] != m_impl.dimensions()[i]) {
+ offset += m_offsets[i] * m_inputStrides[i];
+ for (int j = i+1; j < NumDims; ++j) {
+ if (m_dimensions[j] > 1) {
+ return NULL;
+ }
+ offset += m_offsets[j] * m_inputStrides[j];
+ }
+ break;
+ }
+ }
+ } else {
+ for (int i = NumDims - 1; i >= 0; --i) {
+ if (m_dimensions[i] != m_impl.dimensions()[i]) {
+ offset += m_offsets[i] * m_inputStrides[i];
+ for (int j = i-1; j >= 0; --j) {
+ if (m_dimensions[j] > 1) {
+ return NULL;
+ }
+ offset += m_offsets[j] * m_inputStrides[j];
+ }
+ break;
+ }
+ }
+ }
+ return result + offset;
+ }
+ return NULL;
+ }
+
+ protected:
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
+ {
+ Index inputIndex = 0;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ const Index idx = index / m_fastOutputStrides[i];
+ inputIndex += (idx + m_offsets[i]) * m_inputStrides[i];
+ index -= idx * m_outputStrides[i];
+ }
+ inputIndex += (index + m_offsets[0]);
+ } else {
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const Index idx = index / m_fastOutputStrides[i];
+ inputIndex += (idx + m_offsets[i]) * m_inputStrides[i];
+ index -= idx * m_outputStrides[i];
+ }
+ inputIndex += (index + m_offsets[NumDims-1]);
+ }
+ return inputIndex;
+ }
+
+ array<Index, NumDims> m_outputStrides;
+ array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides;
+ array<Index, NumDims> m_inputStrides;
+ TensorEvaluator<ArgType, Device> m_impl;
+ const Device& m_device;
+ Dimensions m_dimensions;
+ const StartIndices m_offsets;
+};
+
+
+// Eval as lvalue
+template<typename StartIndices, typename Sizes, typename ArgType, typename Device>
+struct TensorEvaluator<TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
+ : public TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
+{
+ typedef TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> Base;
+ typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType;
+ static const int NumDims = internal::array_size<Sizes>::value;
+
+ enum {
+ IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : Base(op, device)
+ { }
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ typedef Sizes Dimensions;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
+ {
+ return this->m_impl.coeffRef(this->srcCoeff(index));
+ }
+
+ template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ void writePacket(Index index, const PacketReturnType& x)
+ {
+ const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
+ Index inputIndices[] = {0, 0};
+ Index indices[] = {index, index + packetSize - 1};
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ const Index idx0 = indices[0] / this->m_fastOutputStrides[i];
+ const Index idx1 = indices[1] / this->m_fastOutputStrides[i];
+ inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i];
+ inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i];
+ indices[0] -= idx0 * this->m_outputStrides[i];
+ indices[1] -= idx1 * this->m_outputStrides[i];
+ }
+ inputIndices[0] += (indices[0] + this->m_offsets[0]);
+ inputIndices[1] += (indices[1] + this->m_offsets[0]);
+ } else {
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const Index idx0 = indices[0] / this->m_fastOutputStrides[i];
+ const Index idx1 = indices[1] / this->m_fastOutputStrides[i];
+ inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i];
+ inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i];
+ indices[0] -= idx0 * this->m_outputStrides[i];
+ indices[1] -= idx1 * this->m_outputStrides[i];
+ }
+ inputIndices[0] += (indices[0] + this->m_offsets[NumDims-1]);
+ inputIndices[1] += (indices[1] + this->m_offsets[NumDims-1]);
+ }
+ if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
+ this->m_impl.template writePacket<StoreMode>(inputIndices[0], x);
+ }
+ else {
+ EIGEN_ALIGN_MAX CoeffReturnType values[packetSize];
+ internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
+ this->m_impl.coeffRef(inputIndices[0]) = values[0];
+ this->m_impl.coeffRef(inputIndices[1]) = values[packetSize-1];
+ for (int i = 1; i < packetSize-1; ++i) {
+ this->coeffRef(index+i) = values[i];
+ }
+ }
+ }
+};
+
+
+
+namespace internal {
+template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
+struct traits<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> > : public traits<XprType>
+{
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = array_size<StartIndices>::value;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
+struct eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, Eigen::Dense>
+{
+ typedef const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>& type;
+};
+
+template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
+struct nested<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, 1, typename eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> >::type>
+{
+ typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> type;
+};
+
+} // end namespace internal
+
+
+template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
+class TensorStridingSlicingOp : public TensorBase<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> >
+{
+ public:
+ typedef typename internal::traits<TensorStridingSlicingOp>::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename internal::nested<TensorStridingSlicingOp>::type Nested;
+ typedef typename internal::traits<TensorStridingSlicingOp>::StorageKind StorageKind;
+ typedef typename internal::traits<TensorStridingSlicingOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingSlicingOp(
+ const XprType& expr, const StartIndices& startIndices,
+ const StopIndices& stopIndices, const Strides& strides)
+ : m_xpr(expr), m_startIndices(startIndices), m_stopIndices(stopIndices),
+ m_strides(strides) {}
+
+ EIGEN_DEVICE_FUNC
+ const StartIndices& startIndices() const { return m_startIndices; }
+ EIGEN_DEVICE_FUNC
+ const StartIndices& stopIndices() const { return m_stopIndices; }
+ EIGEN_DEVICE_FUNC
+ const StartIndices& strides() const { return m_strides; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorStridingSlicingOp& operator = (const TensorStridingSlicingOp& other)
+ {
+ typedef TensorAssignOp<TensorStridingSlicingOp, const TensorStridingSlicingOp> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(
+ assign, DefaultDevice());
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorStridingSlicingOp& operator = (const OtherDerived& other)
+ {
+ typedef TensorAssignOp<TensorStridingSlicingOp, const OtherDerived> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(
+ assign, DefaultDevice());
+ return *this;
+ }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const StartIndices m_startIndices;
+ const StopIndices m_stopIndices;
+ const Strides m_strides;
+};
+
+// Eval as rvalue
+template<typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
+{
+ typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType;
+ static const int NumDims = internal::array_size<Strides>::value;
+
+ enum {
+ // Alignment can't be guaranteed at compile time since it depends on the
+ // slice offsets and sizes.
+ IsAligned = false,
+ PacketAccess = false,
+ BlockAccess = false,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device), m_device(device), m_strides(op.strides())
+ {
+ // Handle degenerate intervals by gracefully clamping and allowing m_dimensions to be zero
+ DSizes<Index,NumDims> startIndicesClamped, stopIndicesClamped;
+ for (size_t i = 0; i < internal::array_size<Dimensions>::value; ++i) {
+ eigen_assert(m_strides[i] != 0 && "0 stride is invalid");
+ if(m_strides[i]>0){
+ startIndicesClamped[i] = clamp(op.startIndices()[i], 0, m_impl.dimensions()[i]);
+ stopIndicesClamped[i] = clamp(op.stopIndices()[i], 0, m_impl.dimensions()[i]);
+ }else{
+ /* implies m_strides[i]<0 by assert */
+ startIndicesClamped[i] = clamp(op.startIndices()[i], -1, m_impl.dimensions()[i] - 1);
+ stopIndicesClamped[i] = clamp(op.stopIndices()[i], -1, m_impl.dimensions()[i] - 1);
+ }
+ m_startIndices[i] = startIndicesClamped[i];
+ }
+
+ const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
+
+ // check for degenerate intervals and compute output tensor shape
+ bool degenerate = false;;
+ for(int i = 0; i < NumDims; i++){
+ Index interval = stopIndicesClamped[i] - startIndicesClamped[i];
+ if(interval == 0 || ((interval<0) != (m_strides[i]<0))){
+ m_dimensions[i] = 0;
+ degenerate = true;
+ }else{
+ m_dimensions[i] = interval / m_strides[i]
+ + (interval % m_strides[i] != 0 ? 1 : 0);
+ eigen_assert(m_dimensions[i] >= 0);
+ }
+ }
+ Strides output_dims = m_dimensions;
+
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_inputStrides[0] = m_strides[0];
+ m_offsets[0] = startIndicesClamped[0];
+ Index previousDimProduct = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ previousDimProduct *= input_dims[i-1];
+ m_inputStrides[i] = previousDimProduct * m_strides[i];
+ m_offsets[i] = startIndicesClamped[i] * previousDimProduct;
+ }
+
+ // Don't initialize m_fastOutputStrides[0] since it won't ever be accessed.
+ m_outputStrides[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1];
+ // NOTE: if tensor is degenerate, we send 1 to prevent TensorIntDivisor constructor crash
+ m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(degenerate ? 1 : m_outputStrides[i]);
+ }
+ } else {
+ m_inputStrides[NumDims-1] = m_strides[NumDims-1];
+ m_offsets[NumDims-1] = startIndicesClamped[NumDims-1];
+ Index previousDimProduct = 1;
+ for (int i = NumDims - 2; i >= 0; --i) {
+ previousDimProduct *= input_dims[i+1];
+ m_inputStrides[i] = previousDimProduct * m_strides[i];
+ m_offsets[i] = startIndicesClamped[i] * previousDimProduct;
+ }
+
+ m_outputStrides[NumDims-1] = 1;
+ for (int i = NumDims - 2; i >= 0; --i) {
+ m_outputStrides[i] = m_outputStrides[i+1] * output_dims[i+1];
+ // NOTE: if tensor is degenerate, we send 1 to prevent TensorIntDivisor constructor crash
+ m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(degenerate ? 1 : m_outputStrides[i]);
+ }
+ }
+ m_block_total_size_max = numext::maxi(static_cast<std::size_t>(1),
+ device.lastLevelCacheSize() /
+ sizeof(Scalar));
+ }
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename internal::remove_const<Scalar>::type ScalarNonConst;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ typedef Strides Dimensions;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ return m_impl.coeff(srcCoeff(index));
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, NumDims);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const {
+ return NULL;
+ }
+
+ protected:
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
+ {
+ Index inputIndex = 0;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i >= 0; --i) {
+ const Index idx = index / m_fastOutputStrides[i];
+ inputIndex += idx * m_inputStrides[i] + m_offsets[i];
+ index -= idx * m_outputStrides[i];
+ }
+ } else {
+ for (int i = 0; i < NumDims; ++i) {
+ const Index idx = index / m_fastOutputStrides[i];
+ inputIndex += idx * m_inputStrides[i] + m_offsets[i];
+ index -= idx * m_outputStrides[i];
+ }
+ }
+ return inputIndex;
+ }
+
+ static EIGEN_STRONG_INLINE Index clamp(Index value, Index min, Index max) {
+ return numext::maxi(min, numext::mini(max,value));
+ }
+
+ array<Index, NumDims> m_outputStrides;
+ array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides;
+ array<Index, NumDims> m_inputStrides;
+ TensorEvaluator<ArgType, Device> m_impl;
+ const Device& m_device;
+ DSizes<Index, NumDims> m_startIndices; // clamped startIndices
+ DSizes<Index, NumDims> m_dimensions;
+ DSizes<Index, NumDims> m_offsets; // offset in a flattened shape
+ const Strides m_strides;
+ std::size_t m_block_total_size_max;
+};
+
+// Eval as lvalue
+template<typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device>
+struct TensorEvaluator<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
+ : public TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
+{
+ typedef TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> Base;
+ typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType;
+ static const int NumDims = internal::array_size<Strides>::value;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = false,
+ BlockAccess = false,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = TensorEvaluator<ArgType, Device>::CoordAccess,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : Base(op, device)
+ { }
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename internal::remove_const<Scalar>::type ScalarNonConst;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ typedef Strides Dimensions;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
+ {
+ return this->m_impl.coeffRef(this->srcCoeff(index));
+ }
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h b/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h
new file mode 100644
index 000000000..647bcf108
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h
@@ -0,0 +1,397 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
+#define EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
+
+namespace Eigen {
+
+/** \class TensorPadding
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor padding class.
+ * At the moment only padding with a constant value is supported.
+ *
+ */
+namespace internal {
+template<typename PaddingDimensions, typename XprType>
+struct traits<TensorPaddingOp<PaddingDimensions, XprType> > : public traits<XprType>
+{
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename PaddingDimensions, typename XprType>
+struct eval<TensorPaddingOp<PaddingDimensions, XprType>, Eigen::Dense>
+{
+ typedef const TensorPaddingOp<PaddingDimensions, XprType>& type;
+};
+
+template<typename PaddingDimensions, typename XprType>
+struct nested<TensorPaddingOp<PaddingDimensions, XprType>, 1, typename eval<TensorPaddingOp<PaddingDimensions, XprType> >::type>
+{
+ typedef TensorPaddingOp<PaddingDimensions, XprType> type;
+};
+
+} // end namespace internal
+
+
+
+template<typename PaddingDimensions, typename XprType>
+class TensorPaddingOp : public TensorBase<TensorPaddingOp<PaddingDimensions, XprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorPaddingOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorPaddingOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorPaddingOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorPaddingOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPaddingOp(const XprType& expr, const PaddingDimensions& padding_dims, const Scalar padding_value)
+ : m_xpr(expr), m_padding_dims(padding_dims), m_padding_value(padding_value) {}
+
+ EIGEN_DEVICE_FUNC
+ const PaddingDimensions& padding() const { return m_padding_dims; }
+ EIGEN_DEVICE_FUNC
+ Scalar padding_value() const { return m_padding_value; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const PaddingDimensions m_padding_dims;
+ const Scalar m_padding_value;
+};
+
+
+// Eval as rvalue
+template<typename PaddingDimensions, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device>
+{
+ typedef TensorPaddingOp<PaddingDimensions, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumDims = internal::array_size<PaddingDimensions>::value;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = true,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = true,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device), m_padding(op.padding()), m_paddingValue(op.padding_value())
+ {
+ // The padding op doesn't change the rank of the tensor. Directly padding a scalar would lead
+ // to a vector, which doesn't make sense. Instead one should reshape the scalar into a vector
+ // of 1 element first and then pad.
+ EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
+
+ // Compute dimensions
+ m_dimensions = m_impl.dimensions();
+ for (int i = 0; i < NumDims; ++i) {
+ m_dimensions[i] += m_padding[i].first + m_padding[i].second;
+ }
+ const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_inputStrides[0] = 1;
+ m_outputStrides[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
+ m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
+ }
+ m_outputStrides[NumDims] = m_outputStrides[NumDims-1] * m_dimensions[NumDims-1];
+ } else {
+ m_inputStrides[NumDims - 1] = 1;
+ m_outputStrides[NumDims] = 1;
+ for (int i = NumDims - 2; i >= 0; --i) {
+ m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
+ m_outputStrides[i+1] = m_outputStrides[i+2] * m_dimensions[i+1];
+ }
+ m_outputStrides[0] = m_outputStrides[1] * m_dimensions[0];
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ eigen_assert(index < dimensions().TotalSize());
+ Index inputIndex = 0;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ const Index idx = index / m_outputStrides[i];
+ if (isPaddingAtIndexForDim(idx, i)) {
+ return m_paddingValue;
+ }
+ inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
+ index -= idx * m_outputStrides[i];
+ }
+ if (isPaddingAtIndexForDim(index, 0)) {
+ return m_paddingValue;
+ }
+ inputIndex += (index - m_padding[0].first);
+ } else {
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const Index idx = index / m_outputStrides[i+1];
+ if (isPaddingAtIndexForDim(idx, i)) {
+ return m_paddingValue;
+ }
+ inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
+ index -= idx * m_outputStrides[i+1];
+ }
+ if (isPaddingAtIndexForDim(index, NumDims-1)) {
+ return m_paddingValue;
+ }
+ inputIndex += (index - m_padding[NumDims-1].first);
+ }
+ return m_impl.coeff(inputIndex);
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ return packetColMajor(index);
+ }
+ return packetRowMajor(index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ TensorOpCost cost = m_impl.costPerCoeff(vectorized);
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = 0; i < NumDims; ++i)
+ updateCostPerDimension(cost, i, i == 0);
+ } else {
+ for (int i = NumDims - 1; i >= 0; --i)
+ updateCostPerDimension(cost, i, i == NumDims - 1);
+ }
+ return cost;
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ private:
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isPaddingAtIndexForDim(
+ Index index, int dim_index) const {
+#if defined(EIGEN_HAS_INDEX_LIST)
+ return (!internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0) &&
+ index < m_padding[dim_index].first) ||
+ (!internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0) &&
+ index >= m_dimensions[dim_index] - m_padding[dim_index].second);
+#else
+ return (index < m_padding[dim_index].first) ||
+ (index >= m_dimensions[dim_index] - m_padding[dim_index].second);
+#endif
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isLeftPaddingCompileTimeZero(
+ int dim_index) const {
+#if defined(EIGEN_HAS_INDEX_LIST)
+ return internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0);
+#else
+ EIGEN_UNUSED_VARIABLE(dim_index);
+ return false;
+#endif
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isRightPaddingCompileTimeZero(
+ int dim_index) const {
+#if defined(EIGEN_HAS_INDEX_LIST)
+ return internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0);
+#else
+ EIGEN_UNUSED_VARIABLE(dim_index);
+ return false;
+#endif
+ }
+
+
+ void updateCostPerDimension(TensorOpCost& cost, int i, bool first) const {
+ const double in = static_cast<double>(m_impl.dimensions()[i]);
+ const double out = in + m_padding[i].first + m_padding[i].second;
+ if (out == 0)
+ return;
+ const double reduction = in / out;
+ cost *= reduction;
+ if (first) {
+ cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost<Index>() +
+ reduction * (1 * TensorOpCost::AddCost<Index>()));
+ } else {
+ cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost<Index>() +
+ 2 * TensorOpCost::MulCost<Index>() +
+ reduction * (2 * TensorOpCost::MulCost<Index>() +
+ 1 * TensorOpCost::DivCost<Index>()));
+ }
+ }
+
+ protected:
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
+
+ const Index initialIndex = index;
+ Index inputIndex = 0;
+ for (int i = NumDims - 1; i > 0; --i) {
+ const Index first = index;
+ const Index last = index + PacketSize - 1;
+ const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i];
+ const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i];
+ const Index lastPaddedRight = m_outputStrides[i+1];
+
+ if (!isLeftPaddingCompileTimeZero(i) && last < lastPaddedLeft) {
+ // all the coefficient are in the padding zone.
+ return internal::pset1<PacketReturnType>(m_paddingValue);
+ }
+ else if (!isRightPaddingCompileTimeZero(i) && first >= firstPaddedRight && last < lastPaddedRight) {
+ // all the coefficient are in the padding zone.
+ return internal::pset1<PacketReturnType>(m_paddingValue);
+ }
+ else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (first >= lastPaddedLeft && last < firstPaddedRight)) {
+ // all the coefficient are between the 2 padding zones.
+ const Index idx = index / m_outputStrides[i];
+ inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
+ index -= idx * m_outputStrides[i];
+ }
+ else {
+ // Every other case
+ return packetWithPossibleZero(initialIndex);
+ }
+ }
+
+ const Index last = index + PacketSize - 1;
+ const Index first = index;
+ const Index lastPaddedLeft = m_padding[0].first;
+ const Index firstPaddedRight = (m_dimensions[0] - m_padding[0].second);
+ const Index lastPaddedRight = m_outputStrides[1];
+
+ if (!isLeftPaddingCompileTimeZero(0) && last < lastPaddedLeft) {
+ // all the coefficient are in the padding zone.
+ return internal::pset1<PacketReturnType>(m_paddingValue);
+ }
+ else if (!isRightPaddingCompileTimeZero(0) && first >= firstPaddedRight && last < lastPaddedRight) {
+ // all the coefficient are in the padding zone.
+ return internal::pset1<PacketReturnType>(m_paddingValue);
+ }
+ else if ((isLeftPaddingCompileTimeZero(0) && isRightPaddingCompileTimeZero(0)) || (first >= lastPaddedLeft && last < firstPaddedRight)) {
+ // all the coefficient are between the 2 padding zones.
+ inputIndex += (index - m_padding[0].first);
+ return m_impl.template packet<Unaligned>(inputIndex);
+ }
+ // Every other case
+ return packetWithPossibleZero(initialIndex);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
+
+ const Index initialIndex = index;
+ Index inputIndex = 0;
+
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const Index first = index;
+ const Index last = index + PacketSize - 1;
+ const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i+1];
+ const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i+1];
+ const Index lastPaddedRight = m_outputStrides[i];
+
+ if (!isLeftPaddingCompileTimeZero(i) && last < lastPaddedLeft) {
+ // all the coefficient are in the padding zone.
+ return internal::pset1<PacketReturnType>(m_paddingValue);
+ }
+ else if (!isRightPaddingCompileTimeZero(i) && first >= firstPaddedRight && last < lastPaddedRight) {
+ // all the coefficient are in the padding zone.
+ return internal::pset1<PacketReturnType>(m_paddingValue);
+ }
+ else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (first >= lastPaddedLeft && last < firstPaddedRight)) {
+ // all the coefficient are between the 2 padding zones.
+ const Index idx = index / m_outputStrides[i+1];
+ inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
+ index -= idx * m_outputStrides[i+1];
+ }
+ else {
+ // Every other case
+ return packetWithPossibleZero(initialIndex);
+ }
+ }
+
+ const Index last = index + PacketSize - 1;
+ const Index first = index;
+ const Index lastPaddedLeft = m_padding[NumDims-1].first;
+ const Index firstPaddedRight = (m_dimensions[NumDims-1] - m_padding[NumDims-1].second);
+ const Index lastPaddedRight = m_outputStrides[NumDims-1];
+
+ if (!isLeftPaddingCompileTimeZero(NumDims-1) && last < lastPaddedLeft) {
+ // all the coefficient are in the padding zone.
+ return internal::pset1<PacketReturnType>(m_paddingValue);
+ }
+ else if (!isRightPaddingCompileTimeZero(NumDims-1) && first >= firstPaddedRight && last < lastPaddedRight) {
+ // all the coefficient are in the padding zone.
+ return internal::pset1<PacketReturnType>(m_paddingValue);
+ }
+ else if ((isLeftPaddingCompileTimeZero(NumDims-1) && isRightPaddingCompileTimeZero(NumDims-1)) || (first >= lastPaddedLeft && last < firstPaddedRight)) {
+ // all the coefficient are between the 2 padding zones.
+ inputIndex += (index - m_padding[NumDims-1].first);
+ return m_impl.template packet<Unaligned>(inputIndex);
+ }
+ // Every other case
+ return packetWithPossibleZero(initialIndex);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
+ {
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
+ for (int i = 0; i < PacketSize; ++i) {
+ values[i] = coeff(index+i);
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+
+ Dimensions m_dimensions;
+ array<Index, NumDims+1> m_outputStrides;
+ array<Index, NumDims> m_inputStrides;
+ TensorEvaluator<ArgType, Device> m_impl;
+ PaddingDimensions m_padding;
+
+ Scalar m_paddingValue;
+};
+
+
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h b/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h
new file mode 100644
index 000000000..886a254f6
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h
@@ -0,0 +1,269 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_PATCH_H
+#define EIGEN_CXX11_TENSOR_TENSOR_PATCH_H
+
+namespace Eigen {
+
+/** \class TensorPatch
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor patch class.
+ *
+ *
+ */
+namespace internal {
+template<typename PatchDim, typename XprType>
+struct traits<TensorPatchOp<PatchDim, XprType> > : public traits<XprType>
+{
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions + 1;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename PatchDim, typename XprType>
+struct eval<TensorPatchOp<PatchDim, XprType>, Eigen::Dense>
+{
+ typedef const TensorPatchOp<PatchDim, XprType>& type;
+};
+
+template<typename PatchDim, typename XprType>
+struct nested<TensorPatchOp<PatchDim, XprType>, 1, typename eval<TensorPatchOp<PatchDim, XprType> >::type>
+{
+ typedef TensorPatchOp<PatchDim, XprType> type;
+};
+
+} // end namespace internal
+
+
+
+template<typename PatchDim, typename XprType>
+class TensorPatchOp : public TensorBase<TensorPatchOp<PatchDim, XprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorPatchOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorPatchOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorPatchOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorPatchOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPatchOp(const XprType& expr, const PatchDim& patch_dims)
+ : m_xpr(expr), m_patch_dims(patch_dims) {}
+
+ EIGEN_DEVICE_FUNC
+ const PatchDim& patch_dims() const { return m_patch_dims; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const PatchDim m_patch_dims;
+};
+
+
+// Eval as rvalue
+template<typename PatchDim, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorPatchOp<PatchDim, ArgType>, Device>
+{
+ typedef TensorPatchOp<PatchDim, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value + 1;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+
+ enum {
+ IsAligned = false,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device)
+ {
+ Index num_patches = 1;
+ const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
+ const PatchDim& patch_dims = op.patch_dims();
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = 0; i < NumDims-1; ++i) {
+ m_dimensions[i] = patch_dims[i];
+ num_patches *= (input_dims[i] - patch_dims[i] + 1);
+ }
+ m_dimensions[NumDims-1] = num_patches;
+
+ m_inputStrides[0] = 1;
+ m_patchStrides[0] = 1;
+ for (int i = 1; i < NumDims-1; ++i) {
+ m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
+ m_patchStrides[i] = m_patchStrides[i-1] * (input_dims[i-1] - patch_dims[i-1] + 1);
+ }
+ m_outputStrides[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
+ }
+ } else {
+ for (int i = 0; i < NumDims-1; ++i) {
+ m_dimensions[i+1] = patch_dims[i];
+ num_patches *= (input_dims[i] - patch_dims[i] + 1);
+ }
+ m_dimensions[0] = num_patches;
+
+ m_inputStrides[NumDims-2] = 1;
+ m_patchStrides[NumDims-2] = 1;
+ for (int i = NumDims-3; i >= 0; --i) {
+ m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
+ m_patchStrides[i] = m_patchStrides[i+1] * (input_dims[i+1] - patch_dims[i+1] + 1);
+ }
+ m_outputStrides[NumDims-1] = 1;
+ for (int i = NumDims-2; i >= 0; --i) {
+ m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ Index output_stride_index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? NumDims - 1 : 0;
+ // Find the location of the first element of the patch.
+ Index patchIndex = index / m_outputStrides[output_stride_index];
+ // Find the offset of the element wrt the location of the first element.
+ Index patchOffset = index - patchIndex * m_outputStrides[output_stride_index];
+ Index inputIndex = 0;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 2; i > 0; --i) {
+ const Index patchIdx = patchIndex / m_patchStrides[i];
+ patchIndex -= patchIdx * m_patchStrides[i];
+ const Index offsetIdx = patchOffset / m_outputStrides[i];
+ patchOffset -= offsetIdx * m_outputStrides[i];
+ inputIndex += (patchIdx + offsetIdx) * m_inputStrides[i];
+ }
+ } else {
+ for (int i = 0; i < NumDims - 2; ++i) {
+ const Index patchIdx = patchIndex / m_patchStrides[i];
+ patchIndex -= patchIdx * m_patchStrides[i];
+ const Index offsetIdx = patchOffset / m_outputStrides[i+1];
+ patchOffset -= offsetIdx * m_outputStrides[i+1];
+ inputIndex += (patchIdx + offsetIdx) * m_inputStrides[i];
+ }
+ }
+ inputIndex += (patchIndex + patchOffset);
+ return m_impl.coeff(inputIndex);
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
+
+ Index output_stride_index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? NumDims - 1 : 0;
+ Index indices[2] = {index, index + PacketSize - 1};
+ Index patchIndices[2] = {indices[0] / m_outputStrides[output_stride_index],
+ indices[1] / m_outputStrides[output_stride_index]};
+ Index patchOffsets[2] = {indices[0] - patchIndices[0] * m_outputStrides[output_stride_index],
+ indices[1] - patchIndices[1] * m_outputStrides[output_stride_index]};
+
+ Index inputIndices[2] = {0, 0};
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 2; i > 0; --i) {
+ const Index patchIdx[2] = {patchIndices[0] / m_patchStrides[i],
+ patchIndices[1] / m_patchStrides[i]};
+ patchIndices[0] -= patchIdx[0] * m_patchStrides[i];
+ patchIndices[1] -= patchIdx[1] * m_patchStrides[i];
+
+ const Index offsetIdx[2] = {patchOffsets[0] / m_outputStrides[i],
+ patchOffsets[1] / m_outputStrides[i]};
+ patchOffsets[0] -= offsetIdx[0] * m_outputStrides[i];
+ patchOffsets[1] -= offsetIdx[1] * m_outputStrides[i];
+
+ inputIndices[0] += (patchIdx[0] + offsetIdx[0]) * m_inputStrides[i];
+ inputIndices[1] += (patchIdx[1] + offsetIdx[1]) * m_inputStrides[i];
+ }
+ } else {
+ for (int i = 0; i < NumDims - 2; ++i) {
+ const Index patchIdx[2] = {patchIndices[0] / m_patchStrides[i],
+ patchIndices[1] / m_patchStrides[i]};
+ patchIndices[0] -= patchIdx[0] * m_patchStrides[i];
+ patchIndices[1] -= patchIdx[1] * m_patchStrides[i];
+
+ const Index offsetIdx[2] = {patchOffsets[0] / m_outputStrides[i+1],
+ patchOffsets[1] / m_outputStrides[i+1]};
+ patchOffsets[0] -= offsetIdx[0] * m_outputStrides[i+1];
+ patchOffsets[1] -= offsetIdx[1] * m_outputStrides[i+1];
+
+ inputIndices[0] += (patchIdx[0] + offsetIdx[0]) * m_inputStrides[i];
+ inputIndices[1] += (patchIdx[1] + offsetIdx[1]) * m_inputStrides[i];
+ }
+ }
+ inputIndices[0] += (patchIndices[0] + patchOffsets[0]);
+ inputIndices[1] += (patchIndices[1] + patchOffsets[1]);
+
+ if (inputIndices[1] - inputIndices[0] == PacketSize - 1) {
+ PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
+ return rslt;
+ }
+ else {
+ EIGEN_ALIGN_MAX CoeffReturnType values[PacketSize];
+ values[0] = m_impl.coeff(inputIndices[0]);
+ values[PacketSize-1] = m_impl.coeff(inputIndices[1]);
+ for (int i = 1; i < PacketSize-1; ++i) {
+ values[i] = coeff(index+i);
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ const double compute_cost = NumDims * (TensorOpCost::DivCost<Index>() +
+ TensorOpCost::MulCost<Index>() +
+ 2 * TensorOpCost::AddCost<Index>());
+ return m_impl.costPerCoeff(vectorized) +
+ TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ protected:
+ Dimensions m_dimensions;
+ array<Index, NumDims> m_outputStrides;
+ array<Index, NumDims-1> m_inputStrides;
+ array<Index, NumDims-1> m_patchStrides;
+
+ TensorEvaluator<ArgType, Device> m_impl;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_PATCH_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h b/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h
new file mode 100644
index 000000000..1655a813e
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h
@@ -0,0 +1,276 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_RANDOM_H
+#define EIGEN_CXX11_TENSOR_TENSOR_RANDOM_H
+
+namespace Eigen {
+namespace internal {
+
+namespace {
+
+EIGEN_DEVICE_FUNC uint64_t get_random_seed() {
+#ifdef __CUDA_ARCH__
+ // We don't support 3d kernels since we currently only use 1 and
+ // 2d kernels.
+ assert(threadIdx.z == 0);
+ return clock64() +
+ blockIdx.x * blockDim.x + threadIdx.x +
+ gridDim.x * blockDim.x * (blockIdx.y * blockDim.y + threadIdx.y);
+
+#elif defined _WIN32
+ // Use the current time as a baseline.
+ SYSTEMTIME st;
+ GetSystemTime(&st);
+ int time = st.wSecond + 1000 * st.wMilliseconds;
+ // Mix in a random number to make sure that we get different seeds if
+ // we try to generate seeds faster than the clock resolution.
+ // We need 2 random values since the generator only generate 16 bits at
+ // a time (https://msdn.microsoft.com/en-us/library/398ax69y.aspx)
+ int rnd1 = ::rand();
+ int rnd2 = ::rand();
+ uint64_t rnd = (rnd1 | rnd2 << 16) ^ time;
+ return rnd;
+
+#elif defined __APPLE__
+ // Same approach as for win32, except that the random number generator
+ // is better (// https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man3/random.3.html#//apple_ref/doc/man/3/random).
+ uint64_t rnd = ::random() ^ mach_absolute_time();
+ return rnd;
+
+#else
+ // Augment the current time with pseudo random number generation
+ // to ensure that we get different seeds if we try to generate seeds
+ // faster than the clock resolution.
+ timespec ts;
+ clock_gettime(CLOCK_REALTIME, &ts);
+ uint64_t rnd = ::random() ^ ts.tv_nsec;
+ return rnd;
+#endif
+}
+
+static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE unsigned PCG_XSH_RS_generator(uint64_t* state) {
+ // TODO: Unify with the implementation in the non blocking thread pool.
+ uint64_t current = *state;
+ // Update the internal state
+ *state = current * 6364136223846793005ULL + 0xda3e39cb94b95bdbULL;
+ // Generate the random output (using the PCG-XSH-RS scheme)
+ return static_cast<unsigned>((current ^ (current >> 22)) >> (22 + (current >> 61)));
+}
+
+static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE uint64_t PCG_XSH_RS_state(uint64_t seed) {
+ seed = seed ? seed : get_random_seed();
+ return seed * 6364136223846793005ULL + 0xda3e39cb94b95bdbULL;
+}
+
+} // namespace
+
+
+template <typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+T RandomToTypeUniform(uint64_t* state) {
+ unsigned rnd = PCG_XSH_RS_generator(state);
+ return static_cast<T>(rnd);
+}
+
+
+template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+Eigen::half RandomToTypeUniform<Eigen::half>(uint64_t* state) {
+ Eigen::half result;
+ // Generate 10 random bits for the mantissa
+ unsigned rnd = PCG_XSH_RS_generator(state);
+ result.x = static_cast<uint16_t>(rnd & 0x3ffu);
+ // Set the exponent
+ result.x |= (static_cast<uint16_t>(15) << 10);
+ // Return the final result
+ return result - Eigen::half(1.0f);
+}
+
+
+template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+float RandomToTypeUniform<float>(uint64_t* state) {
+ typedef union {
+ uint32_t raw;
+ float fp;
+ } internal;
+ internal result;
+ // Generate 23 random bits for the mantissa mantissa
+ const unsigned rnd = PCG_XSH_RS_generator(state);
+ result.raw = rnd & 0x7fffffu;
+ // Set the exponent
+ result.raw |= (static_cast<uint32_t>(127) << 23);
+ // Return the final result
+ return result.fp - 1.0f;
+}
+
+template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+double RandomToTypeUniform<double>(uint64_t* state) {
+ typedef union {
+ uint64_t raw;
+ double dp;
+ } internal;
+ internal result;
+ result.raw = 0;
+ // Generate 52 random bits for the mantissa
+ // First generate the upper 20 bits
+ unsigned rnd1 = PCG_XSH_RS_generator(state) & 0xfffffu;
+ // The generate the lower 32 bits
+ unsigned rnd2 = PCG_XSH_RS_generator(state);
+ result.raw = (static_cast<uint64_t>(rnd1) << 32) | rnd2;
+ // Set the exponent
+ result.raw |= (static_cast<uint64_t>(1023) << 52);
+ // Return the final result
+ return result.dp - 1.0;
+}
+
+template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+std::complex<float> RandomToTypeUniform<std::complex<float> >(uint64_t* state) {
+ return std::complex<float>(RandomToTypeUniform<float>(state),
+ RandomToTypeUniform<float>(state));
+}
+template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+std::complex<double> RandomToTypeUniform<std::complex<double> >(uint64_t* state) {
+ return std::complex<double>(RandomToTypeUniform<double>(state),
+ RandomToTypeUniform<double>(state));
+}
+
+template <typename T> class UniformRandomGenerator {
+ public:
+ static const bool PacketAccess = true;
+
+ // Uses the given "seed" if non-zero, otherwise uses a random seed.
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE UniformRandomGenerator(
+ uint64_t seed = 0) {
+ m_state = PCG_XSH_RS_state(seed);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE UniformRandomGenerator(
+ const UniformRandomGenerator& other) {
+ m_state = other.m_state;
+ }
+
+ template<typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ T operator()(Index i) const {
+ uint64_t local_state = m_state + i;
+ T result = RandomToTypeUniform<T>(&local_state);
+ m_state = local_state;
+ return result;
+ }
+
+ template<typename Packet, typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Packet packetOp(Index i) const {
+ const int packetSize = internal::unpacket_traits<Packet>::size;
+ EIGEN_ALIGN_MAX T values[packetSize];
+ uint64_t local_state = m_state + i;
+ for (int j = 0; j < packetSize; ++j) {
+ values[j] = RandomToTypeUniform<T>(&local_state);
+ }
+ m_state = local_state;
+ return internal::pload<Packet>(values);
+ }
+
+ private:
+ mutable uint64_t m_state;
+};
+
+template <typename Scalar>
+struct functor_traits<UniformRandomGenerator<Scalar> > {
+ enum {
+ // Rough estimate for floating point, multiplied by ceil(sizeof(T) / sizeof(float)).
+ Cost = 12 * NumTraits<Scalar>::AddCost *
+ ((sizeof(Scalar) + sizeof(float) - 1) / sizeof(float)),
+ PacketAccess = UniformRandomGenerator<Scalar>::PacketAccess
+ };
+};
+
+
+
+template <typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+T RandomToTypeNormal(uint64_t* state) {
+ // Use the ratio of uniform method to generate numbers following a normal
+ // distribution. See for example Numerical Recipes chapter 7.3.9 for the
+ // details.
+ T u, v, q;
+ do {
+ u = RandomToTypeUniform<T>(state);
+ v = T(1.7156) * (RandomToTypeUniform<T>(state) - T(0.5));
+ const T x = u - T(0.449871);
+ const T y = numext::abs(v) + T(0.386595);
+ q = x*x + y * (T(0.196)*y - T(0.25472)*x);
+ } while (q > T(0.27597) &&
+ (q > T(0.27846) || v*v > T(-4) * numext::log(u) * u*u));
+
+ return v/u;
+}
+
+template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+std::complex<float> RandomToTypeNormal<std::complex<float> >(uint64_t* state) {
+ return std::complex<float>(RandomToTypeNormal<float>(state),
+ RandomToTypeNormal<float>(state));
+}
+template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+std::complex<double> RandomToTypeNormal<std::complex<double> >(uint64_t* state) {
+ return std::complex<double>(RandomToTypeNormal<double>(state),
+ RandomToTypeNormal<double>(state));
+}
+
+
+template <typename T> class NormalRandomGenerator {
+ public:
+ static const bool PacketAccess = true;
+
+ // Uses the given "seed" if non-zero, otherwise uses a random seed.
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NormalRandomGenerator(uint64_t seed = 0) {
+ m_state = PCG_XSH_RS_state(seed);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NormalRandomGenerator(
+ const NormalRandomGenerator& other) {
+ m_state = other.m_state;
+ }
+
+ template<typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ T operator()(Index i) const {
+ uint64_t local_state = m_state + i;
+ T result = RandomToTypeNormal<T>(&local_state);
+ m_state = local_state;
+ return result;
+ }
+
+ template<typename Packet, typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Packet packetOp(Index i) const {
+ const int packetSize = internal::unpacket_traits<Packet>::size;
+ EIGEN_ALIGN_MAX T values[packetSize];
+ uint64_t local_state = m_state + i;
+ for (int j = 0; j < packetSize; ++j) {
+ values[j] = RandomToTypeNormal<T>(&local_state);
+ }
+ m_state = local_state;
+ return internal::pload<Packet>(values);
+ }
+
+ private:
+ mutable uint64_t m_state;
+};
+
+
+template <typename Scalar>
+struct functor_traits<NormalRandomGenerator<Scalar> > {
+ enum {
+ // On average, we need to generate about 3 random numbers
+ // 15 mul, 8 add, 1.5 logs
+ Cost = 3 * functor_traits<UniformRandomGenerator<Scalar> >::Cost +
+ 15 * NumTraits<Scalar>::AddCost + 8 * NumTraits<Scalar>::AddCost +
+ 3 * functor_traits<scalar_log_op<Scalar> >::Cost / 2,
+ PacketAccess = NormalRandomGenerator<Scalar>::PacketAccess
+ };
+};
+
+
+} // end namespace internal
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_RANDOM_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h b/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h
new file mode 100644
index 000000000..41d0d0022
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h
@@ -0,0 +1,781 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+// Copyright (C) 2016 Mehdi Goli, Codeplay Software Ltd <eigen@codeplay.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
+#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
+
+namespace Eigen {
+
+/** \class TensorReduction
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor reduction class.
+ *
+ */
+
+namespace internal {
+ template<typename Op, typename Dims, typename XprType,template <class> class MakePointer_ >
+ struct traits<TensorReductionOp<Op, Dims, XprType, MakePointer_> >
+ : traits<XprType>
+{
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::Scalar Scalar;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value;
+ static const int Layout = XprTraits::Layout;
+
+ template <class T> struct MakePointer {
+ // Intermediate typedef to workaround MSVC issue.
+ typedef MakePointer_<T> MakePointerT;
+ typedef typename MakePointerT::Type Type;
+ };
+};
+
+template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
+struct eval<TensorReductionOp<Op, Dims, XprType, MakePointer_>, Eigen::Dense>
+{
+ typedef const TensorReductionOp<Op, Dims, XprType, MakePointer_>& type;
+};
+
+template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
+struct nested<TensorReductionOp<Op, Dims, XprType, MakePointer_>, 1, typename eval<TensorReductionOp<Op, Dims, XprType, MakePointer_> >::type>
+{
+ typedef TensorReductionOp<Op, Dims, XprType, MakePointer_> type;
+};
+
+
+template <typename OutputDims> struct DimInitializer {
+ template <typename InputDims, typename ReducedDims> EIGEN_DEVICE_FUNC
+ static void run(const InputDims& input_dims,
+ const array<bool, internal::array_size<InputDims>::value>& reduced,
+ OutputDims* output_dims, ReducedDims* reduced_dims) {
+ const int NumInputDims = internal::array_size<InputDims>::value;
+ int outputIndex = 0;
+ int reduceIndex = 0;
+ for (int i = 0; i < NumInputDims; ++i) {
+ if (reduced[i]) {
+ (*reduced_dims)[reduceIndex] = input_dims[i];
+ ++reduceIndex;
+ } else {
+ (*output_dims)[outputIndex] = input_dims[i];
+ ++outputIndex;
+ }
+ }
+ }
+};
+
+template <> struct DimInitializer<Sizes<> > {
+ template <typename InputDims, typename Index, size_t Rank> EIGEN_DEVICE_FUNC
+ static void run(const InputDims& input_dims, const array<bool, Rank>&,
+ Sizes<>*, array<Index, Rank>* reduced_dims) {
+ const int NumInputDims = internal::array_size<InputDims>::value;
+ for (int i = 0; i < NumInputDims; ++i) {
+ (*reduced_dims)[i] = input_dims[i];
+ }
+ }
+};
+
+
+template <typename ReducedDims, int NumTensorDims, int Layout>
+struct are_inner_most_dims {
+ static const bool value = false;
+};
+template <typename ReducedDims, int NumTensorDims, int Layout>
+struct preserve_inner_most_dims {
+ static const bool value = false;
+};
+
+#if EIGEN_HAS_CONSTEXPR && EIGEN_HAS_VARIADIC_TEMPLATES
+template <typename ReducedDims, int NumTensorDims>
+struct are_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
+ static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
+ static const bool tmp2 = index_statically_eq<ReducedDims>(0, 0);
+ static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value-1, array_size<ReducedDims>::value-1);
+ static const bool value = tmp1 & tmp2 & tmp3;
+};
+template <typename ReducedDims, int NumTensorDims>
+struct are_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
+ static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
+ static const bool tmp2 = index_statically_eq<ReducedDims>(0, NumTensorDims - array_size<ReducedDims>::value);
+ static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
+ static const bool value = tmp1 & tmp2 & tmp3;
+
+};
+template <typename ReducedDims, int NumTensorDims>
+struct preserve_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
+ static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
+ static const bool tmp2 = index_statically_gt<ReducedDims>(0, 0);
+ static const bool value = tmp1 & tmp2;
+
+};
+template <typename ReducedDims, int NumTensorDims>
+struct preserve_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
+ static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
+ static const bool tmp2 = index_statically_lt<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
+ static const bool value = tmp1 & tmp2;
+};
+#endif
+
+
+template <int DimIndex, typename Self, typename Op>
+struct GenericDimReducer {
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
+ EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ for (int j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
+ const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
+ GenericDimReducer<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
+ }
+ }
+};
+template <typename Self, typename Op>
+struct GenericDimReducer<0, Self, Op> {
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
+ for (int j = 0; j < self.m_reducedDims[0]; ++j) {
+ const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
+ reducer.reduce(self.m_impl.coeff(input), accum);
+ }
+ }
+};
+template <typename Self, typename Op>
+struct GenericDimReducer<-1, Self, Op> {
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index index, Op& reducer, typename Self::CoeffReturnType* accum) {
+ reducer.reduce(self.m_impl.coeff(index), accum);
+ }
+};
+
+template <typename Self, typename Op, bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
+struct InnerMostDimReducer {
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
+ typename Self::CoeffReturnType accum = reducer.initialize();
+ for (typename Self::Index j = 0; j < numValuesToReduce; ++j) {
+ reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
+ }
+ return reducer.finalize(accum);
+ }
+};
+
+template <typename Self, typename Op>
+struct InnerMostDimReducer<Self, Op, true> {
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
+ const int packetSize = internal::unpacket_traits<typename Self::PacketReturnType>::size;
+ const typename Self::Index VectorizedSize = (numValuesToReduce / packetSize) * packetSize;
+ typename Self::PacketReturnType p = reducer.template initializePacket<typename Self::PacketReturnType>();
+ for (typename Self::Index j = 0; j < VectorizedSize; j += packetSize) {
+ reducer.reducePacket(self.m_impl.template packet<Unaligned>(firstIndex + j), &p);
+ }
+ typename Self::CoeffReturnType accum = reducer.initialize();
+ for (typename Self::Index j = VectorizedSize; j < numValuesToReduce; ++j) {
+ reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
+ }
+ return reducer.finalizeBoth(accum, p);
+ }
+};
+
+template <int DimIndex, typename Self, typename Op, bool vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
+struct InnerMostDimPreserver {
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
+ eigen_assert(false && "should never be called");
+ }
+};
+
+template <int DimIndex, typename Self, typename Op>
+struct InnerMostDimPreserver<DimIndex, Self, Op, true> {
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
+ EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ for (typename Self::Index j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
+ const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
+ InnerMostDimPreserver<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
+ }
+ }
+};
+
+template <typename Self, typename Op>
+struct InnerMostDimPreserver<0, Self, Op, true> {
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
+ for (typename Self::Index j = 0; j < self.m_reducedDims[0]; ++j) {
+ const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
+ reducer.reducePacket(self.m_impl.template packet<Unaligned>(input), accum);
+ }
+ }
+};
+template <typename Self, typename Op>
+struct InnerMostDimPreserver<-1, Self, Op, true> {
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
+ eigen_assert(false && "should never be called");
+ }
+};
+
+// Default full reducer
+template <typename Self, typename Op, typename Device, bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
+struct FullReducer {
+ static const bool HasOptimizedImplementation = false;
+
+ static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const Device&, typename Self::CoeffReturnType* output) {
+ const typename Self::Index num_coeffs = array_prod(self.m_impl.dimensions());
+ *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
+ }
+};
+
+
+#ifdef EIGEN_USE_THREADS
+// Multithreaded full reducers
+template <typename Self, typename Op,
+ bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
+struct FullReducerShard {
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Self& self, typename Self::Index firstIndex,
+ typename Self::Index numValuesToReduce, Op& reducer,
+ typename Self::CoeffReturnType* output) {
+ *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
+ self, firstIndex, numValuesToReduce, reducer);
+ }
+};
+
+// Multithreaded full reducer
+template <typename Self, typename Op, bool Vectorizable>
+struct FullReducer<Self, Op, ThreadPoolDevice, Vectorizable> {
+ static const bool HasOptimizedImplementation = !Op::IsStateful;
+ static const int PacketSize =
+ unpacket_traits<typename Self::PacketReturnType>::size;
+
+ // launch one reducer per thread and accumulate the result.
+ static void run(const Self& self, Op& reducer, const ThreadPoolDevice& device,
+ typename Self::CoeffReturnType* output) {
+ typedef typename Self::Index Index;
+ const Index num_coeffs = array_prod(self.m_impl.dimensions());
+ if (num_coeffs == 0) {
+ *output = reducer.finalize(reducer.initialize());
+ return;
+ }
+ const TensorOpCost cost =
+ self.m_impl.costPerCoeff(Vectorizable) +
+ TensorOpCost(0, 0, internal::functor_traits<Op>::Cost, Vectorizable,
+ PacketSize);
+ const int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
+ num_coeffs, cost, device.numThreads());
+ if (num_threads == 1) {
+ *output =
+ InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
+ return;
+ }
+ const Index blocksize =
+ std::floor<Index>(static_cast<float>(num_coeffs) / num_threads);
+ const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0;
+ eigen_assert(num_coeffs >= numblocks * blocksize);
+
+ Barrier barrier(internal::convert_index<unsigned int>(numblocks));
+ MaxSizeVector<typename Self::CoeffReturnType> shards(numblocks, reducer.initialize());
+ for (Index i = 0; i < numblocks; ++i) {
+ device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, Vectorizable>::run,
+ self, i * blocksize, blocksize, reducer,
+ &shards[i]);
+ }
+ typename Self::CoeffReturnType finalShard;
+ if (numblocks * blocksize < num_coeffs) {
+ finalShard = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
+ self, numblocks * blocksize, num_coeffs - numblocks * blocksize,
+ reducer);
+ } else {
+ finalShard = reducer.initialize();
+ }
+ barrier.Wait();
+
+ for (Index i = 0; i < numblocks; ++i) {
+ reducer.reduce(shards[i], &finalShard);
+ }
+ *output = reducer.finalize(finalShard);
+ }
+};
+
+#endif
+
+
+// Default inner reducer
+template <typename Self, typename Op, typename Device>
+struct InnerReducer {
+ static const bool HasOptimizedImplementation = false;
+
+ EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
+ eigen_assert(false && "Not implemented");
+ return true;
+ }
+};
+
+// Default outer reducer
+template <typename Self, typename Op, typename Device>
+struct OuterReducer {
+ static const bool HasOptimizedImplementation = false;
+
+ EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
+ eigen_assert(false && "Not implemented");
+ return true;
+ }
+};
+
+
+#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
+template <int B, int N, typename S, typename R, typename I>
+__global__ void FullReductionKernel(R, const S, I, typename S::CoeffReturnType*, unsigned int*);
+
+
+#ifdef EIGEN_HAS_CUDA_FP16
+template <typename S, typename R, typename I>
+__global__ void ReductionInitFullReduxKernelHalfFloat(R, const S, I, half2*);
+template <int B, int N, typename S, typename R, typename I>
+__global__ void FullReductionKernelHalfFloat(R, const S, I, half*, half2*);
+template <int NPT, typename S, typename R, typename I>
+__global__ void InnerReductionKernelHalfFloat(R, const S, I, I, half*);
+
+#endif
+
+template <int NPT, typename S, typename R, typename I>
+__global__ void InnerReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
+
+template <int NPT, typename S, typename R, typename I>
+__global__ void OuterReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
+#endif
+
+} // end namespace internal
+
+
+template <typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
+class TensorReductionOp : public TensorBase<TensorReductionOp<Op, Dims, XprType, MakePointer_>, ReadOnlyAccessors> {
+ public:
+ typedef typename Eigen::internal::traits<TensorReductionOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorReductionOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorReductionOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorReductionOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ TensorReductionOp(const XprType& expr, const Dims& dims) : m_expr(expr), m_dims(dims)
+ { }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ TensorReductionOp(const XprType& expr, const Dims& dims, const Op& reducer) : m_expr(expr), m_dims(dims), m_reducer(reducer)
+ { }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const XprType& expression() const { return m_expr; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const Dims& dims() const { return m_dims; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const Op& reducer() const { return m_reducer; }
+
+ protected:
+ typename XprType::Nested m_expr;
+ const Dims m_dims;
+ const Op m_reducer;
+};
+
+
+// Eval as rvalue
+template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>
+struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>
+{
+ typedef TensorReductionOp<Op, Dims, ArgType, MakePointer_> XprType;
+ typedef typename XprType::Index Index;
+ typedef ArgType ChildType;
+ typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
+ static const int NumInputDims = internal::array_size<InputDimensions>::value;
+ static const int NumReducedDims = internal::array_size<Dims>::value;
+ static const int NumOutputDims = NumInputDims - NumReducedDims;
+ typedef typename internal::conditional<NumOutputDims==0, Sizes<>, DSizes<Index, NumOutputDims> >::type Dimensions;
+ typedef typename XprType::Scalar Scalar;
+ typedef TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Self;
+ static const bool InputPacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess;
+ typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = Self::InputPacketAccess && Op::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ static const bool ReducingInnerMostDims = internal::are_inner_most_dims<Dims, NumInputDims, Layout>::value;
+ static const bool PreservingInnerMostDims = internal::preserve_inner_most_dims<Dims, NumInputDims, Layout>::value;
+ static const bool RunningFullReduction = (NumOutputDims==0);
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device), m_reducer(op.reducer()), m_result(NULL), m_device(device), m_xpr_dims(op.dims())
+ {
+ EIGEN_STATIC_ASSERT((NumInputDims >= NumReducedDims), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ EIGEN_STATIC_ASSERT((!ReducingInnerMostDims | !PreservingInnerMostDims | (NumReducedDims == NumInputDims)),
+ YOU_MADE_A_PROGRAMMING_MISTAKE);
+
+ // Build the bitmap indicating if an input dimension is reduced or not.
+ for (int i = 0; i < NumInputDims; ++i) {
+ m_reduced[i] = false;
+ }
+ for (int i = 0; i < NumReducedDims; ++i) {
+ eigen_assert(op.dims()[i] >= 0);
+ eigen_assert(op.dims()[i] < NumInputDims);
+ m_reduced[op.dims()[i]] = true;
+ }
+
+ const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
+ internal::DimInitializer<Dimensions>::run(input_dims, m_reduced, &m_dimensions, &m_reducedDims);
+
+ // Precompute output strides.
+ if (NumOutputDims > 0) {
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_outputStrides[0] = 1;
+ for (int i = 1; i < NumOutputDims; ++i) {
+ m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
+ }
+ } else {
+ m_outputStrides.back() = 1;
+ for (int i = NumOutputDims - 2; i >= 0; --i) {
+ m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
+ }
+ }
+ }
+
+ // Precompute input strides.
+ if (NumInputDims > 0) {
+ array<Index, NumInputDims> input_strides;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ input_strides[0] = 1;
+ for (int i = 1; i < NumInputDims; ++i) {
+ input_strides[i] = input_strides[i-1] * input_dims[i-1];
+ }
+ } else {
+ input_strides.back() = 1;
+ for (int i = NumInputDims - 2; i >= 0; --i) {
+ input_strides[i] = input_strides[i + 1] * input_dims[i + 1];
+ }
+ }
+
+ int outputIndex = 0;
+ int reduceIndex = 0;
+ for (int i = 0; i < NumInputDims; ++i) {
+ if (m_reduced[i]) {
+ m_reducedStrides[reduceIndex] = input_strides[i];
+ ++reduceIndex;
+ } else {
+ m_preservedStrides[outputIndex] = input_strides[i];
+ ++outputIndex;
+ }
+ }
+ }
+
+ // Special case for full reductions
+ if (NumOutputDims == 0) {
+ m_preservedStrides[0] = internal::array_prod(input_dims);
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool evalSubExprsIfNeeded(typename MakePointer_<CoeffReturnType>::Type data) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+
+ // Use the FullReducer if possible.
+ if ((RunningFullReduction && RunningOnSycl) ||(RunningFullReduction &&
+ internal::FullReducer<Self, Op, Device>::HasOptimizedImplementation &&
+ ((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) ||
+ !RunningOnGPU))) {
+ bool need_assign = false;
+ if (!data) {
+ m_result = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType)));
+ data = m_result;
+ need_assign = true;
+ }
+ Op reducer(m_reducer);
+ internal::FullReducer<Self, Op, Device>::run(*this, reducer, m_device, data);
+ return need_assign;
+ }
+ else if(RunningOnSycl){
+ const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
+ const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
+ if (!data) {
+ data = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType) * num_coeffs_to_preserve));
+ m_result = data;
+ }
+ Op reducer(m_reducer);
+ internal::InnerReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve);
+ return (m_result != NULL);
+ }
+
+ // Attempt to use an optimized reduction.
+ else if (RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) {
+ bool reducing_inner_dims = true;
+ for (int i = 0; i < NumReducedDims; ++i) {
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ reducing_inner_dims &= m_reduced[i];
+ } else {
+ reducing_inner_dims &= m_reduced[NumInputDims - 1 - i];
+ }
+ }
+ if (internal::InnerReducer<Self, Op, Device>::HasOptimizedImplementation &&
+ (reducing_inner_dims || ReducingInnerMostDims)) {
+ const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
+ const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
+ if (!data) {
+ if (num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 128) {
+ data = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType) * num_coeffs_to_preserve));
+ m_result = data;
+ }
+ else {
+ return true;
+ }
+ }
+ Op reducer(m_reducer);
+ if (internal::InnerReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
+ if (m_result) {
+ m_device.deallocate(m_result);
+ m_result = NULL;
+ }
+ return true;
+ } else {
+ return (m_result != NULL);
+ }
+ }
+
+ bool preserving_inner_dims = true;
+ for (int i = 0; i < NumReducedDims; ++i) {
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ preserving_inner_dims &= m_reduced[NumInputDims - 1 - i];
+ } else {
+ preserving_inner_dims &= m_reduced[i];
+ }
+ }
+ if (internal::OuterReducer<Self, Op, Device>::HasOptimizedImplementation &&
+ preserving_inner_dims) {
+ const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
+ const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
+ if (!data) {
+ if (num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 32) {
+ data = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType) * num_coeffs_to_preserve));
+ m_result = data;
+ }
+ else {
+ return true;
+ }
+ }
+ Op reducer(m_reducer);
+ if (internal::OuterReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
+ if (m_result) {
+ m_device.deallocate(m_result);
+ m_result = NULL;
+ }
+ return true;
+ } else {
+ return (m_result != NULL);
+ }
+ }
+ }
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ if (m_result) {
+ m_device.deallocate(m_result);
+ m_result = NULL;
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ if ((RunningOnSycl || RunningFullReduction || RunningOnGPU) && m_result) {
+ return *(m_result + index);
+ }
+ Op reducer(m_reducer);
+ if (ReducingInnerMostDims || RunningFullReduction) {
+ const Index num_values_to_reduce =
+ (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
+ return internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstInput(index),
+ num_values_to_reduce, reducer);
+ } else {
+ typename Self::CoeffReturnType accum = reducer.initialize();
+ internal::GenericDimReducer<NumReducedDims-1, Self, Op>::reduce(*this, firstInput(index), reducer, &accum);
+ return reducer.finalize(accum);
+ }
+ }
+
+ // TODO(bsteiner): provide a more efficient implementation.
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index + PacketSize - 1 < Index(internal::array_prod(dimensions())));
+
+ if (RunningOnGPU && m_result) {
+ return internal::pload<PacketReturnType>(m_result + index);
+ }
+
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
+ if (ReducingInnerMostDims) {
+ const Index num_values_to_reduce =
+ (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
+ const Index firstIndex = firstInput(index);
+ for (Index i = 0; i < PacketSize; ++i) {
+ Op reducer(m_reducer);
+ values[i] = internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstIndex + i * num_values_to_reduce,
+ num_values_to_reduce, reducer);
+ }
+ } else if (PreservingInnerMostDims) {
+ const Index firstIndex = firstInput(index);
+ const int innermost_dim = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? 0 : NumOutputDims - 1;
+ // TBD: extend this the the n innermost dimensions that we preserve.
+ if (((firstIndex % m_dimensions[innermost_dim]) + PacketSize - 1) < m_dimensions[innermost_dim]) {
+ Op reducer(m_reducer);
+ typename Self::PacketReturnType accum = reducer.template initializePacket<typename Self::PacketReturnType>();
+ internal::InnerMostDimPreserver<NumReducedDims-1, Self, Op>::reduce(*this, firstIndex, reducer, &accum);
+ return reducer.finalizePacket(accum);
+ } else {
+ for (int i = 0; i < PacketSize; ++i) {
+ values[i] = coeff(index + i);
+ }
+ }
+ } else {
+ for (int i = 0; i < PacketSize; ++i) {
+ values[i] = coeff(index + i);
+ }
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+
+ // Must be called after evalSubExprsIfNeeded().
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ if (RunningFullReduction && m_result) {
+ return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
+ } else {
+ const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
+ const double compute_cost = num_values_to_reduce * internal::functor_traits<Op>::Cost;
+ return m_impl.costPerCoeff(vectorized) * num_values_to_reduce +
+ TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
+ }
+ }
+
+ EIGEN_DEVICE_FUNC typename MakePointer_<Scalar>::Type data() const { return m_result; }
+ /// required by sycl in order to extract the accessor
+ const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
+ /// added for sycl in order to construct the buffer from the sycl device
+ const Device& device() const{return m_device;}
+ /// added for sycl in order to re-construct the reduction eval on the device for the sub-kernel
+ const Dims& xprDims() const {return m_xpr_dims;}
+
+
+ private:
+ template <int, typename, typename> friend struct internal::GenericDimReducer;
+ template <typename, typename, bool> friend struct internal::InnerMostDimReducer;
+ template <int, typename, typename, bool> friend struct internal::InnerMostDimPreserver;
+ template <typename S, typename O, typename D, bool V> friend struct internal::FullReducer;
+#ifdef EIGEN_USE_THREADS
+ template <typename S, typename O, bool V> friend struct internal::FullReducerShard;
+#endif
+#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
+ template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernel(R, const S, I, typename S::CoeffReturnType*, unsigned int*);
+#ifdef EIGEN_HAS_CUDA_FP16
+ template <typename S, typename R, typename I> friend void internal::ReductionInitFullReduxKernelHalfFloat(R, const S, I, half2*);
+ template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernelHalfFloat(R, const S, I, half*, half2*);
+ template <int NPT, typename S, typename R, typename I> friend void internal::InnerReductionKernelHalfFloat(R, const S, I, I, half*);
+#endif
+ template <int NPT, typename S, typename R, typename I> friend void internal::InnerReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
+
+ template <int NPT, typename S, typename R, typename I> friend void internal::OuterReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
+#endif
+
+ template <typename S, typename O, typename D> friend struct internal::InnerReducer;
+
+ // Returns the Index in the input tensor of the first value that needs to be
+ // used to compute the reduction at output index "index".
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
+ if (ReducingInnerMostDims) {
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ return index * m_preservedStrides[0];
+ } else {
+ return index * m_preservedStrides[NumPreservedStrides - 1];
+ }
+ }
+ // TBD: optimize the case where we preserve the innermost dimensions.
+ Index startInput = 0;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumOutputDims - 1; i > 0; --i) {
+ // This is index_i in the output tensor.
+ const Index idx = index / m_outputStrides[i];
+ startInput += idx * m_preservedStrides[i];
+ index -= idx * m_outputStrides[i];
+ }
+ if (PreservingInnerMostDims) {
+ eigen_assert(m_preservedStrides[0] == 1);
+ startInput += index;
+ } else {
+ startInput += index * m_preservedStrides[0];
+ }
+ } else {
+ for (int i = 0; i < NumOutputDims - 1; ++i) {
+ // This is index_i in the output tensor.
+ const Index idx = index / m_outputStrides[i];
+ startInput += idx * m_preservedStrides[i];
+ index -= idx * m_outputStrides[i];
+ }
+ if (PreservingInnerMostDims) {
+ eigen_assert(m_preservedStrides[NumPreservedStrides - 1] == 1);
+ startInput += index;
+ } else {
+ startInput += index * m_preservedStrides[NumPreservedStrides - 1];
+ }
+ }
+ return startInput;
+ }
+
+ // Bitmap indicating if an input dimension is reduced or not.
+ array<bool, NumInputDims> m_reduced;
+ // Dimensions of the output of the operation.
+ Dimensions m_dimensions;
+ // Precomputed strides for the output tensor.
+ array<Index, NumOutputDims> m_outputStrides;
+ // Subset of strides of the input tensor for the non-reduced dimensions.
+ // Indexed by output dimensions.
+ static const int NumPreservedStrides = max_n_1<NumOutputDims>::size;
+ array<Index, NumPreservedStrides> m_preservedStrides;
+
+ // Subset of strides of the input tensor for the reduced dimensions.
+ // Indexed by reduced dimensions.
+ array<Index, NumReducedDims> m_reducedStrides;
+ // Size of the input dimensions that are reduced.
+ // Indexed by reduced dimensions.
+ array<Index, NumReducedDims> m_reducedDims;
+
+ // Evaluator for the input expression.
+ TensorEvaluator<ArgType, Device> m_impl;
+
+ // Operation to apply for computing the reduction.
+ Op m_reducer;
+
+ // For full reductions
+#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
+ static const bool RunningOnGPU = internal::is_same<Device, Eigen::GpuDevice>::value;
+ static const bool RunningOnSycl = false;
+#elif defined(EIGEN_USE_SYCL)
+static const bool RunningOnSycl = internal::is_same<typename internal::remove_all<Device>::type, Eigen::SyclDevice>::value;
+static const bool RunningOnGPU = false;
+#else
+ static const bool RunningOnGPU = false;
+ static const bool RunningOnSycl = false;
+#endif
+ typename MakePointer_<CoeffReturnType>::Type m_result;
+
+ const Device& m_device;
+ const Dims& m_xpr_dims;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h b/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h
new file mode 100644
index 000000000..65638b6a8
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h
@@ -0,0 +1,750 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
+#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
+
+namespace Eigen {
+namespace internal {
+
+
+#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
+// Full reducers for GPU, don't vectorize for now
+
+// Reducer function that enables multiple cuda thread to safely accumulate at the same
+// output address. It basically reads the current value of the output variable, and
+// attempts to update it with the new value. If in the meantime another cuda thread
+// updated the content of the output address it will try again.
+template <typename T, typename R>
+__device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) {
+#if __CUDA_ARCH__ >= 300
+ if (sizeof(T) == 4)
+ {
+ unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
+ unsigned int newval = oldval;
+ reducer.reduce(accum, reinterpret_cast<T*>(&newval));
+ if (newval == oldval) {
+ return;
+ }
+ unsigned int readback;
+ while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
+ oldval = readback;
+ newval = oldval;
+ reducer.reduce(accum, reinterpret_cast<T*>(&newval));
+ if (newval == oldval) {
+ return;
+ }
+ }
+ }
+ else if (sizeof(T) == 8) {
+ unsigned long long oldval = *reinterpret_cast<unsigned long long*>(output);
+ unsigned long long newval = oldval;
+ reducer.reduce(accum, reinterpret_cast<T*>(&newval));
+ if (newval == oldval) {
+ return;
+ }
+ unsigned long long readback;
+ while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) {
+ oldval = readback;
+ newval = oldval;
+ reducer.reduce(accum, reinterpret_cast<T*>(&newval));
+ if (newval == oldval) {
+ return;
+ }
+ }
+ }
+ else {
+ assert(0 && "Wordsize not supported");
+ }
+#else
+ assert(0 && "Shouldn't be called on unsupported device");
+#endif
+}
+
+// We extend atomicExch to support extra data types
+template <typename Type>
+__device__ inline Type atomicExchCustom(Type* address, Type val) {
+ return atomicExch(address, val);
+}
+
+template <>
+__device__ inline double atomicExchCustom(double* address, double val) {
+ unsigned long long int* address_as_ull = reinterpret_cast<unsigned long long int*>(address);
+ return __longlong_as_double(atomicExch(address_as_ull, __double_as_longlong(val)));
+}
+
+#ifdef EIGEN_HAS_CUDA_FP16
+template <template <typename T> class R>
+__device__ inline void atomicReduce(half2* output, half2 accum, R<half>& reducer) {
+ unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
+ unsigned int newval = oldval;
+ reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval));
+ if (newval == oldval) {
+ return;
+ }
+ unsigned int readback;
+ while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
+ oldval = readback;
+ newval = oldval;
+ reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval));
+ if (newval == oldval) {
+ return;
+ }
+ }
+}
+#endif
+
+template <>
+__device__ inline void atomicReduce(float* output, float accum, SumReducer<float>&) {
+#if __CUDA_ARCH__ >= 300
+ atomicAdd(output, accum);
+#else
+ assert(0 && "Shouldn't be called on unsupported device");
+#endif
+}
+
+
+template <typename CoeffType, typename Index>
+__global__ void ReductionInitKernel(const CoeffType val, Index num_preserved_coeffs, CoeffType* output) {
+ const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
+ const Index num_threads = blockDim.x * gridDim.x;
+ for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
+ output[i] = val;
+ }
+}
+
+
+template <int BlockSize, int NumPerThread, typename Self,
+ typename Reducer, typename Index>
+__global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs,
+ typename Self::CoeffReturnType* output, unsigned int* semaphore) {
+#if __CUDA_ARCH__ >= 300
+ // Initialize the output value
+ const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x;
+ if (gridDim.x == 1) {
+ if (first_index == 0) {
+ *output = reducer.initialize();
+ }
+ }
+ else {
+ if (threadIdx.x == 0) {
+ unsigned int block = atomicCAS(semaphore, 0u, 1u);
+ if (block == 0) {
+ // We're the first block to run, initialize the output value
+ atomicExchCustom(output, reducer.initialize());
+ __threadfence();
+ atomicExch(semaphore, 2u);
+ }
+ else {
+ // Wait for the first block to initialize the output value.
+ // Use atomicCAS here to ensure that the reads aren't cached
+ unsigned int val;
+ do {
+ val = atomicCAS(semaphore, 2u, 2u);
+ }
+ while (val < 2u);
+ }
+ }
+ }
+
+ __syncthreads();
+
+ eigen_assert(gridDim.x == 1 || *semaphore >= 2u);
+
+ typename Self::CoeffReturnType accum = reducer.initialize();
+ Index max_iter = numext::mini<Index>(num_coeffs - first_index, NumPerThread*BlockSize);
+ for (Index i = 0; i < max_iter; i+=BlockSize) {
+ const Index index = first_index + i;
+ eigen_assert(index < num_coeffs);
+ typename Self::CoeffReturnType val = input.m_impl.coeff(index);
+ reducer.reduce(val, &accum);
+ }
+
+#pragma unroll
+ for (int offset = warpSize/2; offset > 0; offset /= 2) {
+ reducer.reduce(__shfl_down(accum, offset, warpSize), &accum);
+ }
+
+ if ((threadIdx.x & (warpSize - 1)) == 0) {
+ atomicReduce(output, accum, reducer);
+ }
+
+ if (gridDim.x > 1 && threadIdx.x == 0) {
+ // Let the last block reset the semaphore
+ atomicInc(semaphore, gridDim.x + 1);
+ }
+#else
+ assert(0 && "Shouldn't be called on unsupported device");
+#endif
+}
+
+
+#ifdef EIGEN_HAS_CUDA_FP16
+template <typename Self,
+ typename Reducer, typename Index>
+__global__ void ReductionInitFullReduxKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half2* scratch) {
+ eigen_assert(blockDim.x == 1);
+ eigen_assert(gridDim.x == 1);
+ if (num_coeffs % 2 != 0) {
+ half last = input.m_impl.coeff(num_coeffs-1);
+ *scratch = __halves2half2(last, reducer.initialize());
+ } else {
+ *scratch = reducer.template initializePacket<half2>();
+ }
+}
+
+template <typename Self,
+ typename Reducer, typename Index>
+__global__ void ReductionInitKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half* output) {
+ const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
+ const Index num_threads = blockDim.x * gridDim.x;
+ const Index num_packets = num_coeffs / 2;
+ for (Index i = thread_id; i < num_packets; i += num_threads) {
+ ((half2*)output)[i] = reducer.template initializePacket<half2>();
+ }
+
+ if (thread_id == 0 && num_coeffs % 2 != 0) {
+ output[num_coeffs-1] = reducer.initialize();
+ }
+}
+
+template <int BlockSize, int NumPerThread, typename Self,
+ typename Reducer, typename Index>
+__global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs,
+ half* output, half2* scratch) {
+ eigen_assert(NumPerThread % 2 == 0);
+
+ const Index first_index = blockIdx.x * BlockSize * NumPerThread + 2*threadIdx.x;
+
+ // Initialize the output value if it wasn't initialized by the ReductionInitKernel
+ if (gridDim.x == 1 && first_index == 0) {
+ if (num_coeffs % 2 != 0) {
+ half last = input.m_impl.coeff(num_coeffs-1);
+ *scratch = __halves2half2(last, reducer.initialize());
+ } else {
+ *scratch = reducer.template initializePacket<half2>();
+ }
+ __syncthreads();
+ }
+
+ half2 accum = reducer.template initializePacket<half2>();
+ const Index max_iter = numext::mini<Index>((num_coeffs - first_index) / 2, NumPerThread*BlockSize / 2);
+ for (Index i = 0; i < max_iter; i += BlockSize) {
+ const Index index = first_index + 2*i;
+ eigen_assert(index + 1 < num_coeffs);
+ half2 val = input.m_impl.template packet<Unaligned>(index);
+ reducer.reducePacket(val, &accum);
+ }
+
+#pragma unroll
+ for (int offset = warpSize/2; offset > 0; offset /= 2) {
+ reducer.reducePacket(__shfl_down(accum, offset, warpSize), &accum);
+ }
+
+ if ((threadIdx.x & (warpSize - 1)) == 0) {
+ atomicReduce(scratch, accum, reducer);
+ }
+
+ __syncthreads();
+
+ if (gridDim.x == 1 && first_index == 0) {
+ half tmp = __low2half(*scratch);
+ reducer.reduce(__high2half(*scratch), &tmp);
+ *output = tmp;
+ }
+}
+
+template <typename Op>
+__global__ void ReductionCleanupKernelHalfFloat(Op& reducer, half* output, half2* scratch) {
+ eigen_assert(threadIdx.x == 1);
+ half tmp = __low2half(*scratch);
+ reducer.reduce(__high2half(*scratch), &tmp);
+ *output = tmp;
+}
+
+#endif
+
+template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void>
+struct FullReductionLauncher {
+ static void run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index) {
+ assert(false && "Should only be called on doubles, floats and half floats");
+ }
+};
+
+// Specialization for float and double
+template <typename Self, typename Op, typename OutputType, bool PacketAccess>
+struct FullReductionLauncher<
+ Self, Op, OutputType, PacketAccess,
+ typename internal::enable_if<
+ internal::is_same<float, OutputType>::value ||
+ internal::is_same<double, OutputType>::value,
+ void>::type> {
+ static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs) {
+ typedef typename Self::Index Index;
+ typedef typename Self::CoeffReturnType Scalar;
+ const int block_size = 256;
+ const int num_per_thread = 128;
+ const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
+
+ unsigned int* semaphore = NULL;
+ if (num_blocks > 1) {
+ semaphore = device.semaphore();
+ }
+
+ LAUNCH_CUDA_KERNEL((FullReductionKernel<block_size, num_per_thread, Self, Op, Index>),
+ num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, semaphore);
+ }
+};
+
+#ifdef EIGEN_HAS_CUDA_FP16
+template <typename Self, typename Op>
+struct FullReductionLauncher<Self, Op, Eigen::half, false> {
+ static void run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index) {
+ assert(false && "Should not be called since there is no packet accessor");
+ }
+};
+
+template <typename Self, typename Op>
+struct FullReductionLauncher<Self, Op, Eigen::half, true> {
+ static void run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs) {
+ typedef typename Self::Index Index;
+
+ const int block_size = 256;
+ const int num_per_thread = 128;
+ const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
+ half2* scratch = static_cast<half2*>(device.scratchpad());
+
+ if (num_blocks > 1) {
+ // We initialize the output and the scrathpad outside the reduction kernel when we can't be sure that there
+ // won't be a race conditions between multiple thread blocks.
+ LAUNCH_CUDA_KERNEL((ReductionInitFullReduxKernelHalfFloat<Self, Op, Index>),
+ 1, 1, 0, device, reducer, self, num_coeffs, scratch);
+ }
+
+ LAUNCH_CUDA_KERNEL((FullReductionKernelHalfFloat<block_size, num_per_thread, Self, Op, Index>),
+ num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, scratch);
+
+ if (num_blocks > 1) {
+ LAUNCH_CUDA_KERNEL((ReductionCleanupKernelHalfFloat<Op>),
+ 1, 1, 0, device, reducer, output, scratch);
+ }
+ }
+};
+#endif
+
+
+template <typename Self, typename Op, bool Vectorizable>
+struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
+ // Unfortunately nvidia doesn't support well exotic types such as complex,
+ // so reduce the scope of the optimized version of the code to the simple cases
+ // of doubles, floats and half floats
+#ifdef EIGEN_HAS_CUDA_FP16
+ static const bool HasOptimizedImplementation = !Op::IsStateful &&
+ (internal::is_same<typename Self::CoeffReturnType, float>::value ||
+ internal::is_same<typename Self::CoeffReturnType, double>::value ||
+ (internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess));
+#else
+ static const bool HasOptimizedImplementation = !Op::IsStateful &&
+ (internal::is_same<typename Self::CoeffReturnType, float>::value ||
+ internal::is_same<typename Self::CoeffReturnType, double>::value);
+#endif
+
+ template <typename OutputType>
+ static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
+ assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats");
+ const Index num_coeffs = array_prod(self.m_impl.dimensions());
+ // Don't crash when we're called with an input tensor of size 0.
+ if (num_coeffs == 0) {
+ return;
+ }
+
+ FullReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs);
+ }
+};
+
+
+template <int NumPerThread, typename Self,
+ typename Reducer, typename Index>
+__global__ void InnerReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
+ typename Self::CoeffReturnType* output) {
+#if __CUDA_ARCH__ >= 300
+ typedef typename Self::CoeffReturnType Type;
+ eigen_assert(blockDim.y == 1);
+ eigen_assert(blockDim.z == 1);
+ eigen_assert(gridDim.y == 1);
+ eigen_assert(gridDim.z == 1);
+
+ const int unroll_times = 16;
+ eigen_assert(NumPerThread % unroll_times == 0);
+
+ const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread);
+ const Index num_input_blocks = input_col_blocks * num_preserved_coeffs;
+
+ const Index num_threads = blockDim.x * gridDim.x;
+ const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
+
+ // Initialize the output values if they weren't initialized by the ReductionInitKernel
+ if (gridDim.x == 1) {
+ for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
+ output[i] = reducer.initialize();
+ }
+ __syncthreads();
+ }
+
+ for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
+ const Index row = i / input_col_blocks;
+
+ if (row < num_preserved_coeffs) {
+ const Index col_block = i % input_col_blocks;
+ const Index col_begin = col_block * blockDim.x * NumPerThread + threadIdx.x;
+
+ Type reduced_val = reducer.initialize();
+
+ for (Index j = 0; j < NumPerThread; j += unroll_times) {
+ const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1);
+ if (last_col >= num_coeffs_to_reduce) {
+ for (Index col = col_begin + blockDim.x * j; col < num_coeffs_to_reduce; col += blockDim.x) {
+ const Type val = input.m_impl.coeff(row * num_coeffs_to_reduce + col);
+ reducer.reduce(val, &reduced_val);
+ }
+ break;
+ } else {
+ // Faster version of the loop with no branches after unrolling.
+#pragma unroll
+ for (int k = 0; k < unroll_times; ++k) {
+ const Index col = col_begin + blockDim.x * (j + k);
+ reducer.reduce(input.m_impl.coeff(row * num_coeffs_to_reduce + col), &reduced_val);
+ }
+ }
+ }
+
+#pragma unroll
+ for (int offset = warpSize/2; offset > 0; offset /= 2) {
+ reducer.reduce(__shfl_down(reduced_val, offset), &reduced_val);
+ }
+
+ if ((threadIdx.x & (warpSize - 1)) == 0) {
+ atomicReduce(&(output[row]), reduced_val, reducer);
+ }
+ }
+ }
+#else
+ assert(0 && "Shouldn't be called on unsupported device");
+#endif
+}
+
+#ifdef EIGEN_HAS_CUDA_FP16
+
+template <int NumPerThread, typename Self,
+ typename Reducer, typename Index>
+__global__ void InnerReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
+ half* output) {
+ eigen_assert(blockDim.y == 1);
+ eigen_assert(blockDim.z == 1);
+ eigen_assert(gridDim.y == 1);
+ eigen_assert(gridDim.z == 1);
+
+ const int unroll_times = 16;
+ eigen_assert(NumPerThread % unroll_times == 0);
+ eigen_assert(unroll_times % 2 == 0);
+
+ const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread * 2);
+ const Index num_input_blocks = divup<Index>(input_col_blocks * num_preserved_coeffs, 2);
+
+ const Index num_threads = blockDim.x * gridDim.x;
+ const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
+
+ // Initialize the output values if they weren't initialized by the ReductionInitKernel
+ if (gridDim.x == 1) {
+ Index i = 2*thread_id;
+ for (; i + 1 < num_preserved_coeffs; i += 2*num_threads) {
+ half* loc = output + i;
+ *((half2*)loc) = reducer.template initializePacket<half2>();
+ }
+ if (i < num_preserved_coeffs) {
+ output[i] = reducer.initialize();
+ }
+ __syncthreads();
+ }
+
+ for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
+ const Index row = 2 * (i / input_col_blocks);
+
+ if (row + 1 < num_preserved_coeffs) {
+ const Index col_block = i % input_col_blocks;
+ const Index col_begin = 2 * (col_block * blockDim.x * NumPerThread + threadIdx.x);
+
+ half2 reduced_val1 = reducer.template initializePacket<half2>();
+ half2 reduced_val2 = reducer.template initializePacket<half2>();
+
+ for (Index j = 0; j < NumPerThread; j += unroll_times) {
+ const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1) * 2;
+ if (last_col >= num_coeffs_to_reduce) {
+ Index col = col_begin + blockDim.x * j;
+ for (; col + 1 < num_coeffs_to_reduce; col += blockDim.x) {
+ const half2 val1 = input.m_impl.template packet<Unaligned>(row * num_coeffs_to_reduce + col);
+ reducer.reducePacket(val1, &reduced_val1);
+ const half2 val2 = input.m_impl.template packet<Unaligned>((row+1) * num_coeffs_to_reduce + col);
+ reducer.reducePacket(val2, &reduced_val2);
+ }
+ if (col < num_coeffs_to_reduce) {
+ // Peel;
+ const half last1 = input.m_impl.coeff(row * num_coeffs_to_reduce + col);
+ const half2 val1 = __halves2half2(last1, reducer.initialize());
+ reducer.reducePacket(val1, &reduced_val1);
+ const half last2 = input.m_impl.coeff((row+1) * num_coeffs_to_reduce + col);
+ const half2 val2 = __halves2half2(last2, reducer.initialize());
+ reducer.reducePacket(val2, &reduced_val2);
+ }
+ break;
+ } else {
+ // Faster version of the loop with no branches after unrolling.
+#pragma unroll
+ for (int k = 0; k < unroll_times; ++k) {
+ const Index col = col_begin + blockDim.x * (j + k) * 2;
+ reducer.reducePacket(input.m_impl.template packet<Unaligned>(row * num_coeffs_to_reduce + col), &reduced_val1);
+ reducer.reducePacket(input.m_impl.template packet<Unaligned>((row + 1)* num_coeffs_to_reduce + col), &reduced_val2);
+ }
+ }
+ }
+
+#pragma unroll
+ for (int offset = warpSize/2; offset > 0; offset /= 2) {
+ reducer.reducePacket(__shfl_down(reduced_val1, offset, warpSize), &reduced_val1);
+ reducer.reducePacket(__shfl_down(reduced_val2, offset, warpSize), &reduced_val2);
+ }
+
+ half val1 = __low2half(reduced_val1);
+ reducer.reduce(__high2half(reduced_val1), &val1);
+ half val2 = __low2half(reduced_val2);
+ reducer.reduce(__high2half(reduced_val2), &val2);
+ half2 val = __halves2half2(val1, val2);
+
+ if ((threadIdx.x & (warpSize - 1)) == 0) {
+ half* loc = output + row;
+ atomicReduce((half2*)loc, val, reducer);
+ }
+ }
+ }
+}
+
+#endif
+
+template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void>
+struct InnerReductionLauncher {
+ static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index, typename Self::Index) {
+ assert(false && "Should only be called to reduce doubles, floats and half floats on a gpu device");
+ return true;
+ }
+};
+
+// Specialization for float and double
+template <typename Self, typename Op, typename OutputType, bool PacketAccess>
+struct InnerReductionLauncher<
+ Self, Op, OutputType, PacketAccess,
+ typename internal::enable_if<
+ internal::is_same<float, OutputType>::value ||
+ internal::is_same<double, OutputType>::value,
+ void>::type> {
+ static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
+ typedef typename Self::Index Index;
+
+ const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
+ const int block_size = 256;
+ const int num_per_thread = 128;
+ const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
+ const int max_blocks = device.getNumCudaMultiProcessors() *
+ device.maxCudaThreadsPerMultiProcessor() / block_size;
+ const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
+
+ if (num_blocks > 1) {
+ // We initialize the outputs outside the reduction kernel when we can't be sure that there
+ // won't be a race conditions between multiple thread blocks.
+ const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
+ const int max_blocks = device.getNumCudaMultiProcessors() *
+ device.maxCudaThreadsPerMultiProcessor() / 1024;
+ const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
+ LAUNCH_CUDA_KERNEL((ReductionInitKernel<OutputType, Index>),
+ num_blocks, 1024, 0, device, reducer.initialize(),
+ num_preserved_vals, output);
+ }
+
+ LAUNCH_CUDA_KERNEL((InnerReductionKernel<num_per_thread, Self, Op, Index>),
+ num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
+
+ return false;
+ }
+};
+
+#ifdef EIGEN_HAS_CUDA_FP16
+template <typename Self, typename Op>
+struct InnerReductionLauncher<Self, Op, Eigen::half, false> {
+ static bool run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index, typename Self::Index) {
+ assert(false && "Should not be called since there is no packet accessor");
+ return true;
+ }
+};
+
+template <typename Self, typename Op>
+struct InnerReductionLauncher<Self, Op, Eigen::half, true> {
+ static bool run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
+ typedef typename Self::Index Index;
+
+ if (num_preserved_vals % 2 != 0) {
+ // Not supported yet, revert to the slower code path
+ return true;
+ }
+
+ const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
+ const int block_size = /*256*/128;
+ const int num_per_thread = /*128*/64;
+ const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
+ const int max_blocks = device.getNumCudaMultiProcessors() *
+ device.maxCudaThreadsPerMultiProcessor() / block_size;
+ const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
+
+ if (num_blocks > 1) {
+ // We initialize the outputs outside the reduction kernel when we can't be sure that there
+ // won't be a race conditions between multiple thread blocks.
+ const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
+ const int max_blocks = device.getNumCudaMultiProcessors() *
+ device.maxCudaThreadsPerMultiProcessor() / 1024;
+ const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
+ LAUNCH_CUDA_KERNEL((ReductionInitKernelHalfFloat<Self, Op, Index>),
+ 1, 1, 0, device, reducer, self, num_preserved_vals, output);
+ }
+
+ LAUNCH_CUDA_KERNEL((InnerReductionKernelHalfFloat<num_per_thread, Self, Op, Index>),
+ num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
+
+ return false;
+ }
+};
+#endif
+
+
+template <typename Self, typename Op>
+struct InnerReducer<Self, Op, GpuDevice> {
+ // Unfortunately nvidia doesn't support well exotic types such as complex,
+ // so reduce the scope of the optimized version of the code to the simple case
+ // of floats and half floats.
+#ifdef EIGEN_HAS_CUDA_FP16
+ static const bool HasOptimizedImplementation = !Op::IsStateful &&
+ (internal::is_same<typename Self::CoeffReturnType, float>::value ||
+ internal::is_same<typename Self::CoeffReturnType, double>::value ||
+ (internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess));
+#else
+ static const bool HasOptimizedImplementation = !Op::IsStateful &&
+ (internal::is_same<typename Self::CoeffReturnType, float>::value ||
+ internal::is_same<typename Self::CoeffReturnType, double>::value);
+#endif
+
+ template <typename OutputType>
+ static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
+ assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats");
+ const Index num_coeffs = array_prod(self.m_impl.dimensions());
+ // Don't crash when we're called with an input tensor of size 0.
+ if (num_coeffs == 0) {
+ return true;
+ }
+ // It's faster to use the usual code.
+ if (num_coeffs_to_reduce <= 128) {
+ return true;
+ }
+
+ return InnerReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs_to_reduce, num_preserved_vals);
+ }
+};
+
+template <int NumPerThread, typename Self,
+ typename Reducer, typename Index>
+__global__ void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
+ typename Self::CoeffReturnType* output) {
+ const Index num_threads = blockDim.x * gridDim.x;
+ const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
+ // Initialize the output values if they weren't initialized by the ReductionInitKernel
+ if (gridDim.x == 1) {
+ for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
+ output[i] = reducer.initialize();
+ }
+ __syncthreads();
+ }
+
+ // Do the reduction.
+ const Index max_iter = num_preserved_coeffs * divup<Index>(num_coeffs_to_reduce, NumPerThread);
+ for (Index i = thread_id; i < max_iter; i += num_threads) {
+ const Index input_col = i % num_preserved_coeffs;
+ const Index input_row = (i / num_preserved_coeffs) * NumPerThread;
+ typename Self::CoeffReturnType reduced_val = reducer.initialize();
+ const Index max_row = numext::mini(input_row + NumPerThread, num_coeffs_to_reduce);
+ for (Index j = input_row; j < max_row; j++) {
+ typename Self::CoeffReturnType val = input.m_impl.coeff(j * num_preserved_coeffs + input_col);
+ reducer.reduce(val, &reduced_val);
+ }
+ atomicReduce(&(output[input_col]), reduced_val, reducer);
+ }
+}
+
+
+template <typename Self, typename Op>
+struct OuterReducer<Self, Op, GpuDevice> {
+ // Unfortunately nvidia doesn't support well exotic types such as complex,
+ // so reduce the scope of the optimized version of the code to the simple case
+ // of floats.
+ static const bool HasOptimizedImplementation = !Op::IsStateful &&
+ (internal::is_same<typename Self::CoeffReturnType, float>::value ||
+ internal::is_same<typename Self::CoeffReturnType, double>::value);
+ template <typename Device, typename OutputType>
+ static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
+ assert(false && "Should only be called to reduce doubles or floats on a gpu device");
+ return true;
+ }
+
+ static bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
+ typedef typename Self::Index Index;
+
+ // It's faster to use the usual code.
+ if (num_coeffs_to_reduce <= 32) {
+ return true;
+ }
+
+ const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
+ const int block_size = 256;
+ const int num_per_thread = 16;
+ const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
+ const int max_blocks = device.getNumCudaMultiProcessors() *
+ device.maxCudaThreadsPerMultiProcessor() / block_size;
+ const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
+
+ if (num_blocks > 1) {
+ // We initialize the outputs in the reduction kernel itself when we don't have to worry
+ // about race conditions between multiple thread blocks.
+ const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
+ const int max_blocks = device.getNumCudaMultiProcessors() *
+ device.maxCudaThreadsPerMultiProcessor() / 1024;
+ const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
+ LAUNCH_CUDA_KERNEL((ReductionInitKernel<float, Index>),
+ num_blocks, 1024, 0, device, reducer.initialize(),
+ num_preserved_vals, output);
+ }
+
+ LAUNCH_CUDA_KERNEL((OuterReductionKernel<num_per_thread, Self, Op, Index>),
+ num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
+
+ return false;
+ }
+};
+
+#endif
+
+
+} // end namespace internal
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h b/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h
new file mode 100644
index 000000000..3daecb045
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h
@@ -0,0 +1,242 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+/*****************************************************************
+ * TensorSyclPlaceHolderExpr.h
+ *
+ * \brief:
+ * This is the specialisation of the placeholder expression based on the
+ * operation type
+ *
+*****************************************************************/
+
+#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_REDUCTION_SYCL_HPP
+#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_REDUCTION_SYCL_HPP
+
+namespace Eigen {
+namespace internal {
+
+template<typename CoeffReturnType, typename KernelName> struct syclGenericBufferReducer{
+template<typename BufferTOut, typename BufferTIn>
+static void run(BufferTOut* bufOut, BufferTIn& bufI, const Eigen::SyclDevice& dev, size_t length, size_t local){
+ do {
+ auto f = [length, local, bufOut, &bufI](cl::sycl::handler& h) mutable {
+ cl::sycl::nd_range<1> r{cl::sycl::range<1>{std::max(length, local)},
+ cl::sycl::range<1>{std::min(length, local)}};
+ /* Two accessors are used: one to the buffer that is being reduced,
+ * and a second to local memory, used to store intermediate data. */
+ auto aI =
+ bufI.template get_access<cl::sycl::access::mode::read_write>(h);
+ auto aOut =
+ bufOut->template get_access<cl::sycl::access::mode::discard_write>(h);
+ cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write,
+ cl::sycl::access::target::local>
+ scratch(cl::sycl::range<1>(local), h);
+
+ /* The parallel_for invocation chosen is the variant with an nd_item
+ * parameter, since the code requires barriers for correctness. */
+ h.parallel_for<KernelName>(
+ r, [aOut, aI, scratch, local, length](cl::sycl::nd_item<1> id) {
+ size_t globalid = id.get_global(0);
+ size_t localid = id.get_local(0);
+ /* All threads collectively read from global memory into local.
+ * The barrier ensures all threads' IO is resolved before
+ * execution continues (strictly speaking, all threads within
+ * a single work-group - there is no co-ordination between
+ * work-groups, only work-items). */
+ if (globalid < length) {
+ scratch[localid] = aI[globalid];
+ }
+ id.barrier(cl::sycl::access::fence_space::local_space);
+
+ /* Apply the reduction operation between the current local
+ * id and the one on the other half of the vector. */
+ if (globalid < length) {
+ int min = (length < local) ? length : local;
+ for (size_t offset = min / 2; offset > 0; offset /= 2) {
+ if (localid < offset) {
+ scratch[localid] += scratch[localid + offset];
+ }
+ id.barrier(cl::sycl::access::fence_space::local_space);
+ }
+ /* The final result will be stored in local id 0. */
+ if (localid == 0) {
+ aI[id.get_group(0)] = scratch[localid];
+ if((length<=local) && globalid ==0){
+ aOut[globalid]=scratch[localid];
+ }
+ }
+ }
+ });
+ };
+ dev.m_queue.submit(f);
+ dev.m_queue.throw_asynchronous();
+
+ /* At this point, you could queue::wait_and_throw() to ensure that
+ * errors are caught quickly. However, this would likely impact
+ * performance negatively. */
+ length = length / local;
+
+ } while (length > 1);
+
+
+
+}
+
+};
+
+/// For now let's start with a full reducer
+/// Self is useless here because in expression construction we are going to treat reduction as a leafnode.
+/// we want to take reduction child and then build a construction and apply the full reducer function on it. Fullreducre applies the
+/// reduction operation on the child of the reduction. once it is done the reduction is an empty shell and can be thrown away and treated as
+// a leafNode.
+template <typename Self, typename Op, bool Vectorizable>
+struct FullReducer<Self, Op, const Eigen::SyclDevice, Vectorizable> {
+
+ typedef typename Self::CoeffReturnType CoeffReturnType;
+ static const bool HasOptimizedImplementation = false;
+
+ static void run(const Self& self, Op& reducer, const Eigen::SyclDevice& dev, CoeffReturnType* output) {
+ typedef const typename Self::ChildType HostExpr; /// this is the child of reduction
+ typedef typename TensorSycl::internal::createPlaceHolderExpression<HostExpr>::Type PlaceHolderExpr;
+ auto functors = TensorSycl::internal::extractFunctors(self.impl());
+ int red_factor =256; /// initial reduction. If the size is less than red_factor we only creates one thread.
+ size_t inputSize =self.impl().dimensions().TotalSize();
+ size_t rng = inputSize/red_factor; // the total number of thread initially is half the size of the input
+ size_t remaining = inputSize% red_factor;
+ if(rng ==0) {
+ red_factor=1;
+ };
+ size_t tileSize =dev.m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>()/2;
+ size_t GRange=std::max((size_t )1, rng);
+
+ // convert global range to power of 2 for redecution
+ GRange--;
+ GRange |= GRange >> 1;
+ GRange |= GRange >> 2;
+ GRange |= GRange >> 4;
+ GRange |= GRange >> 8;
+ GRange |= GRange >> 16;
+#if __x86_64__ || __ppc64__ || _WIN64
+ GRange |= GRange >> 32;
+#endif
+ GRange++;
+ size_t outTileSize = tileSize;
+ /// if the shared memory is less than the GRange, we set shared_mem size to the TotalSize and in this case one kernel would be created for recursion to reduce all to one.
+ if (GRange < outTileSize) outTileSize=GRange;
+ // getting final out buffer at the moment the created buffer is true because there is no need for assign
+ auto out_buffer =dev.template get_sycl_buffer<typename Eigen::internal::remove_all<CoeffReturnType>::type>(self.dimensions().TotalSize(), output);
+ /// creating the shared memory for calculating reduction.
+ /// This one is used to collect all the reduced value of shared memory as we dont have global barrier on GPU. Once it is saved we can
+ /// recursively apply reduction on it in order to reduce the whole.
+ auto temp_global_buffer =cl::sycl::buffer<CoeffReturnType, 1>(cl::sycl::range<1>(GRange));
+ typedef typename Eigen::internal::remove_all<decltype(self.xprDims())>::type Dims;
+ Dims dims= self.xprDims();
+ Op functor = reducer;
+ dev.m_queue.submit([&](cl::sycl::handler &cgh) {
+ // create a tuple of accessors from Evaluator
+ auto tuple_of_accessors = TensorSycl::internal::createTupleOfAccessors(cgh, self.impl());
+ auto tmp_global_accessor = temp_global_buffer. template get_access<cl::sycl::access::mode::read_write, cl::sycl::access::target::global_buffer>(cgh);
+
+ cgh.parallel_for<PlaceHolderExpr>( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(outTileSize)), [=](cl::sycl::nd_item<1> itemID) {
+ typedef typename TensorSycl::internal::ConvertToDeviceExpression<const HostExpr>::Type DevExpr;
+ auto device_expr = TensorSycl::internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
+ /// reduction cannot be captured automatically through our device conversion recursion. The reason is that reduction has two behaviour
+ /// the first behaviour is when it is used as a root to lauch the sub-kernel. The second one is when it is treated as a leafnode to pass the
+ /// calculated result to its parent kernel. While the latter is automatically detected through our device expression generator. The former is created here.
+ const auto device_self_expr= TensorReductionOp<Op, Dims, decltype(device_expr.expr) ,MakeGlobalPointer>(device_expr.expr, dims, functor);
+ /// This is the evaluator for device_self_expr. This is exactly similar to the self which has been passed to run function. The difference is
+ /// the device_evaluator is detectable and recognisable on the device.
+ auto device_self_evaluator = Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::DefaultDevice>(device_self_expr, Eigen::DefaultDevice());
+ /// const cast added as a naive solution to solve the qualifier drop error
+ auto globalid=itemID.get_global_linear_id();
+
+ if(globalid<rng)
+ tmp_global_accessor.get_pointer()[globalid]=InnerMostDimReducer<decltype(device_self_evaluator), Op, false>::reduce(device_self_evaluator, red_factor*globalid, red_factor, const_cast<Op&>(functor));
+ else
+ tmp_global_accessor.get_pointer()[globalid]=static_cast<CoeffReturnType>(0);
+
+ if(remaining!=0 && globalid==0 )
+ // this will add the rest of input buffer when the input size is not devidable to red_factor.
+ tmp_global_accessor.get_pointer()[globalid]+=InnerMostDimReducer<decltype(device_self_evaluator), Op, false>::reduce(device_self_evaluator, red_factor*(rng), remaining, const_cast<Op&>(functor));
+ });
+ });
+ dev.m_queue.throw_asynchronous();
+
+/// This is used to recursively reduce the tmp value to an element of 1;
+ syclGenericBufferReducer<CoeffReturnType,HostExpr>::run(out_buffer, temp_global_buffer,dev, GRange, outTileSize);
+ }
+
+};
+
+template <typename Self, typename Op>
+struct InnerReducer<Self, Op, const Eigen::SyclDevice> {
+
+ typedef typename Self::CoeffReturnType CoeffReturnType;
+ static const bool HasOptimizedImplementation = false;
+
+ static bool run(const Self& self, Op& reducer, const Eigen::SyclDevice& dev, CoeffReturnType* output, typename Self::Index , typename Self::Index num_coeffs_to_preserve) {
+ typedef const typename Self::ChildType HostExpr; /// this is the child of reduction
+ typedef typename TensorSycl::internal::createPlaceHolderExpression<HostExpr>::Type PlaceHolderExpr;
+ auto functors = TensorSycl::internal::extractFunctors(self.impl());
+
+ size_t tileSize =dev.m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>()/2;
+
+ size_t GRange=num_coeffs_to_preserve;
+ if (tileSize>GRange) tileSize=GRange;
+ else if(GRange>tileSize){
+ size_t xMode = GRange % tileSize;
+ if (xMode != 0) GRange += (tileSize - xMode);
+ }
+ // getting final out buffer at the moment the created buffer is true because there is no need for assign
+ /// creating the shared memory for calculating reduction.
+ /// This one is used to collect all the reduced value of shared memory as we dont have global barrier on GPU. Once it is saved we can
+ /// recursively apply reduction on it in order to reduce the whole.
+ typedef typename Eigen::internal::remove_all<decltype(self.xprDims())>::type Dims;
+ Dims dims= self.xprDims();
+ Op functor = reducer;
+
+ dev.m_queue.submit([&](cl::sycl::handler &cgh) {
+ // create a tuple of accessors from Evaluator
+ auto tuple_of_accessors = TensorSycl::internal::createTupleOfAccessors(cgh, self.impl());
+ auto output_accessor = dev.template get_sycl_accessor<cl::sycl::access::mode::discard_write>(num_coeffs_to_preserve,cgh, output);
+
+ cgh.parallel_for<Self>( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), [=](cl::sycl::nd_item<1> itemID) {
+ typedef typename TensorSycl::internal::ConvertToDeviceExpression<const HostExpr>::Type DevExpr;
+ auto device_expr = TensorSycl::internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
+ /// reduction cannot be captured automatically through our device conversion recursion. The reason is that reduction has two behaviour
+ /// the first behaviour is when it is used as a root to lauch the sub-kernel. The second one is when it is treated as a leafnode to pass the
+ /// calculated result to its parent kernel. While the latter is automatically detected through our device expression generator. The former is created here.
+ const auto device_self_expr= TensorReductionOp<Op, Dims, decltype(device_expr.expr) ,MakeGlobalPointer>(device_expr.expr, dims, functor);
+ /// This is the evaluator for device_self_expr. This is exactly similar to the self which has been passed to run function. The difference is
+ /// the device_evaluator is detectable and recognisable on the device.
+ typedef Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::DefaultDevice> DeiceSelf;
+ auto device_self_evaluator = Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::DefaultDevice>(device_self_expr, Eigen::DefaultDevice());
+ /// const cast added as a naive solution to solve the qualifier drop error
+ auto globalid=itemID.get_global_linear_id();
+ if (globalid< static_cast<size_t>(num_coeffs_to_preserve)) {
+ typename DeiceSelf::CoeffReturnType accum = functor.initialize();
+ GenericDimReducer<DeiceSelf::NumReducedDims-1, DeiceSelf, Op>::reduce(device_self_evaluator, device_self_evaluator.firstInput(globalid),const_cast<Op&>(functor), &accum);
+ functor.finalize(accum);
+ output_accessor.get_pointer()[globalid]= accum;
+ }
+ });
+ });
+ dev.m_queue.throw_asynchronous();
+ return false;
+ }
+};
+
+} // end namespace internal
+} // namespace Eigen
+
+#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_REDUCTION_SYCL_HPP
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h b/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h
new file mode 100644
index 000000000..99245f778
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h
@@ -0,0 +1,429 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_REF_H
+#define EIGEN_CXX11_TENSOR_TENSOR_REF_H
+
+namespace Eigen {
+
+namespace internal {
+
+template <typename Dimensions, typename Scalar>
+class TensorLazyBaseEvaluator {
+ public:
+ TensorLazyBaseEvaluator() : m_refcount(0) { }
+ virtual ~TensorLazyBaseEvaluator() { }
+
+ EIGEN_DEVICE_FUNC virtual const Dimensions& dimensions() const = 0;
+ EIGEN_DEVICE_FUNC virtual const Scalar* data() const = 0;
+
+ EIGEN_DEVICE_FUNC virtual const Scalar coeff(DenseIndex index) const = 0;
+ EIGEN_DEVICE_FUNC virtual Scalar& coeffRef(DenseIndex index) = 0;
+
+ void incrRefCount() { ++m_refcount; }
+ void decrRefCount() { --m_refcount; }
+ int refCount() const { return m_refcount; }
+
+ private:
+ // No copy, no assigment;
+ TensorLazyBaseEvaluator(const TensorLazyBaseEvaluator& other);
+ TensorLazyBaseEvaluator& operator = (const TensorLazyBaseEvaluator& other);
+
+ int m_refcount;
+};
+
+
+template <typename Dimensions, typename Expr, typename Device>
+class TensorLazyEvaluatorReadOnly : public TensorLazyBaseEvaluator<Dimensions, typename TensorEvaluator<Expr, Device>::Scalar> {
+ public:
+ // typedef typename TensorEvaluator<Expr, Device>::Dimensions Dimensions;
+ typedef typename TensorEvaluator<Expr, Device>::Scalar Scalar;
+
+ TensorLazyEvaluatorReadOnly(const Expr& expr, const Device& device) : m_impl(expr, device), m_dummy(Scalar(0)) {
+ m_dims = m_impl.dimensions();
+ m_impl.evalSubExprsIfNeeded(NULL);
+ }
+ virtual ~TensorLazyEvaluatorReadOnly() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC virtual const Dimensions& dimensions() const {
+ return m_dims;
+ }
+ EIGEN_DEVICE_FUNC virtual const Scalar* data() const {
+ return m_impl.data();
+ }
+
+ EIGEN_DEVICE_FUNC virtual const Scalar coeff(DenseIndex index) const {
+ return m_impl.coeff(index);
+ }
+ EIGEN_DEVICE_FUNC virtual Scalar& coeffRef(DenseIndex /*index*/) {
+ eigen_assert(false && "can't reference the coefficient of a rvalue");
+ return m_dummy;
+ };
+
+ protected:
+ TensorEvaluator<Expr, Device> m_impl;
+ Dimensions m_dims;
+ Scalar m_dummy;
+};
+
+template <typename Dimensions, typename Expr, typename Device>
+class TensorLazyEvaluatorWritable : public TensorLazyEvaluatorReadOnly<Dimensions, Expr, Device> {
+ public:
+ typedef TensorLazyEvaluatorReadOnly<Dimensions, Expr, Device> Base;
+ typedef typename Base::Scalar Scalar;
+
+ TensorLazyEvaluatorWritable(const Expr& expr, const Device& device) : Base(expr, device) {
+ }
+ virtual ~TensorLazyEvaluatorWritable() {
+ }
+
+ EIGEN_DEVICE_FUNC virtual Scalar& coeffRef(DenseIndex index) {
+ return this->m_impl.coeffRef(index);
+ }
+};
+
+template <typename Dimensions, typename Expr, typename Device>
+class TensorLazyEvaluator : public internal::conditional<bool(internal::is_lvalue<Expr>::value),
+ TensorLazyEvaluatorWritable<Dimensions, Expr, Device>,
+ TensorLazyEvaluatorReadOnly<Dimensions, const Expr, Device> >::type {
+ public:
+ typedef typename internal::conditional<bool(internal::is_lvalue<Expr>::value),
+ TensorLazyEvaluatorWritable<Dimensions, Expr, Device>,
+ TensorLazyEvaluatorReadOnly<Dimensions, const Expr, Device> >::type Base;
+ typedef typename Base::Scalar Scalar;
+
+ TensorLazyEvaluator(const Expr& expr, const Device& device) : Base(expr, device) {
+ }
+ virtual ~TensorLazyEvaluator() {
+ }
+};
+
+} // namespace internal
+
+
+/** \class TensorRef
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief A reference to a tensor expression
+ * The expression will be evaluated lazily (as much as possible).
+ *
+ */
+template<typename PlainObjectType> class TensorRef : public TensorBase<TensorRef<PlainObjectType> >
+{
+ public:
+ typedef TensorRef<PlainObjectType> Self;
+ typedef typename PlainObjectType::Base Base;
+ typedef typename Eigen::internal::nested<Self>::type Nested;
+ typedef typename internal::traits<PlainObjectType>::StorageKind StorageKind;
+ typedef typename internal::traits<PlainObjectType>::Index Index;
+ typedef typename internal::traits<PlainObjectType>::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef typename Base::CoeffReturnType CoeffReturnType;
+ typedef Scalar* PointerType;
+ typedef PointerType PointerArgType;
+
+ static const Index NumIndices = PlainObjectType::NumIndices;
+ typedef typename PlainObjectType::Dimensions Dimensions;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = false,
+ Layout = PlainObjectType::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_STRONG_INLINE TensorRef() : m_evaluator(NULL) {
+ }
+
+ template <typename Expression>
+ EIGEN_STRONG_INLINE TensorRef(const Expression& expr) : m_evaluator(new internal::TensorLazyEvaluator<Dimensions, Expression, DefaultDevice>(expr, DefaultDevice())) {
+ m_evaluator->incrRefCount();
+ }
+
+ template <typename Expression>
+ EIGEN_STRONG_INLINE TensorRef& operator = (const Expression& expr) {
+ unrefEvaluator();
+ m_evaluator = new internal::TensorLazyEvaluator<Dimensions, Expression, DefaultDevice>(expr, DefaultDevice());
+ m_evaluator->incrRefCount();
+ return *this;
+ }
+
+ ~TensorRef() {
+ unrefEvaluator();
+ }
+
+ TensorRef(const TensorRef& other) : m_evaluator(other.m_evaluator) {
+ eigen_assert(m_evaluator->refCount() > 0);
+ m_evaluator->incrRefCount();
+ }
+
+ TensorRef& operator = (const TensorRef& other) {
+ if (this != &other) {
+ unrefEvaluator();
+ m_evaluator = other.m_evaluator;
+ eigen_assert(m_evaluator->refCount() > 0);
+ m_evaluator->incrRefCount();
+ }
+ return *this;
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Index rank() const { return m_evaluator->dimensions().size(); }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Index dimension(Index n) const { return m_evaluator->dimensions()[n]; }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_evaluator->dimensions(); }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Index size() const { return m_evaluator->dimensions().TotalSize(); }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar* data() const { return m_evaluator->data(); }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar operator()(Index index) const
+ {
+ return m_evaluator->coeff(index);
+ }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... IndexTypes> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar operator()(Index firstIndex, IndexTypes... otherIndices) const
+ {
+ const std::size_t num_indices = (sizeof...(otherIndices) + 1);
+ const array<Index, num_indices> indices{{firstIndex, otherIndices...}};
+ return coeff(indices);
+ }
+ template<typename... IndexTypes> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& coeffRef(Index firstIndex, IndexTypes... otherIndices)
+ {
+ const std::size_t num_indices = (sizeof...(otherIndices) + 1);
+ const array<Index, num_indices> indices{{firstIndex, otherIndices...}};
+ return coeffRef(indices);
+ }
+#else
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar operator()(Index i0, Index i1) const
+ {
+ array<Index, 2> indices;
+ indices[0] = i0;
+ indices[1] = i1;
+ return coeff(indices);
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar operator()(Index i0, Index i1, Index i2) const
+ {
+ array<Index, 3> indices;
+ indices[0] = i0;
+ indices[1] = i1;
+ indices[2] = i2;
+ return coeff(indices);
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar operator()(Index i0, Index i1, Index i2, Index i3) const
+ {
+ array<Index, 4> indices;
+ indices[0] = i0;
+ indices[1] = i1;
+ indices[2] = i2;
+ indices[3] = i3;
+ return coeff(indices);
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const
+ {
+ array<Index, 5> indices;
+ indices[0] = i0;
+ indices[1] = i1;
+ indices[2] = i2;
+ indices[3] = i3;
+ indices[4] = i4;
+ return coeff(indices);
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& coeffRef(Index i0, Index i1)
+ {
+ array<Index, 2> indices;
+ indices[0] = i0;
+ indices[1] = i1;
+ return coeffRef(indices);
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& coeffRef(Index i0, Index i1, Index i2)
+ {
+ array<Index, 3> indices;
+ indices[0] = i0;
+ indices[1] = i1;
+ indices[2] = i2;
+ return coeffRef(indices);
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3)
+ {
+ array<Index, 4> indices;
+ indices[0] = i0;
+ indices[1] = i1;
+ indices[2] = i2;
+ indices[3] = i3;
+ return coeffRef(indices);
+ }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& coeffRef(Index i0, Index i1, Index i2, Index i3, Index i4)
+ {
+ array<Index, 5> indices;
+ indices[0] = i0;
+ indices[1] = i1;
+ indices[2] = i2;
+ indices[3] = i3;
+ indices[4] = i4;
+ return coeffRef(indices);
+ }
+#endif
+
+ template <std::size_t NumIndices> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar coeff(const array<Index, NumIndices>& indices) const
+ {
+ const Dimensions& dims = this->dimensions();
+ Index index = 0;
+ if (PlainObjectType::Options & RowMajor) {
+ index += indices[0];
+ for (size_t i = 1; i < NumIndices; ++i) {
+ index = index * dims[i] + indices[i];
+ }
+ } else {
+ index += indices[NumIndices-1];
+ for (int i = NumIndices-2; i >= 0; --i) {
+ index = index * dims[i] + indices[i];
+ }
+ }
+ return m_evaluator->coeff(index);
+ }
+ template <std::size_t NumIndices> EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices)
+ {
+ const Dimensions& dims = this->dimensions();
+ Index index = 0;
+ if (PlainObjectType::Options & RowMajor) {
+ index += indices[0];
+ for (size_t i = 1; i < NumIndices; ++i) {
+ index = index * dims[i] + indices[i];
+ }
+ } else {
+ index += indices[NumIndices-1];
+ for (int i = NumIndices-2; i >= 0; --i) {
+ index = index * dims[i] + indices[i];
+ }
+ }
+ return m_evaluator->coeffRef(index);
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
+ {
+ return m_evaluator->coeff(index);
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
+ {
+ return m_evaluator->coeffRef(index);
+ }
+
+ private:
+ EIGEN_STRONG_INLINE void unrefEvaluator() {
+ if (m_evaluator) {
+ m_evaluator->decrRefCount();
+ if (m_evaluator->refCount() == 0) {
+ delete m_evaluator;
+ }
+ }
+ }
+
+ internal::TensorLazyBaseEvaluator<Dimensions, Scalar>* m_evaluator;
+};
+
+
+// evaluator for rvalues
+template<typename Derived, typename Device>
+struct TensorEvaluator<const TensorRef<Derived>, Device>
+{
+ typedef typename Derived::Index Index;
+ typedef typename Derived::Scalar Scalar;
+ typedef typename Derived::Scalar CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ typedef typename Derived::Dimensions Dimensions;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = false,
+ Layout = TensorRef<Derived>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const TensorRef<Derived>& m, const Device&)
+ : m_ref(m)
+ { }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_ref.dimensions(); }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
+ return m_ref.coeff(index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) {
+ return m_ref.coeffRef(index);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return m_ref.data(); }
+
+ protected:
+ TensorRef<Derived> m_ref;
+};
+
+
+// evaluator for lvalues
+template<typename Derived, typename Device>
+struct TensorEvaluator<TensorRef<Derived>, Device> : public TensorEvaluator<const TensorRef<Derived>, Device>
+{
+ typedef typename Derived::Index Index;
+ typedef typename Derived::Scalar Scalar;
+ typedef typename Derived::Scalar CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ typedef typename Derived::Dimensions Dimensions;
+
+ typedef TensorEvaluator<const TensorRef<Derived>, Device> Base;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = false,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(TensorRef<Derived>& m, const Device& d) : Base(m, d)
+ { }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) {
+ return this->m_ref.coeffRef(index);
+ }
+};
+
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_REF_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h b/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h
new file mode 100644
index 000000000..14e392e36
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h
@@ -0,0 +1,288 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com>
+// Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
+#define EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
+namespace Eigen {
+
+/** \class TensorReverse
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor reverse elements class.
+ *
+ */
+namespace internal {
+template<typename ReverseDimensions, typename XprType>
+struct traits<TensorReverseOp<ReverseDimensions,
+ XprType> > : public traits<XprType>
+{
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename ReverseDimensions, typename XprType>
+struct eval<TensorReverseOp<ReverseDimensions, XprType>, Eigen::Dense>
+{
+ typedef const TensorReverseOp<ReverseDimensions, XprType>& type;
+};
+
+template<typename ReverseDimensions, typename XprType>
+struct nested<TensorReverseOp<ReverseDimensions, XprType>, 1,
+ typename eval<TensorReverseOp<ReverseDimensions, XprType> >::type>
+{
+ typedef TensorReverseOp<ReverseDimensions, XprType> type;
+};
+
+} // end namespace internal
+
+template<typename ReverseDimensions, typename XprType>
+class TensorReverseOp : public TensorBase<TensorReverseOp<ReverseDimensions,
+ XprType>, WriteAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorReverseOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorReverseOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorReverseOp>::StorageKind
+ StorageKind;
+ typedef typename Eigen::internal::traits<TensorReverseOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReverseOp(
+ const XprType& expr, const ReverseDimensions& reverse_dims)
+ : m_xpr(expr), m_reverse_dims(reverse_dims) { }
+
+ EIGEN_DEVICE_FUNC
+ const ReverseDimensions& reverse() const { return m_reverse_dims; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorReverseOp& operator = (const TensorReverseOp& other)
+ {
+ typedef TensorAssignOp<TensorReverseOp, const TensorReverseOp> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorReverseOp& operator = (const OtherDerived& other)
+ {
+ typedef TensorAssignOp<TensorReverseOp, const OtherDerived> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const ReverseDimensions m_reverse_dims;
+};
+
+// Eval as rvalue
+template<typename ReverseDimensions, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, Device>
+{
+ typedef TensorReverseOp<ReverseDimensions, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumDims = internal::array_size<ReverseDimensions>::value;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op,
+ const Device& device)
+ : m_impl(op.expression(), device), m_reverse(op.reverse())
+ {
+ // Reversing a scalar isn't supported yet. It would be a no-op anyway.
+ EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
+
+ // Compute strides
+ m_dimensions = m_impl.dimensions();
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_strides[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ m_strides[i] = m_strides[i-1] * m_dimensions[i-1];
+ }
+ } else {
+ m_strides[NumDims-1] = 1;
+ for (int i = NumDims - 2; i >= 0; --i) {
+ m_strides[i] = m_strides[i+1] * m_dimensions[i+1];
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index reverseIndex(
+ Index index) const {
+ eigen_assert(index < dimensions().TotalSize());
+ Index inputIndex = 0;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ Index idx = index / m_strides[i];
+ index -= idx * m_strides[i];
+ if (m_reverse[i]) {
+ idx = m_dimensions[i] - idx - 1;
+ }
+ inputIndex += idx * m_strides[i] ;
+ }
+ if (m_reverse[0]) {
+ inputIndex += (m_dimensions[0] - index - 1);
+ } else {
+ inputIndex += index;
+ }
+ } else {
+ for (int i = 0; i < NumDims - 1; ++i) {
+ Index idx = index / m_strides[i];
+ index -= idx * m_strides[i];
+ if (m_reverse[i]) {
+ idx = m_dimensions[i] - idx - 1;
+ }
+ inputIndex += idx * m_strides[i] ;
+ }
+ if (m_reverse[NumDims-1]) {
+ inputIndex += (m_dimensions[NumDims-1] - index - 1);
+ } else {
+ inputIndex += index;
+ }
+ }
+ return inputIndex;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(
+ Index index) const {
+ return m_impl.coeff(reverseIndex(index));
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ PacketReturnType packet(Index index) const
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
+
+ // TODO(ndjaitly): write a better packing routine that uses
+ // local structure.
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type
+ values[PacketSize];
+ for (int i = 0; i < PacketSize; ++i) {
+ values[i] = coeff(index+i);
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() +
+ 2 * TensorOpCost::MulCost<Index>() +
+ TensorOpCost::DivCost<Index>());
+ for (int i = 0; i < NumDims; ++i) {
+ if (m_reverse[i]) {
+ compute_cost += 2 * TensorOpCost::AddCost<Index>();
+ }
+ }
+ return m_impl.costPerCoeff(vectorized) +
+ TensorOpCost(0, 0, compute_cost, false /* vectorized */, PacketSize);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ protected:
+ Dimensions m_dimensions;
+ array<Index, NumDims> m_strides;
+ TensorEvaluator<ArgType, Device> m_impl;
+ ReverseDimensions m_reverse;
+};
+
+// Eval as lvalue
+
+template <typename ReverseDimensions, typename ArgType, typename Device>
+struct TensorEvaluator<TensorReverseOp<ReverseDimensions, ArgType>, Device>
+ : public TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>,
+ Device> {
+ typedef TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>,
+ Device> Base;
+ typedef TensorReverseOp<ReverseDimensions, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumDims = internal::array_size<ReverseDimensions>::value;
+ typedef DSizes<Index, NumDims> Dimensions;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op,
+ const Device& device)
+ : Base(op, device) {}
+
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const Dimensions& dimensions() const { return this->m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) {
+ return this->m_impl.coeffRef(this->reverseIndex(index));
+ }
+
+ template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ void writePacket(Index index, const PacketReturnType& x) {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
+
+ // This code is pilfered from TensorMorphing.h
+ EIGEN_ALIGN_MAX CoeffReturnType values[PacketSize];
+ internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
+ for (int i = 0; i < PacketSize; ++i) {
+ this->coeffRef(index+i) = values[i];
+ }
+ }
+
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h b/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h
new file mode 100644
index 000000000..8501466ce
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h
@@ -0,0 +1,287 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016 Igor Babuschkin <igor@babuschk.in>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_SCAN_H
+#define EIGEN_CXX11_TENSOR_TENSOR_SCAN_H
+
+namespace Eigen {
+
+namespace internal {
+
+template <typename Op, typename XprType>
+struct traits<TensorScanOp<Op, XprType> >
+ : public traits<XprType> {
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename Op, typename XprType>
+struct eval<TensorScanOp<Op, XprType>, Eigen::Dense>
+{
+ typedef const TensorScanOp<Op, XprType>& type;
+};
+
+template<typename Op, typename XprType>
+struct nested<TensorScanOp<Op, XprType>, 1,
+ typename eval<TensorScanOp<Op, XprType> >::type>
+{
+ typedef TensorScanOp<Op, XprType> type;
+};
+} // end namespace internal
+
+/** \class TensorScan
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor scan class.
+ */
+template <typename Op, typename XprType>
+class TensorScanOp
+ : public TensorBase<TensorScanOp<Op, XprType>, ReadOnlyAccessors> {
+public:
+ typedef typename Eigen::internal::traits<TensorScanOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorScanOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorScanOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorScanOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorScanOp(
+ const XprType& expr, const Index& axis, bool exclusive = false, const Op& op = Op())
+ : m_expr(expr), m_axis(axis), m_accumulator(op), m_exclusive(exclusive) {}
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const Index axis() const { return m_axis; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const XprType& expression() const { return m_expr; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const Op accumulator() const { return m_accumulator; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ bool exclusive() const { return m_exclusive; }
+
+protected:
+ typename XprType::Nested m_expr;
+ const Index m_axis;
+ const Op m_accumulator;
+ const bool m_exclusive;
+};
+
+template <typename Self, typename Reducer, typename Device>
+struct ScanLauncher;
+
+// Eval as rvalue
+template <typename Op, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> {
+
+ typedef TensorScanOp<Op, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ typedef TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> Self;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1),
+ BlockAccess = false,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false,
+ RawAccess = true
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op,
+ const Device& device)
+ : m_impl(op.expression(), device),
+ m_device(device),
+ m_exclusive(op.exclusive()),
+ m_accumulator(op.accumulator()),
+ m_size(m_impl.dimensions()[op.axis()]),
+ m_stride(1),
+ m_output(NULL) {
+
+ // Accumulating a scalar isn't supported.
+ EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ eigen_assert(op.axis() >= 0 && op.axis() < NumDims);
+
+ // Compute stride of scan axis
+ const Dimensions& dims = m_impl.dimensions();
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = 0; i < op.axis(); ++i) {
+ m_stride = m_stride * dims[i];
+ }
+ } else {
+ for (int i = NumDims - 1; i > op.axis(); --i) {
+ m_stride = m_stride * dims[i];
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
+ return m_impl.dimensions();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& stride() const {
+ return m_stride;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& size() const {
+ return m_size;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Op& accumulator() const {
+ return m_accumulator;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool exclusive() const {
+ return m_exclusive;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& inner() const {
+ return m_impl;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const {
+ return m_device;
+ }
+
+ EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ ScanLauncher<Self, Op, Device> launcher;
+ if (data) {
+ launcher(*this, data);
+ return false;
+ }
+
+ const Index total_size = internal::array_prod(dimensions());
+ m_output = static_cast<CoeffReturnType*>(m_device.allocate(total_size * sizeof(Scalar)));
+ launcher(*this, m_output);
+ return true;
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const {
+ return internal::ploadt<PacketReturnType, LoadMode>(m_output + index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const
+ {
+ return m_output;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ return m_output[index];
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const {
+ return TensorOpCost(sizeof(CoeffReturnType), 0, 0);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ if (m_output != NULL) {
+ m_device.deallocate(m_output);
+ m_output = NULL;
+ }
+ m_impl.cleanup();
+ }
+
+protected:
+ TensorEvaluator<ArgType, Device> m_impl;
+ const Device& m_device;
+ const bool m_exclusive;
+ Op m_accumulator;
+ const Index m_size;
+ Index m_stride;
+ CoeffReturnType* m_output;
+};
+
+// CPU implementation of scan
+// TODO(ibab) This single-threaded implementation should be parallelized,
+// at least by running multiple scans at the same time.
+template <typename Self, typename Reducer, typename Device>
+struct ScanLauncher {
+ void operator()(Self& self, typename Self::CoeffReturnType *data) {
+ Index total_size = internal::array_prod(self.dimensions());
+
+ // We fix the index along the scan axis to 0 and perform a
+ // scan per remaining entry. The iteration is split into two nested
+ // loops to avoid an integer division by keeping track of each idx1 and idx2.
+ for (Index idx1 = 0; idx1 < total_size; idx1 += self.stride() * self.size()) {
+ for (Index idx2 = 0; idx2 < self.stride(); idx2++) {
+ // Calculate the starting offset for the scan
+ Index offset = idx1 + idx2;
+
+ // Compute the scan along the axis, starting at the calculated offset
+ typename Self::CoeffReturnType accum = self.accumulator().initialize();
+ for (Index idx3 = 0; idx3 < self.size(); idx3++) {
+ Index curr = offset + idx3 * self.stride();
+
+ if (self.exclusive()) {
+ data[curr] = self.accumulator().finalize(accum);
+ self.accumulator().reduce(self.inner().coeff(curr), &accum);
+ } else {
+ self.accumulator().reduce(self.inner().coeff(curr), &accum);
+ data[curr] = self.accumulator().finalize(accum);
+ }
+ }
+ }
+ }
+ }
+};
+
+#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
+
+// GPU implementation of scan
+// TODO(ibab) This placeholder implementation performs multiple scans in
+// parallel, but it would be better to use a parallel scan algorithm and
+// optimize memory access.
+template <typename Self, typename Reducer>
+__global__ void ScanKernel(Self self, Index total_size, typename Self::CoeffReturnType* data) {
+ // Compute offset as in the CPU version
+ Index val = threadIdx.x + blockIdx.x * blockDim.x;
+ Index offset = (val / self.stride()) * self.stride() * self.size() + val % self.stride();
+
+ if (offset + (self.size() - 1) * self.stride() < total_size) {
+ // Compute the scan along the axis, starting at the calculated offset
+ typename Self::CoeffReturnType accum = self.accumulator().initialize();
+ for (Index idx = 0; idx < self.size(); idx++) {
+ Index curr = offset + idx * self.stride();
+ if (self.exclusive()) {
+ data[curr] = self.accumulator().finalize(accum);
+ self.accumulator().reduce(self.inner().coeff(curr), &accum);
+ } else {
+ self.accumulator().reduce(self.inner().coeff(curr), &accum);
+ data[curr] = self.accumulator().finalize(accum);
+ }
+ }
+ }
+ __syncthreads();
+
+}
+
+template <typename Self, typename Reducer>
+struct ScanLauncher<Self, Reducer, GpuDevice> {
+ void operator()(const Self& self, typename Self::CoeffReturnType* data) {
+ Index total_size = internal::array_prod(self.dimensions());
+ Index num_blocks = (total_size / self.size() + 63) / 64;
+ Index block_size = 64;
+ LAUNCH_CUDA_KERNEL((ScanKernel<Self, Reducer>), num_blocks, block_size, 0, self.device(), self, total_size, data);
+ }
+};
+#endif // EIGEN_USE_GPU && __CUDACC__
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_SCAN_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h b/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h
new file mode 100644
index 000000000..113c060e3
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h
@@ -0,0 +1,264 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H
+#define EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H
+
+namespace Eigen {
+
+/** \class TensorShuffling
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor shuffling class.
+ *
+ *
+ */
+namespace internal {
+template<typename Shuffle, typename XprType>
+struct traits<TensorShufflingOp<Shuffle, XprType> > : public traits<XprType>
+{
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename Shuffle, typename XprType>
+struct eval<TensorShufflingOp<Shuffle, XprType>, Eigen::Dense>
+{
+ typedef const TensorShufflingOp<Shuffle, XprType>& type;
+};
+
+template<typename Shuffle, typename XprType>
+struct nested<TensorShufflingOp<Shuffle, XprType>, 1, typename eval<TensorShufflingOp<Shuffle, XprType> >::type>
+{
+ typedef TensorShufflingOp<Shuffle, XprType> type;
+};
+
+} // end namespace internal
+
+
+
+template<typename Shuffle, typename XprType>
+class TensorShufflingOp : public TensorBase<TensorShufflingOp<Shuffle, XprType> >
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorShufflingOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorShufflingOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorShufflingOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorShufflingOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorShufflingOp(const XprType& expr, const Shuffle& shuffle)
+ : m_xpr(expr), m_shuffle(shuffle) {}
+
+ EIGEN_DEVICE_FUNC
+ const Shuffle& shufflePermutation() const { return m_shuffle; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorShufflingOp& operator = (const TensorShufflingOp& other)
+ {
+ typedef TensorAssignOp<TensorShufflingOp, const TensorShufflingOp> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorShufflingOp& operator = (const OtherDerived& other)
+ {
+ typedef TensorAssignOp<TensorShufflingOp, const OtherDerived> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const Shuffle m_shuffle;
+};
+
+
+// Eval as rvalue
+template<typename Shuffle, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device>
+{
+ typedef TensorShufflingOp<Shuffle, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = (internal::packet_traits<Scalar>::size > 1),
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device)
+ {
+ const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
+ const Shuffle& shuffle = op.shufflePermutation();
+ for (int i = 0; i < NumDims; ++i) {
+ m_dimensions[i] = input_dims[shuffle[i]];
+ }
+
+ array<Index, NumDims> inputStrides;
+
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ inputStrides[0] = 1;
+ m_outputStrides[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ inputStrides[i] = inputStrides[i - 1] * input_dims[i - 1];
+ m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
+ }
+ } else {
+ inputStrides[NumDims - 1] = 1;
+ m_outputStrides[NumDims - 1] = 1;
+ for (int i = NumDims - 2; i >= 0; --i) {
+ inputStrides[i] = inputStrides[i + 1] * input_dims[i + 1];
+ m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
+ }
+ }
+
+ for (int i = 0; i < NumDims; ++i) {
+ m_inputStrides[i] = inputStrides[shuffle[i]];
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ return m_impl.coeff(srcCoeff(index));
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
+
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
+ for (int i = 0; i < PacketSize; ++i) {
+ values[i] = coeff(index+i);
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ const double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() +
+ 2 * TensorOpCost::MulCost<Index>() +
+ TensorOpCost::DivCost<Index>());
+ return m_impl.costPerCoeff(vectorized) +
+ TensorOpCost(0, 0, compute_cost, false /* vectorized */, PacketSize);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ protected:
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const {
+ Index inputIndex = 0;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ const Index idx = index / m_outputStrides[i];
+ inputIndex += idx * m_inputStrides[i];
+ index -= idx * m_outputStrides[i];
+ }
+ return inputIndex + index * m_inputStrides[0];
+ } else {
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const Index idx = index / m_outputStrides[i];
+ inputIndex += idx * m_inputStrides[i];
+ index -= idx * m_outputStrides[i];
+ }
+ return inputIndex + index * m_inputStrides[NumDims - 1];
+ }
+ }
+
+ Dimensions m_dimensions;
+ array<Index, NumDims> m_outputStrides;
+ array<Index, NumDims> m_inputStrides;
+ TensorEvaluator<ArgType, Device> m_impl;
+};
+
+
+// Eval as lvalue
+template<typename Shuffle, typename ArgType, typename Device>
+struct TensorEvaluator<TensorShufflingOp<Shuffle, ArgType>, Device>
+ : public TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device>
+{
+ typedef TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device> Base;
+
+ typedef TensorShufflingOp<Shuffle, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = (internal::packet_traits<Scalar>::size > 1),
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : Base(op, device)
+ { }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
+ {
+ return this->m_impl.coeffRef(this->srcCoeff(index));
+ }
+
+ template <int StoreMode> EIGEN_STRONG_INLINE
+ void writePacket(Index index, const PacketReturnType& x)
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
+ internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
+ for (int i = 0; i < PacketSize; ++i) {
+ this->coeffRef(index+i) = values[i];
+ }
+ }
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h b/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h
new file mode 100644
index 000000000..2854a4a17
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h
@@ -0,0 +1,146 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
+// Copyright (C) 2014-2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSORSTORAGE_H
+#define EIGEN_CXX11_TENSOR_TENSORSTORAGE_H
+
+#ifdef EIGEN_TENSOR_STORAGE_CTOR_PLUGIN
+ #define EIGEN_INTERNAL_TENSOR_STORAGE_CTOR_PLUGIN EIGEN_TENSOR_STORAGE_CTOR_PLUGIN;
+#else
+ #define EIGEN_INTERNAL_TENSOR_STORAGE_CTOR_PLUGIN
+#endif
+
+namespace Eigen {
+
+/** \internal
+ *
+ * \class TensorStorage
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Stores the data of a tensor
+ *
+ * This class stores the data of fixed-size, dynamic-size or mixed tensors
+ * in a way as compact as possible.
+ *
+ * \sa Tensor
+ */
+template<typename T, typename Dimensions, int Options_> class TensorStorage;
+
+
+// Pure fixed-size storage
+template<typename T, int Options_, typename FixedDimensions>
+class TensorStorage<T, FixedDimensions, Options_>
+{
+ private:
+ static const std::size_t Size = FixedDimensions::total_size;
+
+ // Allocate an array of size at least one to prevent compiler warnings.
+ static const std::size_t MinSize = max_n_1<Size>::size;
+ EIGEN_ALIGN_MAX T m_data[MinSize];
+
+ FixedDimensions m_dimensions;
+
+ public:
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorStorage() {
+ }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE T *data() { return m_data; }
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const T *data() const { return m_data; }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const FixedDimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE DenseIndex size() const { return m_dimensions.TotalSize(); }
+};
+
+
+// pure dynamic
+template<typename T, int Options_, typename IndexType, int NumIndices_>
+class TensorStorage<T, DSizes<IndexType, NumIndices_>, Options_>
+{
+ public:
+ typedef IndexType Index;
+ typedef DSizes<IndexType, NumIndices_> Dimensions;
+ typedef TensorStorage<T, DSizes<IndexType, NumIndices_>, Options_> Self;
+
+ EIGEN_DEVICE_FUNC TensorStorage() : m_data(0), m_dimensions() {
+ if (NumIndices_ == 0) {
+ m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(1);
+ }
+ }
+ EIGEN_DEVICE_FUNC TensorStorage(internal::constructor_without_unaligned_array_assert)
+ : m_data(0), m_dimensions(internal::template repeat<NumIndices_, Index>(0)) {}
+ EIGEN_DEVICE_FUNC TensorStorage(Index size, const array<Index, NumIndices_>& dimensions)
+ : m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size)), m_dimensions(dimensions)
+ { EIGEN_INTERNAL_TENSOR_STORAGE_CTOR_PLUGIN }
+
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template <typename... DenseIndex>
+ EIGEN_DEVICE_FUNC TensorStorage(DenseIndex... indices) : m_dimensions(indices...) {
+ m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(internal::array_prod(m_dimensions));
+ }
+#endif
+
+ EIGEN_DEVICE_FUNC TensorStorage(const Self& other)
+ : m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(internal::array_prod(other.m_dimensions)))
+ , m_dimensions(other.m_dimensions)
+ {
+ internal::smart_copy(other.m_data, other.m_data+internal::array_prod(other.m_dimensions), m_data);
+ }
+ EIGEN_DEVICE_FUNC Self& operator=(const Self& other)
+ {
+ if (this != &other) {
+ Self tmp(other);
+ this->swap(tmp);
+ }
+ return *this;
+ }
+
+ EIGEN_DEVICE_FUNC ~TensorStorage() { internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, internal::array_prod(m_dimensions)); }
+ EIGEN_DEVICE_FUNC void swap(Self& other)
+ { numext::swap(m_data,other.m_data); numext::swap(m_dimensions,other.m_dimensions); }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {return m_dimensions;}
+
+ EIGEN_DEVICE_FUNC void resize(Index size, const array<Index, NumIndices_>& nbDimensions)
+ {
+ const Index currentSz = internal::array_prod(m_dimensions);
+ if(size != currentSz)
+ {
+ internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, currentSz);
+ if (size)
+ m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size);
+ else if (NumIndices_ == 0) {
+ m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(1);
+ }
+ else
+ m_data = 0;
+ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
+ }
+ m_dimensions = nbDimensions;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T *data() { return m_data; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T *data() const { return m_data; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_dimensions.TotalSize(); }
+
+ private:
+ T *m_data;
+ Dimensions m_dimensions;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSORSTORAGE_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h b/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h
new file mode 100644
index 000000000..6c35bfdb6
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h
@@ -0,0 +1,338 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H
+#define EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H
+
+namespace Eigen {
+
+/** \class TensorStriding
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor striding class.
+ *
+ *
+ */
+namespace internal {
+template<typename Strides, typename XprType>
+struct traits<TensorStridingOp<Strides, XprType> > : public traits<XprType>
+{
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename Strides, typename XprType>
+struct eval<TensorStridingOp<Strides, XprType>, Eigen::Dense>
+{
+ typedef const TensorStridingOp<Strides, XprType>& type;
+};
+
+template<typename Strides, typename XprType>
+struct nested<TensorStridingOp<Strides, XprType>, 1, typename eval<TensorStridingOp<Strides, XprType> >::type>
+{
+ typedef TensorStridingOp<Strides, XprType> type;
+};
+
+} // end namespace internal
+
+
+
+template<typename Strides, typename XprType>
+class TensorStridingOp : public TensorBase<TensorStridingOp<Strides, XprType> >
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorStridingOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorStridingOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorStridingOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorStridingOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingOp(const XprType& expr, const Strides& dims)
+ : m_xpr(expr), m_dims(dims) {}
+
+ EIGEN_DEVICE_FUNC
+ const Strides& strides() const { return m_dims; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorStridingOp& operator = (const TensorStridingOp& other)
+ {
+ typedef TensorAssignOp<TensorStridingOp, const TensorStridingOp> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorStridingOp& operator = (const OtherDerived& other)
+ {
+ typedef TensorAssignOp<TensorStridingOp, const OtherDerived> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const Strides m_dims;
+};
+
+
+// Eval as rvalue
+template<typename Strides, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device>
+{
+ typedef TensorStridingOp<Strides, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device)
+ {
+ m_dimensions = m_impl.dimensions();
+ for (int i = 0; i < NumDims; ++i) {
+ m_dimensions[i] = ceilf(static_cast<float>(m_dimensions[i]) / op.strides()[i]);
+ }
+
+ const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_outputStrides[0] = 1;
+ m_inputStrides[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
+ m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
+ m_inputStrides[i-1] *= op.strides()[i-1];
+ }
+ m_inputStrides[NumDims-1] *= op.strides()[NumDims-1];
+ } else { // RowMajor
+ m_outputStrides[NumDims-1] = 1;
+ m_inputStrides[NumDims-1] = 1;
+ for (int i = NumDims - 2; i >= 0; --i) {
+ m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
+ m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
+ m_inputStrides[i+1] *= op.strides()[i+1];
+ }
+ m_inputStrides[0] *= op.strides()[0];
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ return m_impl.coeff(srcCoeff(index));
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
+
+ Index inputIndices[] = {0, 0};
+ Index indices[] = {index, index + PacketSize - 1};
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ const Index idx0 = indices[0] / m_outputStrides[i];
+ const Index idx1 = indices[1] / m_outputStrides[i];
+ inputIndices[0] += idx0 * m_inputStrides[i];
+ inputIndices[1] += idx1 * m_inputStrides[i];
+ indices[0] -= idx0 * m_outputStrides[i];
+ indices[1] -= idx1 * m_outputStrides[i];
+ }
+ inputIndices[0] += indices[0] * m_inputStrides[0];
+ inputIndices[1] += indices[1] * m_inputStrides[0];
+ } else { // RowMajor
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const Index idx0 = indices[0] / m_outputStrides[i];
+ const Index idx1 = indices[1] / m_outputStrides[i];
+ inputIndices[0] += idx0 * m_inputStrides[i];
+ inputIndices[1] += idx1 * m_inputStrides[i];
+ indices[0] -= idx0 * m_outputStrides[i];
+ indices[1] -= idx1 * m_outputStrides[i];
+ }
+ inputIndices[0] += indices[0] * m_inputStrides[NumDims-1];
+ inputIndices[1] += indices[1] * m_inputStrides[NumDims-1];
+ }
+ if (inputIndices[1] - inputIndices[0] == PacketSize - 1) {
+ PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
+ return rslt;
+ }
+ else {
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
+ values[0] = m_impl.coeff(inputIndices[0]);
+ values[PacketSize-1] = m_impl.coeff(inputIndices[1]);
+ for (int i = 1; i < PacketSize-1; ++i) {
+ values[i] = coeff(index+i);
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
+ double compute_cost = (NumDims - 1) * (TensorOpCost::AddCost<Index>() +
+ TensorOpCost::MulCost<Index>() +
+ TensorOpCost::DivCost<Index>()) +
+ TensorOpCost::MulCost<Index>();
+ if (vectorized) {
+ compute_cost *= 2; // packet() computes two indices
+ }
+ const int innerDim = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? 0 : (NumDims - 1);
+ return m_impl.costPerCoeff(vectorized && m_inputStrides[innerDim] == 1) +
+ // Computation is not vectorized per se, but it is done once per packet.
+ TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ protected:
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
+ {
+ Index inputIndex = 0;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ const Index idx = index / m_outputStrides[i];
+ inputIndex += idx * m_inputStrides[i];
+ index -= idx * m_outputStrides[i];
+ }
+ inputIndex += index * m_inputStrides[0];
+ } else { // RowMajor
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const Index idx = index / m_outputStrides[i];
+ inputIndex += idx * m_inputStrides[i];
+ index -= idx * m_outputStrides[i];
+ }
+ inputIndex += index * m_inputStrides[NumDims-1];
+ }
+ return inputIndex;
+ }
+
+ Dimensions m_dimensions;
+ array<Index, NumDims> m_outputStrides;
+ array<Index, NumDims> m_inputStrides;
+ TensorEvaluator<ArgType, Device> m_impl;
+};
+
+
+// Eval as lvalue
+template<typename Strides, typename ArgType, typename Device>
+struct TensorEvaluator<TensorStridingOp<Strides, ArgType>, Device>
+ : public TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device>
+{
+ typedef TensorStridingOp<Strides, ArgType> XprType;
+ typedef TensorEvaluator<const XprType, Device> Base;
+ // typedef typename XprType::Index Index;
+ static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
+ // typedef DSizes<Index, NumDims> Dimensions;
+
+ enum {
+ IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : Base(op, device) { }
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
+ {
+ return this->m_impl.coeffRef(this->srcCoeff(index));
+ }
+
+ template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ void writePacket(Index index, const PacketReturnType& x)
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+PacketSize-1 < this->dimensions().TotalSize());
+
+ Index inputIndices[] = {0, 0};
+ Index indices[] = {index, index + PacketSize - 1};
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ const Index idx0 = indices[0] / this->m_outputStrides[i];
+ const Index idx1 = indices[1] / this->m_outputStrides[i];
+ inputIndices[0] += idx0 * this->m_inputStrides[i];
+ inputIndices[1] += idx1 * this->m_inputStrides[i];
+ indices[0] -= idx0 * this->m_outputStrides[i];
+ indices[1] -= idx1 * this->m_outputStrides[i];
+ }
+ inputIndices[0] += indices[0] * this->m_inputStrides[0];
+ inputIndices[1] += indices[1] * this->m_inputStrides[0];
+ } else { // RowMajor
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const Index idx0 = indices[0] / this->m_outputStrides[i];
+ const Index idx1 = indices[1] / this->m_outputStrides[i];
+ inputIndices[0] += idx0 * this->m_inputStrides[i];
+ inputIndices[1] += idx1 * this->m_inputStrides[i];
+ indices[0] -= idx0 * this->m_outputStrides[i];
+ indices[1] -= idx1 * this->m_outputStrides[i];
+ }
+ inputIndices[0] += indices[0] * this->m_inputStrides[NumDims-1];
+ inputIndices[1] += indices[1] * this->m_inputStrides[NumDims-1];
+ }
+ if (inputIndices[1] - inputIndices[0] == PacketSize - 1) {
+ this->m_impl.template writePacket<Unaligned>(inputIndices[0], x);
+ }
+ else {
+ EIGEN_ALIGN_MAX Scalar values[PacketSize];
+ internal::pstore<Scalar, PacketReturnType>(values, x);
+ this->m_impl.coeffRef(inputIndices[0]) = values[0];
+ this->m_impl.coeffRef(inputIndices[1]) = values[PacketSize-1];
+ for (int i = 1; i < PacketSize-1; ++i) {
+ this->coeffRef(index+i) = values[i];
+ }
+ }
+ }
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorSycl.h b/unsupported/Eigen/CXX11/src/Tensor/TensorSycl.h
new file mode 100644
index 000000000..bb8800d45
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorSycl.h
@@ -0,0 +1,82 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: eigen@codeplay.com
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+// General include header of SYCL target for Tensor Module
+#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_H
+#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_H
+
+#ifdef EIGEN_USE_SYCL
+
+// global pointer to set different attribute state for a class
+template <class T>
+struct MakeGlobalPointer {
+ typedef typename cl::sycl::global_ptr<T>::pointer_t Type;
+};
+
+// global pointer to set different attribute state for a class
+template <class T>
+struct MakeLocalPointer {
+ typedef typename cl::sycl::local_ptr<T>::pointer_t Type;
+};
+
+
+namespace Eigen {
+namespace TensorSycl {
+namespace internal {
+
+/// This struct is used for special expression nodes with no operations (for example assign and selectOP).
+ struct NoOP;
+
+template<bool IsConst, typename T> struct GetType{
+ typedef const T Type;
+};
+template<typename T> struct GetType<false, T>{
+ typedef T Type;
+};
+
+}
+}
+}
+
+// tuple construction
+#include "TensorSyclTuple.h"
+
+// counting number of leaf at compile time
+#include "TensorSyclLeafCount.h"
+
+// The index PlaceHolder takes the actual expression and replaces the actual
+// data on it with the place holder. It uses the same pre-order expression tree
+// traverse as the leaf count in order to give the right access number to each
+// node in the expression
+#include "TensorSyclPlaceHolderExpr.h"
+
+// creation of an accessor tuple from a tuple of SYCL buffers
+#include "TensorSyclExtractAccessor.h"
+
+// this is used to change the address space type in tensor map for GPU
+#include "TensorSyclConvertToDeviceExpression.h"
+
+// this is used to extract the functors
+#include "TensorSyclExtractFunctors.h"
+
+// this is used to create tensormap on the device
+// this is used to construct the expression on the device
+#include "TensorSyclExprConstructor.h"
+
+/// this is used for extracting tensor reduction
+#include "TensorReductionSycl.h"
+
+// kernel execution using fusion
+#include "TensorSyclRun.h"
+
+#endif // end of EIGEN_USE_SYCL
+#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclConvertToDeviceExpression.h b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclConvertToDeviceExpression.h
new file mode 100644
index 000000000..8729c86ee
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclConvertToDeviceExpression.h
@@ -0,0 +1,121 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+/*****************************************************************
+ * TensorSyclConvertToDeviceExpression.h
+ *
+ * \brief:
+ * Conversion from host pointer to device pointer
+ * inside leaf nodes of the expression.
+ *
+*****************************************************************/
+
+#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_CONVERT_TO_DEVICE_EXPRESSION_HPP
+#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_CONVERT_TO_DEVICE_EXPRESSION_HPP
+
+namespace Eigen {
+namespace TensorSycl {
+namespace internal {
+
+/// \struct ConvertToDeviceExpression
+/// \brief This struct is used to convert the MakePointer in the host expression
+/// to the MakeGlobalPointer for the device expression. For the leafNodes
+/// containing the pointer. This is due to the fact that the address space of
+/// the pointer T* is different on the host and the device.
+template <typename Expr>
+struct ConvertToDeviceExpression;
+
+template<template<class...> class NonOpCategory, bool IsConst, typename... Args>
+struct NonOpConversion{
+ typedef typename GetType<IsConst, NonOpCategory<typename ConvertToDeviceExpression<Args>::Type...> >::Type Type;
+};
+
+
+template<template<class, template <class> class > class NonOpCategory, bool IsConst, typename Args>
+struct DeviceConvertor{
+ typedef typename GetType<IsConst, NonOpCategory<typename ConvertToDeviceExpression<Args>::Type, MakeGlobalPointer> >::Type Type;
+};
+
+/// specialisation of the \ref ConvertToDeviceExpression struct when the node
+/// type is TensorMap
+#define TENSORMAPCONVERT(CVQual)\
+template <typename Scalar_, int Options_, int Options2_, int NumIndices_, typename IndexType_, template <class> class MakePointer_>\
+struct ConvertToDeviceExpression<CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakePointer_> > {\
+ typedef CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakeGlobalPointer> Type;\
+};
+
+TENSORMAPCONVERT(const)
+TENSORMAPCONVERT()
+#undef TENSORMAPCONVERT
+
+/// specialisation of the \ref ConvertToDeviceExpression struct when the node
+/// type is TensorCwiseNullaryOp, TensorCwiseUnaryOp, TensorCwiseBinaryOp, TensorCwiseTernaryOp, TensorBroadcastingOp
+#define CATEGORYCONVERT(CVQual)\
+template <template<class, class...> class Category, typename OP, typename... subExprs>\
+struct ConvertToDeviceExpression<CVQual Category<OP, subExprs...> > {\
+ typedef CVQual Category<OP, typename ConvertToDeviceExpression<subExprs>::Type... > Type;\
+};
+CATEGORYCONVERT(const)
+CATEGORYCONVERT()
+#undef CATEGORYCONVERT
+
+
+/// specialisation of the \ref ConvertToDeviceExpression struct when the node
+/// type is TensorCwiseSelectOp
+#define SELECTOPCONVERT(CVQual, Res)\
+template <typename IfExpr, typename ThenExpr, typename ElseExpr>\
+struct ConvertToDeviceExpression<CVQual TensorSelectOp<IfExpr, ThenExpr, ElseExpr> >\
+: NonOpConversion<TensorSelectOp, Res, IfExpr, ThenExpr, ElseExpr> {};
+SELECTOPCONVERT(const, true)
+SELECTOPCONVERT(, false)
+#undef SELECTOPCONVERT
+
+/// specialisation of the \ref ConvertToDeviceExpression struct when the node
+/// type is const AssingOP
+#define ASSIGNCONVERT(CVQual, Res)\
+template <typename LHSExpr, typename RHSExpr>\
+struct ConvertToDeviceExpression<CVQual TensorAssignOp<LHSExpr, RHSExpr> >\
+: NonOpConversion<TensorAssignOp, Res, LHSExpr, RHSExpr>{};
+
+ASSIGNCONVERT(const, true)
+ASSIGNCONVERT(, false)
+#undef ASSIGNCONVERT
+
+/// specialisation of the \ref ConvertToDeviceExpression struct when the node
+/// type is either TensorForcedEvalOp or TensorEvalToOp
+#define KERNELBROKERCONVERT(CVQual, Res, ExprNode)\
+template <typename Expr>\
+struct ConvertToDeviceExpression<CVQual ExprNode<Expr> > \
+: DeviceConvertor<ExprNode, Res, Expr>{};
+
+KERNELBROKERCONVERT(const, true, TensorForcedEvalOp)
+KERNELBROKERCONVERT(, false, TensorForcedEvalOp)
+KERNELBROKERCONVERT(const, true, TensorEvalToOp)
+KERNELBROKERCONVERT(, false, TensorEvalToOp)
+#undef KERNELBROKERCONVERT
+
+/// specialisation of the \ref ConvertToDeviceExpression struct when the node type is TensorReductionOp
+#define KERNELBROKERCONVERTREDUCTION(CVQual)\
+template <typename OP, typename Dim, typename subExpr, template <class> class MakePointer_>\
+struct ConvertToDeviceExpression<CVQual TensorReductionOp<OP, Dim, subExpr, MakePointer_> > {\
+ typedef CVQual TensorReductionOp<OP, Dim, typename ConvertToDeviceExpression<subExpr>::Type, MakeGlobalPointer> Type;\
+};
+
+KERNELBROKERCONVERTREDUCTION(const)
+KERNELBROKERCONVERTREDUCTION()
+#undef KERNELBROKERCONVERTREDUCTION
+
+} // namespace internal
+} // namespace TensorSycl
+} // namespace Eigen
+
+#endif // UNSUPPORTED_EIGEN_CXX1
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExprConstructor.h b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExprConstructor.h
new file mode 100644
index 000000000..7ed3a3a56
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExprConstructor.h
@@ -0,0 +1,239 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+/*****************************************************************
+ * TensorSyclExprConstructor.h
+ *
+ * \brief:
+ * This file re-create an expression on the SYCL device in order
+ * to use the original tensor evaluator.
+ *
+*****************************************************************/
+
+#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXPR_CONSTRUCTOR_HPP
+#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXPR_CONSTRUCTOR_HPP
+
+namespace Eigen {
+namespace TensorSycl {
+namespace internal {
+/// this class is used by EvalToOp in order to create an lhs expression which is
+/// a pointer from an accessor on device-only buffer
+template <typename PtrType, size_t N, typename... Params>
+struct EvalToLHSConstructor {
+ PtrType expr;
+ EvalToLHSConstructor(const utility::tuple::Tuple<Params...> &t): expr((&(*(utility::tuple::get<N>(t).get_pointer())))) {}
+};
+
+/// \struct ExprConstructor is used to reconstruct the expression on the device and
+/// recreate the expression with MakeGlobalPointer containing the device address
+/// space for the TensorMap pointers used in eval function.
+/// It receives the original expression type, the functor of the node, the tuple
+/// of accessors, and the device expression type to re-instantiate the
+/// expression tree for the device
+template <typename OrigExpr, typename IndexExpr, typename... Params>
+struct ExprConstructor;
+
+/// specialisation of the \ref ExprConstructor struct when the node type is
+/// TensorMap
+#define TENSORMAP(CVQual)\
+template <typename Scalar_, int Options_, int Options2_, int Options3_, int NumIndices_, typename IndexType_,\
+template <class> class MakePointer_, size_t N, typename... Params>\
+struct ExprConstructor< CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakeGlobalPointer>,\
+CVQual PlaceHolder<CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options3_, MakePointer_>, N>, Params...>{\
+ typedef CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakeGlobalPointer> Type;\
+ Type expr;\
+ template <typename FuncDetector>\
+ ExprConstructor(FuncDetector &fd, const utility::tuple::Tuple<Params...> &t)\
+ : expr(Type((&(*(utility::tuple::get<N>(t).get_pointer()))), fd.dimensions())) {}\
+};
+
+TENSORMAP(const)
+TENSORMAP()
+#undef TENSORMAP
+
+#define UNARYCATEGORY(CVQual)\
+template <template<class, class> class UnaryCategory, typename OP, typename OrigRHSExpr, typename RHSExpr, typename... Params>\
+struct ExprConstructor<CVQual UnaryCategory<OP, OrigRHSExpr>, CVQual UnaryCategory<OP, RHSExpr>, Params...> {\
+ typedef ExprConstructor<OrigRHSExpr, RHSExpr, Params...> my_type;\
+ my_type rhsExpr;\
+ typedef CVQual UnaryCategory<OP, typename my_type::Type> Type;\
+ Type expr;\
+ template <typename FuncDetector>\
+ ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\
+ : rhsExpr(funcD.rhsExpr, t), expr(rhsExpr.expr, funcD.func) {}\
+};
+
+UNARYCATEGORY(const)
+UNARYCATEGORY()
+#undef UNARYCATEGORY
+
+/// specialisation of the \ref ExprConstructor struct when the node type is
+/// TensorBinaryOp
+#define BINARYCATEGORY(CVQual)\
+template <template<class, class, class> class BinaryCategory, typename OP, typename OrigLHSExpr, typename OrigRHSExpr, typename LHSExpr,\
+typename RHSExpr, typename... Params>\
+struct ExprConstructor<CVQual BinaryCategory<OP, OrigLHSExpr, OrigRHSExpr>, CVQual BinaryCategory<OP, LHSExpr, RHSExpr>, Params...> {\
+ typedef ExprConstructor<OrigLHSExpr, LHSExpr, Params...> my_left_type;\
+ typedef ExprConstructor<OrigRHSExpr, RHSExpr, Params...> my_right_type;\
+ typedef CVQual BinaryCategory<OP, typename my_left_type::Type, typename my_right_type::Type> Type;\
+ my_left_type lhsExpr;\
+ my_right_type rhsExpr;\
+ Type expr;\
+ template <typename FuncDetector>\
+ ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\
+ : lhsExpr(funcD.lhsExpr, t),rhsExpr(funcD.rhsExpr, t), expr(lhsExpr.expr, rhsExpr.expr, funcD.func) {}\
+};
+
+BINARYCATEGORY(const)
+BINARYCATEGORY()
+#undef BINARYCATEGORY
+
+/// specialisation of the \ref ExprConstructor struct when the node type is
+/// TensorCwiseTernaryOp
+#define TERNARYCATEGORY(CVQual)\
+template <template <class, class, class, class> class TernaryCategory, typename OP, typename OrigArg1Expr, typename OrigArg2Expr,typename OrigArg3Expr,\
+typename Arg1Expr, typename Arg2Expr, typename Arg3Expr, typename... Params>\
+struct ExprConstructor<CVQual TernaryCategory<OP, OrigArg1Expr, OrigArg2Expr, OrigArg3Expr>, CVQual TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Params...> {\
+ typedef ExprConstructor<OrigArg1Expr, Arg1Expr, Params...> my_arg1_type;\
+ typedef ExprConstructor<OrigArg2Expr, Arg2Expr, Params...> my_arg2_type;\
+ typedef ExprConstructor<OrigArg3Expr, Arg3Expr, Params...> my_arg3_type;\
+ typedef CVQual TernaryCategory<OP, typename my_arg1_type::Type, typename my_arg2_type::Type, typename my_arg3_type::Type> Type;\
+ my_arg1_type arg1Expr;\
+ my_arg2_type arg2Expr;\
+ my_arg3_type arg3Expr;\
+ Type expr;\
+ template <typename FuncDetector>\
+ ExprConstructor(FuncDetector &funcD,const utility::tuple::Tuple<Params...> &t)\
+ : arg1Expr(funcD.arg1Expr, t), arg2Expr(funcD.arg2Expr, t), arg3Expr(funcD.arg3Expr, t), expr(arg1Expr.expr, arg2Expr.expr, arg3Expr.expr, funcD.func) {}\
+};
+
+TERNARYCATEGORY(const)
+TERNARYCATEGORY()
+#undef TERNARYCATEGORY
+
+/// specialisation of the \ref ExprConstructor struct when the node type is
+/// TensorCwiseSelectOp
+#define SELECTOP(CVQual)\
+template <typename OrigIfExpr, typename OrigThenExpr, typename OrigElseExpr, typename IfExpr, typename ThenExpr, typename ElseExpr, typename... Params>\
+struct ExprConstructor< CVQual TensorSelectOp<OrigIfExpr, OrigThenExpr, OrigElseExpr>, CVQual TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Params...> {\
+ typedef ExprConstructor<OrigIfExpr, IfExpr, Params...> my_if_type;\
+ typedef ExprConstructor<OrigThenExpr, ThenExpr, Params...> my_then_type;\
+ typedef ExprConstructor<OrigElseExpr, ElseExpr, Params...> my_else_type;\
+ typedef CVQual TensorSelectOp<typename my_if_type::Type, typename my_then_type::Type, typename my_else_type::Type> Type;\
+ my_if_type ifExpr;\
+ my_then_type thenExpr;\
+ my_else_type elseExpr;\
+ Type expr;\
+ template <typename FuncDetector>\
+ ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\
+ : ifExpr(funcD.ifExpr, t), thenExpr(funcD.thenExpr, t), elseExpr(funcD.elseExpr, t), expr(ifExpr.expr, thenExpr.expr, elseExpr.expr) {}\
+};
+
+SELECTOP(const)
+SELECTOP()
+#undef SELECTOP
+
+/// specialisation of the \ref ExprConstructor struct when the node type is
+/// const TensorAssignOp
+#define ASSIGN(CVQual)\
+template <typename OrigLHSExpr, typename OrigRHSExpr, typename LHSExpr, typename RHSExpr, typename... Params>\
+struct ExprConstructor<CVQual TensorAssignOp<OrigLHSExpr, OrigRHSExpr>, CVQual TensorAssignOp<LHSExpr, RHSExpr>, Params...> {\
+ typedef ExprConstructor<OrigLHSExpr, LHSExpr, Params...> my_left_type;\
+ typedef ExprConstructor<OrigRHSExpr, RHSExpr, Params...> my_right_type;\
+ typedef CVQual TensorAssignOp<typename my_left_type::Type, typename my_right_type::Type> Type;\
+ my_left_type lhsExpr;\
+ my_right_type rhsExpr;\
+ Type expr;\
+ template <typename FuncDetector>\
+ ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\
+ : lhsExpr(funcD.lhsExpr, t), rhsExpr(funcD.rhsExpr, t), expr(lhsExpr.expr, rhsExpr.expr) {}\
+ };
+
+ ASSIGN(const)
+ ASSIGN()
+ #undef ASSIGN
+/// specialisation of the \ref ExprConstructor struct when the node type is
+/// TensorEvalToOp
+#define EVALTO(CVQual)\
+template <typename OrigExpr, typename Expr, typename... Params>\
+struct ExprConstructor<CVQual TensorEvalToOp<OrigExpr, MakeGlobalPointer>, CVQual TensorEvalToOp<Expr>, Params...> {\
+ typedef ExprConstructor<OrigExpr, Expr, Params...> my_expr_type;\
+ typedef typename TensorEvalToOp<OrigExpr, MakeGlobalPointer>::PointerType my_buffer_type;\
+ typedef CVQual TensorEvalToOp<typename my_expr_type::Type, MakeGlobalPointer> Type;\
+ my_expr_type nestedExpression;\
+ EvalToLHSConstructor<my_buffer_type, 0, Params...> buffer;\
+ Type expr;\
+ template <typename FuncDetector>\
+ ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\
+ : nestedExpression(funcD.rhsExpr, t), buffer(t), expr(buffer.expr, nestedExpression.expr) {}\
+};
+
+EVALTO(const)
+EVALTO()
+#undef EVALTO
+
+/// specialisation of the \ref ExprConstructor struct when the node type is
+/// TensorForcedEvalOp
+#define FORCEDEVAL(CVQual)\
+template <typename OrigExpr, typename DevExpr, size_t N, typename... Params>\
+struct ExprConstructor<CVQual TensorForcedEvalOp<OrigExpr, MakeGlobalPointer>,\
+CVQual PlaceHolder<CVQual TensorForcedEvalOp<DevExpr>, N>, Params...> {\
+ typedef CVQual TensorMap<Tensor<typename TensorForcedEvalOp<DevExpr, MakeGlobalPointer>::Scalar,\
+ TensorForcedEvalOp<DevExpr, MakeGlobalPointer>::NumDimensions, 0, typename TensorForcedEvalOp<DevExpr>::Index>, 0, MakeGlobalPointer> Type;\
+ Type expr;\
+ template <typename FuncDetector>\
+ ExprConstructor(FuncDetector &fd, const utility::tuple::Tuple<Params...> &t)\
+ : expr(Type((&(*(utility::tuple::get<N>(t).get_pointer()))), fd.dimensions())) {}\
+};
+
+FORCEDEVAL(const)
+FORCEDEVAL()
+#undef FORCEDEVAL
+
+template <bool Conds, size_t X , size_t Y > struct ValueCondition {
+ static const size_t Res =X;
+};
+template<size_t X, size_t Y> struct ValueCondition<false, X , Y> {
+ static const size_t Res =Y;
+};
+
+/// specialisation of the \ref ExprConstructor struct when the node type is TensorReductionOp
+#define SYCLREDUCTIONEXPR(CVQual)\
+template <typename OP, typename Dim, typename OrigExpr, typename DevExpr, size_t N, typename... Params>\
+struct ExprConstructor<CVQual TensorReductionOp<OP, Dim, OrigExpr, MakeGlobalPointer>,\
+CVQual PlaceHolder<CVQual TensorReductionOp<OP, Dim, DevExpr>, N>, Params...> {\
+ static const size_t NumIndices= ValueCondition< TensorReductionOp<OP, Dim, DevExpr, MakeGlobalPointer>::NumDimensions==0, 1, TensorReductionOp<OP, Dim, DevExpr, MakeGlobalPointer>::NumDimensions >::Res;\
+ typedef CVQual TensorMap<Tensor<typename TensorReductionOp<OP, Dim, DevExpr, MakeGlobalPointer>::Scalar,\
+ NumIndices, 0, typename TensorReductionOp<OP, Dim, DevExpr>::Index>, 0, MakeGlobalPointer> Type;\
+ Type expr;\
+ template <typename FuncDetector>\
+ ExprConstructor(FuncDetector &fd, const utility::tuple::Tuple<Params...> &t)\
+ : expr(Type((&(*(utility::tuple::get<N>(t).get_pointer()))), fd.dimensions())) {}\
+};
+
+SYCLREDUCTIONEXPR(const)
+SYCLREDUCTIONEXPR()
+#undef SYCLREDUCTIONEXPR
+
+/// template deduction for \ref ExprConstructor struct
+template <typename OrigExpr, typename IndexExpr, typename FuncD, typename... Params>
+auto createDeviceExpression(FuncD &funcD, const utility::tuple::Tuple<Params...> &t)
+ -> decltype(ExprConstructor<OrigExpr, IndexExpr, Params...>(funcD, t)) {
+ return ExprConstructor<OrigExpr, IndexExpr, Params...>(funcD, t);
+}
+
+} /// namespace TensorSycl
+} /// namespace internal
+} /// namespace Eigen
+
+
+#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXPR_CONSTRUCTOR_HPP
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractAccessor.h b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractAccessor.h
new file mode 100644
index 000000000..b1da6858e
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractAccessor.h
@@ -0,0 +1,204 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+/*****************************************************************
+ * TensorSyclExtractAccessor.h
+ *
+ * \brief:
+ * ExtractAccessor takes Expression placeHolder expression and the tuple of sycl
+ * buffers as an input. Using pre-order tree traversal, ExtractAccessor
+ * recursively calls itself for its children in the expression tree. The
+ * leaf node in the PlaceHolder expression is nothing but a container preserving
+ * the order of the actual data in the tuple of sycl buffer. By invoking the
+ * extract accessor for the PlaceHolder<N>, an accessor is created for the Nth
+ * buffer in the tuple of buffers. This accessor is then added as an Nth
+ * element in the tuple of accessors. In this case we preserve the order of data
+ * in the expression tree.
+ *
+ * This is the specialisation of extract accessor method for different operation
+ * type in the PlaceHolder expression.
+ *
+*****************************************************************/
+
+#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_ACCESSOR_HPP
+#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_ACCESSOR_HPP
+
+namespace Eigen {
+namespace TensorSycl {
+namespace internal {
+/// \struct ExtractAccessor: Extract Accessor Class is used to extract the
+/// accessor from a buffer.
+/// Depending on the type of the leaf node we can get a read accessor or a
+/// read_write accessor
+template <typename Evaluator>
+struct ExtractAccessor;
+
+struct AccessorConstructor{
+ template<typename Arg> static inline auto getTuple(cl::sycl::handler& cgh, Arg eval)
+ -> decltype(ExtractAccessor<Arg>::getTuple(cgh, eval)) {
+ return ExtractAccessor<Arg>::getTuple(cgh, eval);
+ }
+
+ template<typename Arg1, typename Arg2> static inline auto getTuple(cl::sycl::handler& cgh, Arg1 eval1, Arg2 eval2)
+ -> decltype(utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1), ExtractAccessor<Arg2>::getTuple(cgh, eval2))) {
+ return utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1), ExtractAccessor<Arg2>::getTuple(cgh, eval2));
+ }
+ template<typename Arg1, typename Arg2, typename Arg3> static inline auto getTuple(cl::sycl::handler& cgh, Arg1 eval1 , Arg2 eval2 , Arg3 eval3)
+ -> decltype(utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1),utility::tuple::append(ExtractAccessor<Arg2>::getTuple(cgh, eval2), ExtractAccessor<Arg3>::getTuple(cgh, eval3)))) {
+ return utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1),utility::tuple::append(ExtractAccessor<Arg2>::getTuple(cgh, eval2), ExtractAccessor<Arg3>::getTuple(cgh, eval3)));
+ }
+ template< cl::sycl::access::mode AcM, typename Arg> static inline auto getAccessor(cl::sycl::handler& cgh, Arg eval)
+ -> decltype(utility::tuple::make_tuple( eval.device().template get_sycl_accessor<AcM,
+ typename Eigen::internal::remove_all<typename Arg::CoeffReturnType>::type>(eval.dimensions().TotalSize(), cgh,eval.data()))){
+ return utility::tuple::make_tuple(eval.device().template get_sycl_accessor<AcM, typename Eigen::internal::remove_all<typename Arg::CoeffReturnType>::type>(eval.dimensions().TotalSize(), cgh,eval.data()));
+ }
+};
+
+/// specialisation of the \ref ExtractAccessor struct when the node type is
+/// const TensorCwiseNullaryOp, const TensorCwiseUnaryOp and const TensorBroadcastingOp
+template <template<class, class> class UnaryCategory, typename OP, typename RHSExpr, typename Dev>
+struct ExtractAccessor<TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev> > {
+ static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev> eval)
+ -> decltype(AccessorConstructor::getTuple(cgh, eval.impl())){
+ return AccessorConstructor::getTuple(cgh, eval.impl());
+ }
+};
+
+/// specialisation of the \ref ExtractAccessor struct when the node type is TensorCwiseNullaryOp, TensorCwiseUnaryOp and TensorBroadcastingOp
+template <template<class, class> class UnaryCategory, typename OP, typename RHSExpr, typename Dev>
+struct ExtractAccessor<TensorEvaluator<UnaryCategory<OP, RHSExpr>, Dev> >
+: ExtractAccessor<TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev> > {};
+
+/// specialisation of the \ref ExtractAccessor struct when the node type is const TensorCwiseBinaryOp
+template <template<class, class, class> class BinaryCategory, typename OP, typename LHSExpr, typename RHSExpr, typename Dev>
+struct ExtractAccessor<TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> > {
+ static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> eval)
+ -> decltype(AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl())){
+ return AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl());
+ }
+};
+/// specialisation of the \ref ExtractAccessor struct when the node type is TensorCwiseBinaryOp
+template <template<class, class, class> class BinaryCategory, typename OP, typename LHSExpr, typename RHSExpr, typename Dev>
+struct ExtractAccessor<TensorEvaluator<BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> >
+: ExtractAccessor<TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> >{};
+
+/// specialisation of the \ref ExtractAccessor struct when the node type is
+/// const TensorCwiseTernaryOp
+template <template<class, class, class, class> class TernaryCategory, typename OP, typename Arg1Expr, typename Arg2Expr, typename Arg3Expr, typename Dev>
+struct ExtractAccessor<TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> > {
+ static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> eval)
+ -> decltype(AccessorConstructor::getTuple(cgh, eval.arg1Impl(), eval.arg2Impl(), eval.arg3Impl())){
+ return AccessorConstructor::getTuple(cgh, eval.arg1Impl(), eval.arg2Impl(), eval.arg3Impl());
+ }
+};
+
+/// specialisation of the \ref ExtractAccessor struct when the node type is TensorCwiseTernaryOp
+template <template<class, class, class, class> class TernaryCategory, typename OP, typename Arg1Expr, typename Arg2Expr, typename Arg3Expr, typename Dev>
+struct ExtractAccessor<TensorEvaluator<TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> >
+: ExtractAccessor<TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> >{};
+
+/// specialisation of the \ref ExtractAccessor struct when the node type is
+/// const TensorCwiseSelectOp. This is a special case where there is no OP
+template <typename IfExpr, typename ThenExpr, typename ElseExpr, typename Dev>
+struct ExtractAccessor<TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> > {
+ static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> eval)
+ -> decltype(AccessorConstructor::getTuple(cgh, eval.cond_impl(), eval.then_impl(), eval.else_impl())){
+ return AccessorConstructor::getTuple(cgh, eval.cond_impl(), eval.then_impl(), eval.else_impl());
+ }
+};
+
+/// specialisation of the \ref ExtractAccessor struct when the node type is
+/// TensorCwiseSelectOp. This is a special case where there is no OP
+template <typename IfExpr, typename ThenExpr, typename ElseExpr, typename Dev>
+struct ExtractAccessor<TensorEvaluator<TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> >
+: ExtractAccessor<TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> >{};
+
+/// specialisation of the \ref ExtractAccessor struct when the node type is const TensorAssignOp
+template <typename LHSExpr, typename RHSExpr, typename Dev>
+struct ExtractAccessor<TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev> > {
+ static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev> eval)
+ -> decltype(AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl())){
+ return AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl());
+ }
+};
+
+/// specialisation of the \ref ExtractAccessor struct when the node type is TensorAssignOp
+template <typename LHSExpr, typename RHSExpr, typename Dev>
+struct ExtractAccessor<TensorEvaluator<TensorAssignOp<LHSExpr, RHSExpr>, Dev> >
+: ExtractAccessor<TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev> >{};
+
+/// specialisation of the \ref ExtractAccessor struct when the node type is const TensorMap
+#define TENSORMAPEXPR(CVQual, ACCType)\
+template <typename PlainObjectType, int Options_, typename Dev>\
+struct ExtractAccessor<TensorEvaluator<CVQual TensorMap<PlainObjectType, Options_>, Dev> > {\
+ static inline auto getTuple(cl::sycl::handler& cgh,const TensorEvaluator<CVQual TensorMap<PlainObjectType, Options_>, Dev> eval)\
+ -> decltype(AccessorConstructor::template getAccessor<ACCType>(cgh, eval)){\
+ return AccessorConstructor::template getAccessor<ACCType>(cgh, eval);\
+ }\
+};
+TENSORMAPEXPR(const, cl::sycl::access::mode::read)
+TENSORMAPEXPR(, cl::sycl::access::mode::read_write)
+#undef TENSORMAPEXPR
+
+/// specialisation of the \ref ExtractAccessor struct when the node type is const TensorForcedEvalOp
+template <typename Expr, typename Dev>
+struct ExtractAccessor<TensorEvaluator<const TensorForcedEvalOp<Expr>, Dev> > {
+ static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const TensorForcedEvalOp<Expr>, Dev> eval)
+ -> decltype(AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval)){
+ return AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval);
+ }
+};
+
+/// specialisation of the \ref ExtractAccessor struct when the node type is TensorForcedEvalOp
+template <typename Expr, typename Dev>
+struct ExtractAccessor<TensorEvaluator<TensorForcedEvalOp<Expr>, Dev> >
+: ExtractAccessor<TensorEvaluator<const TensorForcedEvalOp<Expr>, Dev> >{};
+
+/// specialisation of the \ref ExtractAccessor struct when the node type is const TensorEvalToOp
+template <typename Expr, typename Dev>
+struct ExtractAccessor<TensorEvaluator<const TensorEvalToOp<Expr>, Dev> > {
+ static inline auto getTuple(cl::sycl::handler& cgh,const TensorEvaluator<const TensorEvalToOp<Expr>, Dev> eval)
+ -> decltype(utility::tuple::append(AccessorConstructor::template getAccessor<cl::sycl::access::mode::write>(cgh, eval), AccessorConstructor::getTuple(cgh, eval.impl()))){
+ return utility::tuple::append(AccessorConstructor::template getAccessor<cl::sycl::access::mode::write>(cgh, eval), AccessorConstructor::getTuple(cgh, eval.impl()));
+ }
+};
+
+/// specialisation of the \ref ExtractAccessor struct when the node type is TensorEvalToOp
+template <typename Expr, typename Dev>
+struct ExtractAccessor<TensorEvaluator<TensorEvalToOp<Expr>, Dev> >
+: ExtractAccessor<TensorEvaluator<const TensorEvalToOp<Expr>, Dev> >{};
+
+/// specialisation of the \ref ExtractAccessor struct when the node type is const TensorReductionOp
+template <typename OP, typename Dim, typename Expr, typename Dev>
+struct ExtractAccessor<TensorEvaluator<const TensorReductionOp<OP, Dim, Expr>, Dev> > {
+ static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const TensorReductionOp<OP, Dim, Expr>, Dev> eval)
+ -> decltype(AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval)){
+ return AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval);
+ }
+};
+
+/// specialisation of the \ref ExtractAccessor struct when the node type is TensorReductionOp
+template <typename OP, typename Dim, typename Expr, typename Dev>
+struct ExtractAccessor<TensorEvaluator<TensorReductionOp<OP, Dim, Expr>, Dev> >
+: ExtractAccessor<TensorEvaluator<const TensorReductionOp<OP, Dim, Expr>, Dev> >{};
+
+/// template deduction for \ref ExtractAccessor
+template <typename Evaluator>
+auto createTupleOfAccessors(cl::sycl::handler& cgh, const Evaluator& expr)
+-> decltype(ExtractAccessor<Evaluator>::getTuple(cgh, expr)) {
+ return ExtractAccessor<Evaluator>::getTuple(cgh, expr);
+}
+
+} /// namespace TensorSycl
+} /// namespace internal
+} /// namespace Eigen
+#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_ACCESSOR_HPP
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractFunctors.h b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractFunctors.h
new file mode 100644
index 000000000..427125343
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractFunctors.h
@@ -0,0 +1,177 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+/*****************************************************************
+ * TensorSyclextractFunctors.h
+ *
+ * \brief:
+ * Used to extract all the functors allocated to each node of the expression
+*tree.
+ *
+*****************************************************************/
+
+#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_FUNCTORS_HPP
+#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_FUNCTORS_HPP
+
+namespace Eigen {
+namespace TensorSycl {
+namespace internal {
+/// \struct FunctorExtractor: This struct is used to extract the functors
+/// constructed on
+/// the host-side, to pack them and reuse them in reconstruction of the
+/// expression on the device.
+/// We have to do that as in Eigen the functors are not stateless so we cannot
+/// re-instantiate them on the device.
+/// We have to pass instantiated functors to the device.
+// This struct is used for leafNode (TensorMap) and nodes behaving like leafNode (TensorForcedEval).
+template <typename Evaluator> struct FunctorExtractor{
+ typedef typename Evaluator::Dimensions Dimensions;
+ const Dimensions m_dimensions;
+ const Dimensions& dimensions() const { return m_dimensions; }
+ FunctorExtractor(const Evaluator& expr)
+ : m_dimensions(expr.dimensions()) {}
+
+};
+
+/// specialisation of the \ref FunctorExtractor struct when the node type is
+/// const TensorCwiseNullaryOp, const TensorCwiseUnaryOp, and const TensorBroadcastingOp
+template <template <class, class> class UnaryCategory, typename OP, typename RHSExpr, typename Dev>
+struct FunctorExtractor<TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev> > {
+ FunctorExtractor<TensorEvaluator<RHSExpr, Dev> > rhsExpr;
+ OP func;
+ FunctorExtractor(const TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev>& expr)
+ : rhsExpr(expr.impl()), func(expr.functor()) {}
+};
+/// specialisation of the \ref FunctorExtractor struct when the node type is
+/// TensorCwiseNullaryOp, TensorCwiseUnaryOp, and TensorBroadcastingOp
+template <template <class, class> class UnaryCategory, typename OP, typename RHSExpr, typename Dev>
+struct FunctorExtractor<TensorEvaluator<UnaryCategory<OP, RHSExpr>, Dev> >
+: FunctorExtractor<TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev> >{};
+
+/// specialisation of the \ref FunctorExtractor struct when the node type is
+/// const TensorCwiseBinaryOp
+template <template<class, class, class> class BinaryCategory, typename OP, typename LHSExpr, typename RHSExpr, typename Dev>
+struct FunctorExtractor<TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> > {
+ FunctorExtractor<TensorEvaluator<LHSExpr, Dev> > lhsExpr;
+ FunctorExtractor<TensorEvaluator<RHSExpr, Dev> > rhsExpr;
+ OP func;
+ FunctorExtractor(const TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev>& expr)
+ : lhsExpr(expr.left_impl()),rhsExpr(expr.right_impl()),func(expr.functor()) {}
+};
+
+/// specialisation of the \ref FunctorExtractor struct when the node type is
+/// const TensorCwiseBinaryOp
+template <template <class, class, class> class BinaryCategory, typename OP, typename LHSExpr, typename RHSExpr, typename Dev>
+struct FunctorExtractor<TensorEvaluator<BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> >
+: FunctorExtractor<TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> >{};
+
+/// specialisation of the \ref FunctorExtractor struct when the node type is
+/// const TensorCwiseTernaryOp
+template <template <class, class, class, class> class TernaryCategory, typename OP, typename Arg1Expr, typename Arg2Expr, typename Arg3Expr,typename Dev>
+struct FunctorExtractor<TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> > {
+ FunctorExtractor<TensorEvaluator<Arg1Expr, Dev> > arg1Expr;
+ FunctorExtractor<TensorEvaluator<Arg2Expr, Dev> > arg2Expr;
+ FunctorExtractor<TensorEvaluator<Arg3Expr, Dev> > arg3Expr;
+ OP func;
+ FunctorExtractor(const TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev>& expr)
+ : arg1Expr(expr.arg1Impl()), arg2Expr(expr.arg2Impl()), arg3Expr(expr.arg3Impl()), func(expr.functor()) {}
+};
+
+/// specialisation of the \ref FunctorExtractor struct when the node type is
+/// TensorCwiseTernaryOp
+template <template <class, class, class, class> class TernaryCategory, typename OP, typename Arg1Expr, typename Arg2Expr, typename Arg3Expr, typename Dev>
+struct FunctorExtractor<TensorEvaluator< TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> >
+:FunctorExtractor<TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> >{};
+
+/// specialisation of the \ref FunctorExtractor struct when the node type is
+/// const TensorCwiseSelectOp. This is an specialisation without OP so it has to be separated.
+template <typename IfExpr, typename ThenExpr, typename ElseExpr, typename Dev>
+struct FunctorExtractor< TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> > {
+ FunctorExtractor<TensorEvaluator<IfExpr, Dev> > ifExpr;
+ FunctorExtractor<TensorEvaluator<ThenExpr, Dev> > thenExpr;
+ FunctorExtractor<TensorEvaluator<ElseExpr, Dev> > elseExpr;
+ FunctorExtractor(const TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev>& expr)
+ : ifExpr(expr.cond_impl()), thenExpr(expr.then_impl()), elseExpr(expr.else_impl()) {}
+};
+
+/// specialisation of the \ref FunctorExtractor struct when the node type is
+/// TensorCwiseSelectOp. This is an specialisation without OP so it has to be separated
+template <typename IfExpr, typename ThenExpr, typename ElseExpr, typename Dev>
+struct FunctorExtractor<TensorEvaluator<TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> >
+:FunctorExtractor< TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> > {};
+
+/// specialisation of the \ref FunctorExtractor struct when the node type is
+/// const TensorAssignOp. This is an specialisation without OP so it has to be separated.
+template <typename LHSExpr, typename RHSExpr, typename Dev>
+struct FunctorExtractor<TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev> > {
+ FunctorExtractor<TensorEvaluator<LHSExpr, Dev> > lhsExpr;
+ FunctorExtractor<TensorEvaluator<RHSExpr, Dev> > rhsExpr;
+ FunctorExtractor(const TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev>& expr)
+ : lhsExpr(expr.left_impl()), rhsExpr(expr.right_impl()) {}
+};
+
+/// specialisation of the \ref FunctorExtractor struct when the node type is
+/// TensorAssignOp. This is an specialisation without OP so it has to be separated.
+template <typename LHSExpr, typename RHSExpr, typename Dev>
+struct FunctorExtractor<TensorEvaluator<TensorAssignOp<LHSExpr, RHSExpr>, Dev> >
+:FunctorExtractor<TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev> >{};
+
+
+/// specialisation of the \ref FunctorExtractor struct when the node type is
+/// const TensorEvalToOp, This is an specialisation without OP so it has to be separated.
+template <typename RHSExpr, typename Dev>
+struct FunctorExtractor<TensorEvaluator<const TensorEvalToOp<RHSExpr>, Dev> > {
+ FunctorExtractor<TensorEvaluator<RHSExpr, Dev> > rhsExpr;
+ FunctorExtractor(const TensorEvaluator<const TensorEvalToOp<RHSExpr>, Dev>& expr)
+ : rhsExpr(expr.impl()) {}
+};
+
+/// specialisation of the \ref FunctorExtractor struct when the node type is
+/// TensorEvalToOp. This is a specialisation without OP so it has to be separated.
+template <typename RHSExpr, typename Dev>
+struct FunctorExtractor<TensorEvaluator<TensorEvalToOp<RHSExpr>, Dev> >
+: FunctorExtractor<TensorEvaluator<const TensorEvalToOp<RHSExpr>, Dev> > {};
+
+template<typename Dim, size_t NumOutputDim> struct DimConstr {
+template<typename InDim>
+ static inline Dim getDim(InDim dims ) {return dims;}
+};
+
+template<typename Dim> struct DimConstr<Dim, 0> {
+ template<typename InDim>
+ static inline Dim getDim(InDim dims ) {return Dim(dims.TotalSize());}
+};
+
+template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>
+struct FunctorExtractor<TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>>{
+ typedef TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Evaluator;
+ typedef typename Eigen::internal::conditional<Evaluator::NumOutputDims==0, DSizes<typename Evaluator::Index, 1>, typename Evaluator::Dimensions >::type Dimensions;
+ const Dimensions m_dimensions;
+ const Dimensions& dimensions() const { return m_dimensions; }
+ FunctorExtractor(const TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>& expr)
+ : m_dimensions(DimConstr<Dimensions, Evaluator::NumOutputDims>::getDim(expr.dimensions())) {}
+};
+
+
+template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>
+struct FunctorExtractor<TensorEvaluator<TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>>
+: FunctorExtractor<TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>>{};
+/// template deduction function for FunctorExtractor
+template <typename Evaluator>
+auto inline extractFunctors(const Evaluator& evaluator)-> FunctorExtractor<Evaluator> {
+ return FunctorExtractor<Evaluator>(evaluator);
+}
+} // namespace internal
+} // namespace TensorSycl
+} // namespace Eigen
+
+#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_FUNCTORS_HPP
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclLeafCount.h b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclLeafCount.h
new file mode 100644
index 000000000..25d1fac9b
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclLeafCount.h
@@ -0,0 +1,114 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+/*****************************************************************
+ * TensorSyclLeafCount.h
+ *
+ * \brief:
+ * The leaf count used the pre-order expression tree traverse in order to name
+ * count the number of leaf nodes in the expression
+ *
+*****************************************************************/
+
+#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_LEAF_COUNT_HPP
+#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_LEAF_COUNT_HPP
+
+namespace Eigen {
+namespace TensorSycl {
+namespace internal {
+/// \brief LeafCount used to counting terminal nodes. The total number of
+/// leaf nodes is used by MakePlaceHolderExprHelper to find the order
+/// of the leaf node in a expression tree at compile time.
+template <typename Expr>
+struct LeafCount;
+
+template<typename... Args> struct CategoryCount;
+
+template<> struct CategoryCount<>
+{
+ static const size_t Count =0;
+};
+
+template<typename Arg, typename... Args>
+struct CategoryCount<Arg,Args...>{
+ static const size_t Count = LeafCount<Arg>::Count + CategoryCount<Args...>::Count;
+};
+
+/// specialisation of the \ref LeafCount struct when the node type is const TensorMap
+template <typename PlainObjectType, int Options_, template <class> class MakePointer_>
+struct LeafCount<const TensorMap<PlainObjectType, Options_, MakePointer_> > {
+ static const size_t Count =1;
+};
+
+/// specialisation of the \ref LeafCount struct when the node type is TensorMap
+template <typename PlainObjectType, int Options_, template <class> class MakePointer_>
+struct LeafCount<TensorMap<PlainObjectType, Options_, MakePointer_> > :LeafCount<const TensorMap<PlainObjectType, Options_, MakePointer_> >{};
+
+// const TensorCwiseUnaryOp, const TensorCwiseNullaryOp, const TensorCwiseBinaryOp, const TensorCwiseTernaryOp, and Const TensorBroadcastingOp
+template <template <class, class...> class CategoryExpr, typename OP, typename... RHSExpr>
+struct LeafCount<const CategoryExpr<OP, RHSExpr...> >: CategoryCount<RHSExpr...> {};
+// TensorCwiseUnaryOp, TensorCwiseNullaryOp, TensorCwiseBinaryOp, TensorCwiseTernaryOp, and TensorBroadcastingOp
+template <template <class, class...> class CategoryExpr, typename OP, typename... RHSExpr>
+struct LeafCount<CategoryExpr<OP, RHSExpr...> > :LeafCount<const CategoryExpr<OP, RHSExpr...> >{};
+
+/// specialisation of the \ref LeafCount struct when the node type is const TensorSelectOp is an exception
+template <typename IfExpr, typename ThenExpr, typename ElseExpr>
+struct LeafCount<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr> > : CategoryCount<IfExpr, ThenExpr, ElseExpr> {};
+/// specialisation of the \ref LeafCount struct when the node type is TensorSelectOp
+template <typename IfExpr, typename ThenExpr, typename ElseExpr>
+struct LeafCount<TensorSelectOp<IfExpr, ThenExpr, ElseExpr> >: LeafCount<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr> > {};
+
+
+/// specialisation of the \ref LeafCount struct when the node type is const TensorAssignOp
+template <typename LHSExpr, typename RHSExpr>
+struct LeafCount<const TensorAssignOp<LHSExpr, RHSExpr> >: CategoryCount<LHSExpr,RHSExpr> {};
+
+/// specialisation of the \ref LeafCount struct when the node type is
+/// TensorAssignOp is an exception. It is not the same as Unary
+template <typename LHSExpr, typename RHSExpr>
+struct LeafCount<TensorAssignOp<LHSExpr, RHSExpr> > :LeafCount<const TensorAssignOp<LHSExpr, RHSExpr> >{};
+
+/// specialisation of the \ref LeafCount struct when the node type is const TensorForcedEvalOp
+template <typename Expr>
+struct LeafCount<const TensorForcedEvalOp<Expr> > {
+ static const size_t Count =1;
+};
+
+/// specialisation of the \ref LeafCount struct when the node type is TensorForcedEvalOp
+template <typename Expr>
+struct LeafCount<TensorForcedEvalOp<Expr> >: LeafCount<const TensorForcedEvalOp<Expr> > {};
+
+/// specialisation of the \ref LeafCount struct when the node type is const TensorEvalToOp
+template <typename Expr>
+struct LeafCount<const TensorEvalToOp<Expr> > {
+ static const size_t Count = 1 + CategoryCount<Expr>::Count;
+};
+
+/// specialisation of the \ref LeafCount struct when the node type is const TensorReductionOp
+template <typename OP, typename Dim, typename Expr>
+struct LeafCount<const TensorReductionOp<OP, Dim, Expr> > {
+ static const size_t Count =1;
+};
+
+/// specialisation of the \ref LeafCount struct when the node type is TensorReductionOp
+template <typename OP, typename Dim, typename Expr>
+struct LeafCount<TensorReductionOp<OP, Dim, Expr> >: LeafCount<const TensorReductionOp<OP, Dim, Expr> >{};
+
+/// specialisation of the \ref LeafCount struct when the node type is TensorEvalToOp
+template <typename Expr>
+struct LeafCount<TensorEvalToOp<Expr> >: LeafCount<const TensorEvalToOp<Expr> >{};
+
+} /// namespace TensorSycl
+} /// namespace internal
+} /// namespace Eigen
+
+#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_LEAF_COUNT_HPP
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclPlaceHolderExpr.h b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclPlaceHolderExpr.h
new file mode 100644
index 000000000..d4c250c6d
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclPlaceHolderExpr.h
@@ -0,0 +1,181 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+/*****************************************************************
+ * TensorSyclPlaceHolderExpr.h
+ *
+ * \brief:
+ * This is the specialisation of the placeholder expression based on the
+ * operation type
+ *
+*****************************************************************/
+
+#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_PLACEHOLDER_EXPR_HPP
+#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_PLACEHOLDER_EXPR_HPP
+
+namespace Eigen {
+namespace TensorSycl {
+namespace internal {
+
+/// \struct PlaceHolder
+/// \brief PlaceHolder is used to replace the \ref TensorMap in the expression
+/// tree.
+/// PlaceHolder contains the order of the leaf node in the expression tree.
+template <typename Scalar, size_t N>
+struct PlaceHolder {
+ static constexpr size_t I = N;
+ typedef Scalar Type;
+};
+
+/// \sttruct PlaceHolderExpression
+/// \brief it is used to create the PlaceHolder expression. The PlaceHolder
+/// expression is a copy of expression type in which the TensorMap of the has
+/// been replaced with PlaceHolder.
+template <typename Expr, size_t N>
+struct PlaceHolderExpression;
+
+template<size_t N, typename... Args>
+struct CalculateIndex;
+
+template<size_t N, typename Arg>
+struct CalculateIndex<N, Arg>{
+ typedef typename PlaceHolderExpression<Arg, N>::Type ArgType;
+ typedef utility::tuple::Tuple<ArgType> ArgsTuple;
+};
+
+template<size_t N, typename Arg1, typename Arg2>
+struct CalculateIndex<N, Arg1, Arg2>{
+ static const size_t Arg2LeafCount = LeafCount<Arg2>::Count;
+ typedef typename PlaceHolderExpression<Arg1, N - Arg2LeafCount>::Type Arg1Type;
+ typedef typename PlaceHolderExpression<Arg2, N>::Type Arg2Type;
+ typedef utility::tuple::Tuple<Arg1Type, Arg2Type> ArgsTuple;
+};
+
+template<size_t N, typename Arg1, typename Arg2, typename Arg3>
+struct CalculateIndex<N, Arg1, Arg2, Arg3> {
+ static const size_t Arg3LeafCount = LeafCount<Arg3>::Count;
+ static const size_t Arg2LeafCount = LeafCount<Arg2>::Count;
+ typedef typename PlaceHolderExpression<Arg1, N - Arg3LeafCount - Arg2LeafCount>::Type Arg1Type;
+ typedef typename PlaceHolderExpression<Arg2, N - Arg3LeafCount>::Type Arg2Type;
+ typedef typename PlaceHolderExpression<Arg3, N>::Type Arg3Type;
+ typedef utility::tuple::Tuple<Arg1Type, Arg2Type, Arg3Type> ArgsTuple;
+};
+
+template<template<class...> class Category , class OP, class TPL>
+struct CategoryHelper;
+
+template<template<class...> class Category , class OP, class ...T >
+struct CategoryHelper<Category, OP, utility::tuple::Tuple<T...> > {
+ typedef Category<OP, T... > Type;
+};
+
+template<template<class...> class Category , class ...T >
+struct CategoryHelper<Category, NoOP, utility::tuple::Tuple<T...> > {
+ typedef Category<T... > Type;
+};
+
+/// specialisation of the \ref PlaceHolderExpression when the node is
+/// TensorCwiseNullaryOp, TensorCwiseUnaryOp, TensorBroadcastingOp, TensorCwiseBinaryOp, TensorCwiseTernaryOp
+#define OPEXPRCATEGORY(CVQual)\
+template <template <class, class... > class Category, typename OP, typename... SubExpr, size_t N>\
+struct PlaceHolderExpression<CVQual Category<OP, SubExpr...>, N>{\
+ typedef CVQual typename CategoryHelper<Category, OP, typename CalculateIndex<N, SubExpr...>::ArgsTuple>::Type Type;\
+};
+
+OPEXPRCATEGORY(const)
+OPEXPRCATEGORY()
+#undef OPEXPRCATEGORY
+
+/// specialisation of the \ref PlaceHolderExpression when the node is
+/// TensorCwiseSelectOp
+#define SELECTEXPR(CVQual)\
+template <typename IfExpr, typename ThenExpr, typename ElseExpr, size_t N>\
+struct PlaceHolderExpression<CVQual TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, N> {\
+ typedef CVQual typename CategoryHelper<TensorSelectOp, NoOP, typename CalculateIndex<N, IfExpr, ThenExpr, ElseExpr>::ArgsTuple>::Type Type;\
+};
+
+SELECTEXPR(const)
+SELECTEXPR()
+#undef SELECTEXPR
+
+/// specialisation of the \ref PlaceHolderExpression when the node is
+/// TensorAssignOp
+#define ASSIGNEXPR(CVQual)\
+template <typename LHSExpr, typename RHSExpr, size_t N>\
+struct PlaceHolderExpression<CVQual TensorAssignOp<LHSExpr, RHSExpr>, N> {\
+ typedef CVQual typename CategoryHelper<TensorAssignOp, NoOP, typename CalculateIndex<N, LHSExpr, RHSExpr>::ArgsTuple>::Type Type;\
+};
+
+ASSIGNEXPR(const)
+ASSIGNEXPR()
+#undef ASSIGNEXPR
+
+/// specialisation of the \ref PlaceHolderExpression when the node is
+/// TensorMap
+#define TENSORMAPEXPR(CVQual)\
+template <typename Scalar_, int Options_, int Options2_, int NumIndices_, typename IndexType_, template <class> class MakePointer_, size_t N>\
+struct PlaceHolderExpression< CVQual TensorMap< Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakePointer_>, N> {\
+ typedef CVQual PlaceHolder<CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakePointer_>, N> Type;\
+};
+
+TENSORMAPEXPR(const)
+TENSORMAPEXPR()
+#undef TENSORMAPEXPR
+
+/// specialisation of the \ref PlaceHolderExpression when the node is
+/// TensorForcedEvalOp
+#define FORCEDEVAL(CVQual)\
+template <typename Expr, size_t N>\
+struct PlaceHolderExpression<CVQual TensorForcedEvalOp<Expr>, N> {\
+ typedef CVQual PlaceHolder<CVQual TensorForcedEvalOp<Expr>, N> Type;\
+};
+
+FORCEDEVAL(const)
+FORCEDEVAL()
+#undef FORCEDEVAL
+
+/// specialisation of the \ref PlaceHolderExpression when the node is
+/// TensorEvalToOp
+#define EVALTO(CVQual)\
+template <typename Expr, size_t N>\
+struct PlaceHolderExpression<CVQual TensorEvalToOp<Expr>, N> {\
+ typedef CVQual TensorEvalToOp<typename CalculateIndex <N, Expr>::ArgType> Type;\
+};
+
+EVALTO(const)
+EVALTO()
+#undef EVALTO
+
+
+/// specialisation of the \ref PlaceHolderExpression when the node is
+/// TensorReductionOp
+#define SYCLREDUCTION(CVQual)\
+template <typename OP, typename Dims, typename Expr, size_t N>\
+struct PlaceHolderExpression<CVQual TensorReductionOp<OP, Dims, Expr>, N>{\
+ typedef CVQual PlaceHolder<CVQual TensorReductionOp<OP, Dims,Expr>, N> Type;\
+};
+SYCLREDUCTION(const)
+SYCLREDUCTION()
+#undef SYCLREDUCTION
+
+/// template deduction for \ref PlaceHolderExpression struct
+template <typename Expr>
+struct createPlaceHolderExpression {
+ static const size_t TotalLeaves = LeafCount<Expr>::Count;
+ typedef typename PlaceHolderExpression<Expr, TotalLeaves - 1>::Type Type;
+};
+
+} // internal
+} // TensorSycl
+} // namespace Eigen
+
+#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_PLACEHOLDER_EXPR_HPP
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclRun.h b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclRun.h
new file mode 100644
index 000000000..7914b6fad
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclRun.h
@@ -0,0 +1,70 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Cummins Chris PhD student at The University of Edinburgh.
+// Contact: <eigen@codeplay.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+/*****************************************************************
+ * TensorSyclRun.h
+ *
+ * \brief:
+ * Schedule_kernel invoke an specialised version of kernel struct. The
+ * specialisation is based on the data dimension in sycl buffer
+ *
+*****************************************************************/
+
+#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_SYCLRUN_HPP
+#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_SYCLRUN_HPP
+
+namespace Eigen {
+namespace TensorSycl {
+/// The run function in tensor sycl convert the expression tree to a buffer
+/// based expression tree;
+/// creates the expression tree for the device with accessor to buffers;
+/// construct the kernel and submit it to the sycl queue.
+template <typename Expr, typename Dev>
+void run(Expr &expr, Dev &dev) {
+ Eigen::TensorEvaluator<Expr, Dev> evaluator(expr, dev);
+ const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
+ if (needs_assign) {
+ typedef typename internal::createPlaceHolderExpression<Expr>::Type PlaceHolderExpr;
+ auto functors = internal::extractFunctors(evaluator);
+
+ size_t tileSize =dev.m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>()/2;
+ dev.m_queue.submit([&](cl::sycl::handler &cgh) {
+
+ // create a tuple of accessors from Evaluator
+ auto tuple_of_accessors = internal::createTupleOfAccessors<decltype(evaluator)>(cgh, evaluator);
+ const auto range = utility::tuple::get<0>(tuple_of_accessors).get_range()[0];
+ size_t GRange=range;
+ if (tileSize>GRange) tileSize=GRange;
+ else if(GRange>tileSize){
+ size_t xMode = GRange % tileSize;
+ if (xMode != 0) GRange += (tileSize - xMode);
+ }
+ // run the kernel
+ cgh.parallel_for<PlaceHolderExpr>( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), [=](cl::sycl::nd_item<1> itemID) {
+ typedef typename internal::ConvertToDeviceExpression<Expr>::Type DevExpr;
+ auto device_expr =internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
+ auto device_evaluator = Eigen::TensorEvaluator<decltype(device_expr.expr), Eigen::DefaultDevice>(device_expr.expr, Eigen::DefaultDevice());
+ if (itemID.get_global_linear_id() < range) {
+ device_evaluator.evalScalar(static_cast<int>(itemID.get_global_linear_id()));
+ }
+ });
+ });
+ dev.m_queue.throw_asynchronous();
+ }
+
+ evaluator.cleanup();
+}
+} // namespace TensorSycl
+} // namespace Eigen
+
+#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_SYCLRUN_HPP
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclTuple.h b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclTuple.h
new file mode 100644
index 000000000..063b027e8
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclTuple.h
@@ -0,0 +1,234 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+/*****************************************************************
+ * TensroSyclTuple.h
+ *
+ * \brief:
+ * Minimal implementation of std::tuple that can be used inside a SYCL kernel.
+ *
+*****************************************************************/
+
+#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_TUPLE_HPP
+#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_TUPLE_HPP
+namespace utility {
+namespace tuple {
+/// \struct StaticIf
+/// \brief The StaticIf struct is used to statically choose the type based on the
+/// condition.
+template <bool, typename T = void> struct StaticIf;
+/// \brief specialisation of the \ref StaticIf when the condition is true
+template <typename T>
+struct StaticIf<true, T> {
+ typedef T type;
+};
+
+/// \struct Tuple
+/// \brief is a fixed-size collection of heterogeneous values
+/// \ztparam Ts... - the types of the elements that the tuple stores.
+/// Empty list is supported.
+template <class... Ts>
+struct Tuple {};
+
+/// \brief specialisation of the \ref Tuple class when the tuple has at least
+/// one element.
+/// \tparam T : the type of the first element in the tuple.
+/// \tparam Ts... the rest of the elements in the tuple. Ts... can be empty.
+template <class T, class... Ts>
+struct Tuple<T, Ts...> {
+ Tuple(T t, Ts... ts) : head(t), tail(ts...) {}
+ T head;
+ Tuple<Ts...> tail;
+};
+
+///\ struct ElemTypeHolder
+/// \brief ElemTypeHolder class is used to specify the types of the
+/// elements inside the tuple
+/// \tparam size_t the number of elements inside the tuple
+/// \tparam class the tuple class
+template <size_t, class>
+struct ElemTypeHolder;
+
+/// \brief specialisation of the \ref ElemTypeHolder class when the number of
+/// elements inside the tuple is 1
+template <class T, class... Ts>
+struct ElemTypeHolder<0, Tuple<T, Ts...> > {
+ typedef T type;
+};
+
+/// \brief specialisation of the \ref ElemTypeHolder class when the number of
+/// elements inside the tuple is bigger than 1. It recursively calls itself to
+/// detect the type of each element in the tuple
+/// \tparam T : the type of the first element in the tuple.
+/// \tparam Ts... the rest of the elements in the tuple. Ts... can be empty.
+/// \tparam K is the Kth element in the tuple
+template <size_t k, class T, class... Ts>
+struct ElemTypeHolder<k, Tuple<T, Ts...> > {
+ typedef typename ElemTypeHolder<k - 1, Tuple<Ts...> >::type type;
+};
+
+/// get
+/// \brief Extracts the first element from the tuple.
+/// K=0 represents the first element of the tuple. The tuple cannot be empty.
+/// \tparam Ts... are the type of the elements in the tuple.
+/// \param t is the tuple whose contents to extract
+/// \return typename ElemTypeHolder<0, Tuple<Ts...> >::type &>::type
+
+#define TERMINATE_CONDS_TUPLE_GET(CVQual) \
+template <size_t k, class... Ts> \
+typename StaticIf<k == 0, CVQual typename ElemTypeHolder<0, Tuple<Ts...> >::type &>::type \
+get(CVQual Tuple<Ts...> &t) { \
+ static_assert(sizeof...(Ts)!=0, "The requseted value is bigger than the size of the tuple"); \
+ return t.head; \
+}
+
+TERMINATE_CONDS_TUPLE_GET(const)
+TERMINATE_CONDS_TUPLE_GET()
+#undef TERMINATE_CONDS_TUPLE_GET
+/// get
+/// \brief Extracts the Kth element from the tuple.
+///\tparam K is an integer value in [0,sizeof...(Types)).
+/// \tparam T is the (sizeof...(Types) -(K+1)) element in the tuple
+/// \tparam Ts... are the type of the elements in the tuple.
+/// \param t is the tuple whose contents to extract
+/// \return typename ElemTypeHolder<K, Tuple<Ts...> >::type &>::type
+#define RECURSIVE_TUPLE_GET(CVQual) \
+template <size_t k, class T, class... Ts> \
+typename StaticIf<k != 0, CVQual typename ElemTypeHolder<k, Tuple<T, Ts...> >::type &>::type \
+get(CVQual Tuple<T, Ts...> &t) { \
+ return utility::tuple::get<k - 1>(t.tail); \
+}
+RECURSIVE_TUPLE_GET(const)
+RECURSIVE_TUPLE_GET()
+#undef RECURSIVE_TUPLE_GET
+
+/// make_tuple
+/// \brief Creates a tuple object, deducing the target type from the types of
+/// arguments.
+/// \tparam Args the type of the arguments to construct the tuple from
+/// \param args zero or more arguments to construct the tuple from
+/// \return Tuple<Args...>
+template <typename... Args>
+Tuple<Args...> make_tuple(Args... args) {
+ return Tuple<Args...>(args...);
+}
+
+/// size
+/// \brief Provides access to the number of elements in a tuple as a
+/// compile-time constant expression.
+/// \tparam Args the type of the arguments to construct the tuple from
+/// \return size_t
+template <typename... Args>
+static constexpr size_t size(Tuple<Args...> &) {
+ return sizeof...(Args);
+}
+
+/// \struct IndexList
+/// \brief Creates a list of index from the elements in the tuple
+/// \tparam Is... a list of index from [0 to sizeof...(tuple elements))
+template <size_t... Is>
+struct IndexList {};
+
+/// \struct RangeBuilder
+/// \brief Collects internal details for generating index ranges [MIN, MAX)
+/// Declare primary template for index range builder
+/// \tparam MIN is the starting index in the tuple
+/// \tparam N represents sizeof..(elemens)- sizeof...(Is)
+/// \tparam Is... are the list of generated index so far
+template <size_t MIN, size_t N, size_t... Is>
+struct RangeBuilder;
+
+/// \brief base Step: Specialisation of the \ref RangeBuilder when the
+/// MIN==MAX. In this case the Is... is [0 to sizeof...(tuple elements))
+/// \tparam MIN is the starting index of the tuple
+/// \tparam Is is [0 to sizeof...(tuple elements))
+template <size_t MIN, size_t... Is>
+struct RangeBuilder<MIN, MIN, Is...> {
+ typedef IndexList<Is...> type;
+};
+
+/// Induction step: Specialisation of the RangeBuilder class when N!=MIN
+/// in this case we are recursively subtracting N by one and adding one
+/// index to Is... list until MIN==N
+/// \tparam MIN is the starting index in the tuple
+/// \tparam N represents sizeof..(elemens)- sizeof...(Is)
+/// \tparam Is... are the list of generated index so far
+template <size_t MIN, size_t N, size_t... Is>
+struct RangeBuilder : public RangeBuilder<MIN, N - 1, N - 1, Is...> {};
+
+/// \brief IndexRange that returns a [MIN, MAX) index range
+/// \tparam MIN is the starting index in the tuple
+/// \tparam MAX is the size of the tuple
+template <size_t MIN, size_t MAX>
+struct IndexRange: RangeBuilder<MIN, MAX>::type {};
+
+/// append_base
+/// \brief unpacking the elements of the input tuple t and creating a new tuple
+/// by adding element a at the end of it.
+///\tparam Args... the type of the elements inside the tuple t
+/// \tparam T the type of the new element going to be added at the end of tuple
+/// \tparam I... is the list of index from [0 to sizeof...(t))
+/// \param t the tuple on which we want to append a.
+/// \param a the new elements going to be added to the tuple
+/// \return Tuple<Args..., T>
+template <typename... Args, typename T, size_t... I>
+Tuple<Args..., T> append_base(Tuple<Args...> t, T a,IndexList<I...>) {
+ return utility::tuple::make_tuple(get<I>(t)..., a);
+}
+
+/// append
+/// \brief the deduction function for \ref append_base that automatically
+/// generate the \ref IndexRange
+///\tparam Args... the type of the elements inside the tuple t
+/// \tparam T the type of the new element going to be added at the end of tuple
+/// \param t the tuple on which we want to append a.
+/// \param a the new elements going to be added to the tuple
+/// \return Tuple<Args..., T>
+template <typename... Args, typename T>
+Tuple<Args..., T> append(Tuple<Args...> t, T a) {
+ return utility::tuple::append_base(t, a, IndexRange<0, sizeof...(Args)>());
+}
+
+/// append_base
+/// \brief This is a specialisation of \ref append_base when we want to
+/// concatenate
+/// tuple t2 at the end of the tuple t1. Here we unpack both tuples, generate the
+/// IndexRange for each of them and create an output tuple T that contains both
+/// elements of t1 and t2.
+///\tparam Args1... the type of the elements inside the tuple t1
+///\tparam Args2... the type of the elements inside the tuple t2
+/// \tparam I1... is the list of index from [0 to sizeof...(t1))
+/// \tparam I2... is the list of index from [0 to sizeof...(t2))
+/// \param t1 is the tuple on which we want to append t2.
+/// \param t2 is the tuple that is going to be added on t1.
+/// \return Tuple<Args1..., Args2...>
+template <typename... Args1, typename... Args2, size_t... I1, size_t... I2>
+Tuple<Args1..., Args2...> append_base(Tuple<Args1...> t1, Tuple<Args2...> t2, IndexList<I1...>, IndexList<I2...>) {
+ return utility::tuple::make_tuple(get<I1>(t1)...,get<I2>(t2)...);
+}
+
+/// append
+/// \brief deduction function for \ref append_base when we are appending tuple
+/// t1 by tuple t2. In this case the \ref IndexRange for both tuple are
+/// automatically generated.
+///\tparam Args1... the type of the elements inside the tuple t1
+///\tparam Args2... the type of the elements inside the tuple t2
+/// \param t1 is the tuple on which we want to append t2.
+/// \param t2 is the tuple that is going to be added on t1.
+/// \return Tuple<Args1..., Args2...>
+template <typename... Args1, typename... Args2>
+Tuple<Args1..., Args2...> append(Tuple<Args1...> t1,Tuple<Args2...> t2) {
+ return utility::tuple::append_base(t1, t2, IndexRange<0, sizeof...(Args1)>(), IndexRange<0, sizeof...(Args2)>());
+}
+} // tuple
+} // utility
+#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_TUPLE_HPP
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h b/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h
new file mode 100644
index 000000000..ffcf8b00f
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h
@@ -0,0 +1,272 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H
+#define EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H
+
+namespace Eigen {
+namespace internal {
+
+
+template<typename Scalar, int Options>
+class compute_tensor_flags
+{
+ enum {
+ is_dynamic_size_storage = 1,
+
+ is_aligned =
+ (
+ ((Options&DontAlign)==0) && (
+#if EIGEN_MAX_STATIC_ALIGN_BYTES>0
+ (!is_dynamic_size_storage)
+#else
+ 0
+#endif
+ |
+#if EIGEN_MAX_ALIGN_BYTES>0
+ is_dynamic_size_storage
+#else
+ 0
+#endif
+ )
+ ),
+ packet_access_bit = packet_traits<Scalar>::Vectorizable && is_aligned ? PacketAccessBit : 0
+ };
+
+ public:
+ enum { ret = packet_access_bit };
+};
+
+
+template<typename Scalar_, int NumIndices_, int Options_, typename IndexType_>
+struct traits<Tensor<Scalar_, NumIndices_, Options_, IndexType_> >
+{
+ typedef Scalar_ Scalar;
+ typedef Dense StorageKind;
+ typedef IndexType_ Index;
+ static const int NumDimensions = NumIndices_;
+ static const int Layout = Options_ & RowMajor ? RowMajor : ColMajor;
+ enum {
+ Options = Options_,
+ Flags = compute_tensor_flags<Scalar_, Options_>::ret | (is_const<Scalar_>::value ? 0 : LvalueBit)
+ };
+ template <typename T> struct MakePointer {
+ typedef T* Type;
+ };
+};
+
+
+template<typename Scalar_, typename Dimensions, int Options_, typename IndexType_>
+struct traits<TensorFixedSize<Scalar_, Dimensions, Options_, IndexType_> >
+{
+ typedef Scalar_ Scalar;
+ typedef Dense StorageKind;
+ typedef IndexType_ Index;
+ static const int NumDimensions = array_size<Dimensions>::value;
+ static const int Layout = Options_ & RowMajor ? RowMajor : ColMajor;
+ enum {
+ Options = Options_,
+ Flags = compute_tensor_flags<Scalar_, Options_>::ret | (is_const<Scalar_>::value ? 0: LvalueBit)
+ };
+ template <typename T> struct MakePointer {
+ typedef T* Type;
+ };
+};
+
+
+template<typename PlainObjectType, int Options_, template <class> class MakePointer_>
+struct traits<TensorMap<PlainObjectType, Options_, MakePointer_> >
+ : public traits<PlainObjectType>
+{
+ typedef traits<PlainObjectType> BaseTraits;
+ typedef typename BaseTraits::Scalar Scalar;
+ typedef typename BaseTraits::StorageKind StorageKind;
+ typedef typename BaseTraits::Index Index;
+ static const int NumDimensions = BaseTraits::NumDimensions;
+ static const int Layout = BaseTraits::Layout;
+ enum {
+ Options = Options_,
+ Flags = BaseTraits::Flags
+ };
+ template <class T> struct MakePointer {
+ // Intermediate typedef to workaround MSVC issue.
+ typedef MakePointer_<T> MakePointerT;
+ typedef typename MakePointerT::Type Type;
+ };
+};
+
+template<typename PlainObjectType>
+struct traits<TensorRef<PlainObjectType> >
+ : public traits<PlainObjectType>
+{
+ typedef traits<PlainObjectType> BaseTraits;
+ typedef typename BaseTraits::Scalar Scalar;
+ typedef typename BaseTraits::StorageKind StorageKind;
+ typedef typename BaseTraits::Index Index;
+ static const int NumDimensions = BaseTraits::NumDimensions;
+ static const int Layout = BaseTraits::Layout;
+ enum {
+ Options = BaseTraits::Options,
+ Flags = BaseTraits::Flags
+ };
+};
+
+
+template<typename _Scalar, int NumIndices_, int Options, typename IndexType_>
+struct eval<Tensor<_Scalar, NumIndices_, Options, IndexType_>, Eigen::Dense>
+{
+ typedef const Tensor<_Scalar, NumIndices_, Options, IndexType_>& type;
+};
+
+template<typename _Scalar, int NumIndices_, int Options, typename IndexType_>
+struct eval<const Tensor<_Scalar, NumIndices_, Options, IndexType_>, Eigen::Dense>
+{
+ typedef const Tensor<_Scalar, NumIndices_, Options, IndexType_>& type;
+};
+
+template<typename Scalar_, typename Dimensions, int Options, typename IndexType_>
+struct eval<TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>, Eigen::Dense>
+{
+ typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>& type;
+};
+
+template<typename Scalar_, typename Dimensions, int Options, typename IndexType_>
+struct eval<const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>, Eigen::Dense>
+{
+ typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>& type;
+};
+
+template<typename PlainObjectType, int Options, template <class> class MakePointer>
+struct eval<TensorMap<PlainObjectType, Options, MakePointer>, Eigen::Dense>
+{
+ typedef const TensorMap<PlainObjectType, Options, MakePointer>& type;
+};
+
+template<typename PlainObjectType, int Options, template <class> class MakePointer>
+struct eval<const TensorMap<PlainObjectType, Options, MakePointer>, Eigen::Dense>
+{
+ typedef const TensorMap<PlainObjectType, Options, MakePointer>& type;
+};
+
+template<typename PlainObjectType>
+struct eval<TensorRef<PlainObjectType>, Eigen::Dense>
+{
+ typedef const TensorRef<PlainObjectType>& type;
+};
+
+template<typename PlainObjectType>
+struct eval<const TensorRef<PlainObjectType>, Eigen::Dense>
+{
+ typedef const TensorRef<PlainObjectType>& type;
+};
+
+// TODO nested<> does not exist anymore in Eigen/Core, and it thus has to be removed in favor of ref_selector.
+template<typename T, int n=1, typename PlainObject = void> struct nested
+{
+ typedef typename ref_selector<T>::type type;
+};
+
+template <typename Scalar_, int NumIndices_, int Options_, typename IndexType_>
+struct nested<Tensor<Scalar_, NumIndices_, Options_, IndexType_> >
+{
+ typedef const Tensor<Scalar_, NumIndices_, Options_, IndexType_>& type;
+};
+
+template <typename Scalar_, int NumIndices_, int Options_, typename IndexType_>
+struct nested<const Tensor<Scalar_, NumIndices_, Options_, IndexType_> >
+{
+ typedef const Tensor<Scalar_, NumIndices_, Options_, IndexType_>& type;
+};
+
+template <typename Scalar_, typename Dimensions, int Options, typename IndexType_>
+struct nested<TensorFixedSize<Scalar_, Dimensions, Options, IndexType_> >
+{
+ typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>& type;
+};
+
+template <typename Scalar_, typename Dimensions, int Options, typename IndexType_>
+struct nested<const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_> >
+{
+ typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>& type;
+};
+
+
+template <typename PlainObjectType, int Options, template <class> class MakePointer>
+struct nested<TensorMap<PlainObjectType, Options, MakePointer> >
+{
+ typedef const TensorMap<PlainObjectType, Options, MakePointer>& type;
+};
+
+template <typename PlainObjectType, int Options, template <class> class MakePointer>
+struct nested<const TensorMap<PlainObjectType, Options, MakePointer> >
+{
+ typedef const TensorMap<PlainObjectType, Options, MakePointer>& type;
+};
+
+template <typename PlainObjectType>
+struct nested<TensorRef<PlainObjectType> >
+{
+ typedef const TensorRef<PlainObjectType>& type;
+};
+
+template <typename PlainObjectType>
+struct nested<const TensorRef<PlainObjectType> >
+{
+ typedef const TensorRef<PlainObjectType>& type;
+};
+
+} // end namespace internal
+
+// Convolutional layers take in an input tensor of shape (D, R, C, B), or (D, C,
+// R, B), and convolve it with a set of filters, which can also be presented as
+// a tensor (D, K, K, M), where M is the number of filters, K is the filter
+// size, and each 3-dimensional tensor of size (D, K, K) is a filter. For
+// simplicity we assume that we always use square filters (which is usually the
+// case in images), hence the two Ks in the tensor dimension. It also takes in
+// a few additional parameters:
+// Stride (S): The convolution stride is the offset between locations where we
+// apply the filters. A larger stride means that the output will be
+// spatially smaller.
+// Padding (P): The padding we apply to the input tensor along the R and C
+// dimensions. This is usually used to make sure that the spatial
+// dimensions of the output matches our intention.
+//
+// Two types of padding are often used:
+// SAME: The pad value is computed so that the output will have size
+// R/S and C/S.
+// VALID: no padding is carried out.
+// When we do padding, the padded values at the padded locations are usually
+// zero.
+//
+// The output dimensions for convolution, when given all the parameters above,
+// are as follows:
+// When Padding = SAME: the output size is (B, R', C', M), where
+// R' = ceil(float(R) / float(S))
+// C' = ceil(float(C) / float(S))
+// where ceil is the ceiling function. The input tensor is padded with 0 as
+// needed. The number of padded rows and columns are computed as:
+// Pr = ((R' - 1) * S + K - R) / 2
+// Pc = ((C' - 1) * S + K - C) / 2
+// when the stride is 1, we have the simplified case R'=R, C'=C, Pr=Pc=(K-1)/2.
+// This is where SAME comes from - the output has the same size as the input has.
+// When Padding = VALID: the output size is computed as
+// R' = ceil(float(R - K + 1) / float(S))
+// C' = ceil(float(C - K + 1) / float(S))
+// and the number of padded rows and columns are computed in the same way as in
+// the SAME case.
+// When the stride is 1, we have the simplified case R'=R-K+1, C'=C-K+1, Pr=0,
+// Pc=0.
+typedef enum {
+ PADDING_VALID = 1,
+ PADDING_SAME = 2
+} PaddingType;
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h b/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h
new file mode 100644
index 000000000..3523e7c94
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h
@@ -0,0 +1,248 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_UINT128_H
+#define EIGEN_CXX11_TENSOR_TENSOR_UINT128_H
+
+namespace Eigen {
+namespace internal {
+
+
+template <uint64_t n>
+struct static_val {
+ static const uint64_t value = n;
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE operator uint64_t() const { return n; }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static_val() { }
+
+ template <typename T>
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static_val(const T& v) {
+ eigen_assert(v == n);
+ }
+};
+
+
+template <typename HIGH = uint64_t, typename LOW = uint64_t>
+struct TensorUInt128
+{
+ HIGH high;
+ LOW low;
+
+ template<typename OTHER_HIGH, typename OTHER_LOW>
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+ TensorUInt128(const TensorUInt128<OTHER_HIGH, OTHER_LOW>& other) : high(other.high), low(other.low) {
+ EIGEN_STATIC_ASSERT(sizeof(OTHER_HIGH) <= sizeof(HIGH), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ EIGEN_STATIC_ASSERT(sizeof(OTHER_LOW) <= sizeof(LOW), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ }
+
+ template<typename OTHER_HIGH, typename OTHER_LOW>
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+ TensorUInt128& operator = (const TensorUInt128<OTHER_HIGH, OTHER_LOW>& other) {
+ EIGEN_STATIC_ASSERT(sizeof(OTHER_HIGH) <= sizeof(HIGH), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ EIGEN_STATIC_ASSERT(sizeof(OTHER_LOW) <= sizeof(LOW), YOU_MADE_A_PROGRAMMING_MISTAKE);
+ high = other.high;
+ low = other.low;
+ return *this;
+ }
+
+ template<typename T>
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+ explicit TensorUInt128(const T& x) : high(0), low(x) {
+ eigen_assert((static_cast<typename conditional<sizeof(T) == 8, uint64_t, uint32_t>::type>(x) <= NumTraits<uint64_t>::highest()));
+ eigen_assert(x >= 0);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+ TensorUInt128(HIGH y, LOW x) : high(y), low(x) { }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE operator LOW() const {
+ return low;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LOW lower() const {
+ return low;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HIGH upper() const {
+ return high;
+ }
+};
+
+
+template <typename HL, typename LL, typename HR, typename LR>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+bool operator == (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
+{
+ return (lhs.high == rhs.high) & (lhs.low == rhs.low);
+}
+
+template <typename HL, typename LL, typename HR, typename LR>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+bool operator != (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
+{
+ return (lhs.high != rhs.high) | (lhs.low != rhs.low);
+}
+
+template <typename HL, typename LL, typename HR, typename LR>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+bool operator >= (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
+{
+ if (lhs.high != rhs.high) {
+ return lhs.high > rhs.high;
+ }
+ return lhs.low >= rhs.low;
+}
+
+template <typename HL, typename LL, typename HR, typename LR>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+bool operator < (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
+{
+ if (lhs.high != rhs.high) {
+ return lhs.high < rhs.high;
+ }
+ return lhs.low < rhs.low;
+}
+
+template <typename HL, typename LL, typename HR, typename LR>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+TensorUInt128<uint64_t, uint64_t> operator + (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
+{
+ TensorUInt128<uint64_t, uint64_t> result(lhs.high + rhs.high, lhs.low + rhs.low);
+ if (result.low < rhs.low) {
+ result.high += 1;
+ }
+ return result;
+}
+
+template <typename HL, typename LL, typename HR, typename LR>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+TensorUInt128<uint64_t, uint64_t> operator - (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
+{
+ TensorUInt128<uint64_t, uint64_t> result(lhs.high - rhs.high, lhs.low - rhs.low);
+ if (result.low > lhs.low) {
+ result.high -= 1;
+ }
+ return result;
+}
+
+
+template <typename HL, typename LL, typename HR, typename LR>
+static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+TensorUInt128<uint64_t, uint64_t> operator * (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
+{
+ // Split each 128-bit integer into 4 32-bit integers, and then do the
+ // multiplications by hand as follow:
+ // lhs a b c d
+ // rhs e f g h
+ // -----------
+ // ah bh ch dh
+ // bg cg dg
+ // cf df
+ // de
+ // The result is stored in 2 64bit integers, high and low.
+
+ const uint64_t LOW = 0x00000000FFFFFFFFLL;
+ const uint64_t HIGH = 0xFFFFFFFF00000000LL;
+
+ uint64_t d = lhs.low & LOW;
+ uint64_t c = (lhs.low & HIGH) >> 32LL;
+ uint64_t b = lhs.high & LOW;
+ uint64_t a = (lhs.high & HIGH) >> 32LL;
+
+ uint64_t h = rhs.low & LOW;
+ uint64_t g = (rhs.low & HIGH) >> 32LL;
+ uint64_t f = rhs.high & LOW;
+ uint64_t e = (rhs.high & HIGH) >> 32LL;
+
+ // Compute the low 32 bits of low
+ uint64_t acc = d * h;
+ uint64_t low = acc & LOW;
+ // Compute the high 32 bits of low. Add a carry every time we wrap around
+ acc >>= 32LL;
+ uint64_t carry = 0;
+ uint64_t acc2 = acc + c * h;
+ if (acc2 < acc) {
+ carry++;
+ }
+ acc = acc2 + d * g;
+ if (acc < acc2) {
+ carry++;
+ }
+ low |= (acc << 32LL);
+
+ // Carry forward the high bits of acc to initiate the computation of the
+ // low 32 bits of high
+ acc2 = (acc >> 32LL) | (carry << 32LL);
+ carry = 0;
+
+ acc = acc2 + b * h;
+ if (acc < acc2) {
+ carry++;
+ }
+ acc2 = acc + c * g;
+ if (acc2 < acc) {
+ carry++;
+ }
+ acc = acc2 + d * f;
+ if (acc < acc2) {
+ carry++;
+ }
+ uint64_t high = acc & LOW;
+
+ // Start to compute the high 32 bits of high.
+ acc2 = (acc >> 32LL) | (carry << 32LL);
+
+ acc = acc2 + a * h;
+ acc2 = acc + b * g;
+ acc = acc2 + c * f;
+ acc2 = acc + d * e;
+ high |= (acc2 << 32LL);
+
+ return TensorUInt128<uint64_t, uint64_t>(high, low);
+}
+
+template <typename HL, typename LL, typename HR, typename LR>
+static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+TensorUInt128<uint64_t, uint64_t> operator / (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
+{
+ if (rhs == TensorUInt128<static_val<0>, static_val<1> >(1)) {
+ return TensorUInt128<uint64_t, uint64_t>(lhs.high, lhs.low);
+ } else if (lhs < rhs) {
+ return TensorUInt128<uint64_t, uint64_t>(0);
+ } else {
+ // calculate the biggest power of 2 times rhs that's less than or equal to lhs
+ TensorUInt128<uint64_t, uint64_t> power2(1);
+ TensorUInt128<uint64_t, uint64_t> d(rhs);
+ TensorUInt128<uint64_t, uint64_t> tmp(lhs - d);
+ while (lhs >= d) {
+ tmp = tmp - d;
+ d = d + d;
+ power2 = power2 + power2;
+ }
+
+ tmp = TensorUInt128<uint64_t, uint64_t>(lhs.high, lhs.low);
+ TensorUInt128<uint64_t, uint64_t> result(0);
+ while (power2 != TensorUInt128<static_val<0>, static_val<0> >(0)) {
+ if (tmp >= d) {
+ tmp = tmp - d;
+ result = result + power2;
+ }
+ // Shift right
+ power2 = TensorUInt128<uint64_t, uint64_t>(power2.high >> 1, (power2.low >> 1) | (power2.high << 63));
+ d = TensorUInt128<uint64_t, uint64_t>(d.high >> 1, (d.low >> 1) | (d.high << 63));
+ }
+
+ return result;
+ }
+}
+
+
+} // namespace internal
+} // namespace Eigen
+
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_UINT128_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h b/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h
new file mode 100644
index 000000000..0ca2cac84
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h
@@ -0,0 +1,608 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
+#define EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
+
+namespace Eigen {
+
+/** \class TensorVolumePatch
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Patch extraction specialized for processing of volumetric data.
+ * This assumes that the input has a least 4 dimensions ordered as follows:
+ * - channels
+ * - planes
+ * - rows
+ * - columns
+ * - (optional) additional dimensions such as time or batch size.
+ * Calling the volume patch code with patch_planes, patch_rows, and patch_cols
+ * is equivalent to calling the regular patch extraction code with parameters
+ * d, patch_planes, patch_rows, patch_cols, and 1 for all the additional
+ * dimensions.
+ */
+namespace internal {
+template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
+struct traits<TensorVolumePatchOp<Planes, Rows, Cols, XprType> > : public traits<XprType>
+{
+ typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions + 1;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
+struct eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, Eigen::Dense>
+{
+ typedef const TensorVolumePatchOp<Planes, Rows, Cols, XprType>& type;
+};
+
+template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
+struct nested<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, 1, typename eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType> >::type>
+{
+ typedef TensorVolumePatchOp<Planes, Rows, Cols, XprType> type;
+};
+
+} // end namespace internal
+
+template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
+class TensorVolumePatchOp : public TensorBase<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorVolumePatchOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorVolumePatchOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols,
+ DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides,
+ DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides,
+ DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
+ PaddingType padding_type, Scalar padding_value)
+ : m_xpr(expr), m_patch_planes(patch_planes), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
+ m_plane_strides(plane_strides), m_row_strides(row_strides), m_col_strides(col_strides),
+ m_in_plane_strides(in_plane_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
+ m_plane_inflate_strides(plane_inflate_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
+ m_padding_explicit(false), m_padding_top_z(0), m_padding_bottom_z(0), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0),
+ m_padding_type(padding_type), m_padding_value(padding_value) {}
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols,
+ DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides,
+ DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides,
+ DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
+ DenseIndex padding_top_z, DenseIndex padding_bottom_z,
+ DenseIndex padding_top, DenseIndex padding_bottom,
+ DenseIndex padding_left, DenseIndex padding_right,
+ Scalar padding_value)
+ : m_xpr(expr), m_patch_planes(patch_planes), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
+ m_plane_strides(plane_strides), m_row_strides(row_strides), m_col_strides(col_strides),
+ m_in_plane_strides(in_plane_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
+ m_plane_inflate_strides(plane_inflate_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
+ m_padding_explicit(true), m_padding_top_z(padding_top_z), m_padding_bottom_z(padding_bottom_z), m_padding_top(padding_top), m_padding_bottom(padding_bottom),
+ m_padding_left(padding_left), m_padding_right(padding_right),
+ m_padding_type(PADDING_VALID), m_padding_value(padding_value) {}
+
+ EIGEN_DEVICE_FUNC
+ DenseIndex patch_planes() const { return m_patch_planes; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex patch_rows() const { return m_patch_rows; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex patch_cols() const { return m_patch_cols; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex plane_strides() const { return m_plane_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex row_strides() const { return m_row_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex col_strides() const { return m_col_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex in_plane_strides() const { return m_in_plane_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex in_row_strides() const { return m_in_row_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex in_col_strides() const { return m_in_col_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex plane_inflate_strides() const { return m_plane_inflate_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex row_inflate_strides() const { return m_row_inflate_strides; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex col_inflate_strides() const { return m_col_inflate_strides; }
+ EIGEN_DEVICE_FUNC
+ bool padding_explicit() const { return m_padding_explicit; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex padding_top_z() const { return m_padding_top_z; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex padding_bottom_z() const { return m_padding_bottom_z; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex padding_top() const { return m_padding_top; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex padding_bottom() const { return m_padding_bottom; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex padding_left() const { return m_padding_left; }
+ EIGEN_DEVICE_FUNC
+ DenseIndex padding_right() const { return m_padding_right; }
+ EIGEN_DEVICE_FUNC
+ PaddingType padding_type() const { return m_padding_type; }
+ EIGEN_DEVICE_FUNC
+ Scalar padding_value() const { return m_padding_value; }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const DenseIndex m_patch_planes;
+ const DenseIndex m_patch_rows;
+ const DenseIndex m_patch_cols;
+ const DenseIndex m_plane_strides;
+ const DenseIndex m_row_strides;
+ const DenseIndex m_col_strides;
+ const DenseIndex m_in_plane_strides;
+ const DenseIndex m_in_row_strides;
+ const DenseIndex m_in_col_strides;
+ const DenseIndex m_plane_inflate_strides;
+ const DenseIndex m_row_inflate_strides;
+ const DenseIndex m_col_inflate_strides;
+ const bool m_padding_explicit;
+ const DenseIndex m_padding_top_z;
+ const DenseIndex m_padding_bottom_z;
+ const DenseIndex m_padding_top;
+ const DenseIndex m_padding_bottom;
+ const DenseIndex m_padding_left;
+ const DenseIndex m_padding_right;
+ const PaddingType m_padding_type;
+ const Scalar m_padding_value;
+};
+
+
+// Eval as rvalue
+template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorVolumePatchOp<Planes, Rows, Cols, ArgType>, Device>
+{
+ typedef TensorVolumePatchOp<Planes, Rows, Cols, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
+ static const int NumDims = NumInputDims + 1;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ BlockAccess = false,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false,
+ RawAccess = false
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device)
+ {
+ EIGEN_STATIC_ASSERT((NumDims >= 5), YOU_MADE_A_PROGRAMMING_MISTAKE);
+
+ m_paddingValue = op.padding_value();
+
+ const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
+
+ // Cache a few variables.
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_inputDepth = input_dims[0];
+ m_inputPlanes = input_dims[1];
+ m_inputRows = input_dims[2];
+ m_inputCols = input_dims[3];
+ } else {
+ m_inputDepth = input_dims[NumInputDims-1];
+ m_inputPlanes = input_dims[NumInputDims-2];
+ m_inputRows = input_dims[NumInputDims-3];
+ m_inputCols = input_dims[NumInputDims-4];
+ }
+
+ m_plane_strides = op.plane_strides();
+ m_row_strides = op.row_strides();
+ m_col_strides = op.col_strides();
+
+ // Input strides and effective input/patch size
+ m_in_plane_strides = op.in_plane_strides();
+ m_in_row_strides = op.in_row_strides();
+ m_in_col_strides = op.in_col_strides();
+ m_plane_inflate_strides = op.plane_inflate_strides();
+ m_row_inflate_strides = op.row_inflate_strides();
+ m_col_inflate_strides = op.col_inflate_strides();
+
+ // The "effective" spatial size after inflating data with zeros.
+ m_input_planes_eff = (m_inputPlanes - 1) * m_plane_inflate_strides + 1;
+ m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
+ m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
+ m_patch_planes_eff = op.patch_planes() + (op.patch_planes() - 1) * (m_in_plane_strides - 1);
+ m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
+ m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
+
+ if (op.padding_explicit()) {
+ m_outputPlanes = numext::ceil((m_input_planes_eff + op.padding_top_z() + op.padding_bottom_z() - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides));
+ m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
+ m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
+ m_planePaddingTop = op.padding_top_z();
+ m_rowPaddingTop = op.padding_top();
+ m_colPaddingLeft = op.padding_left();
+ } else {
+ // Computing padding from the type
+ switch (op.padding_type()) {
+ case PADDING_VALID:
+ m_outputPlanes = numext::ceil((m_input_planes_eff - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides));
+ m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
+ m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
+ m_planePaddingTop = 0;
+ m_rowPaddingTop = 0;
+ m_colPaddingLeft = 0;
+ break;
+ case PADDING_SAME: {
+ m_outputPlanes = numext::ceil(m_input_planes_eff / static_cast<float>(m_plane_strides));
+ m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
+ m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
+ const Index dz = m_outputPlanes * m_plane_strides + m_patch_planes_eff - 1 - m_input_planes_eff;
+ const Index dy = m_outputRows * m_row_strides + m_patch_rows_eff - 1 - m_input_rows_eff;
+ const Index dx = m_outputCols * m_col_strides + m_patch_cols_eff - 1 - m_input_cols_eff;
+ m_planePaddingTop = dz - dz / 2;
+ m_rowPaddingTop = dy - dy / 2;
+ m_colPaddingLeft = dx - dx / 2;
+ break;
+ }
+ default:
+ eigen_assert(false && "unexpected padding");
+ }
+ }
+ eigen_assert(m_outputRows > 0);
+ eigen_assert(m_outputCols > 0);
+ eigen_assert(m_outputPlanes > 0);
+
+ // Dimensions for result of extraction.
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ // ColMajor
+ // 0: depth
+ // 1: patch_planes
+ // 2: patch_rows
+ // 3: patch_cols
+ // 4: number of patches
+ // 5 and beyond: anything else (such as batch).
+ m_dimensions[0] = input_dims[0];
+ m_dimensions[1] = op.patch_planes();
+ m_dimensions[2] = op.patch_rows();
+ m_dimensions[3] = op.patch_cols();
+ m_dimensions[4] = m_outputPlanes * m_outputRows * m_outputCols;
+ for (int i = 5; i < NumDims; ++i) {
+ m_dimensions[i] = input_dims[i-1];
+ }
+ } else {
+ // RowMajor
+ // NumDims-1: depth
+ // NumDims-2: patch_planes
+ // NumDims-3: patch_rows
+ // NumDims-4: patch_cols
+ // NumDims-5: number of patches
+ // NumDims-6 and beyond: anything else (such as batch).
+ m_dimensions[NumDims-1] = input_dims[NumInputDims-1];
+ m_dimensions[NumDims-2] = op.patch_planes();
+ m_dimensions[NumDims-3] = op.patch_rows();
+ m_dimensions[NumDims-4] = op.patch_cols();
+ m_dimensions[NumDims-5] = m_outputPlanes * m_outputRows * m_outputCols;
+ for (int i = NumDims-6; i >= 0; --i) {
+ m_dimensions[i] = input_dims[i];
+ }
+ }
+
+ // Strides for the output tensor.
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_rowStride = m_dimensions[1];
+ m_colStride = m_dimensions[2] * m_rowStride;
+ m_patchStride = m_colStride * m_dimensions[3] * m_dimensions[0];
+ m_otherStride = m_patchStride * m_dimensions[4];
+ } else {
+ m_rowStride = m_dimensions[NumDims-2];
+ m_colStride = m_dimensions[NumDims-3] * m_rowStride;
+ m_patchStride = m_colStride * m_dimensions[NumDims-4] * m_dimensions[NumDims-1];
+ m_otherStride = m_patchStride * m_dimensions[NumDims-5];
+ }
+
+ // Strides for navigating through the input tensor.
+ m_planeInputStride = m_inputDepth;
+ m_rowInputStride = m_inputDepth * m_inputPlanes;
+ m_colInputStride = m_inputDepth * m_inputRows * m_inputPlanes;
+ m_otherInputStride = m_inputDepth * m_inputRows * m_inputCols * m_inputPlanes;
+
+ m_outputPlanesRows = m_outputPlanes * m_outputRows;
+
+ // Fast representations of different variables.
+ m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
+ m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
+ m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
+ m_fastRowStride = internal::TensorIntDivisor<Index>(m_rowStride);
+ m_fastInputRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
+ m_fastInputColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
+ m_fastInputPlaneStride = internal::TensorIntDivisor<Index>(m_plane_inflate_strides);
+ m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
+ m_fastOutputPlanes = internal::TensorIntDivisor<Index>(m_outputPlanes);
+ m_fastOutputPlanesRows = internal::TensorIntDivisor<Index>(m_outputPlanesRows);
+
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
+ } else {
+ m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ // Patch index corresponding to the passed in index.
+ const Index patchIndex = index / m_fastPatchStride;
+
+ // Spatial offset within the patch. This has to be translated into 3D
+ // coordinates within the patch.
+ const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
+
+ // Batch, etc.
+ const Index otherIndex = (NumDims == 5) ? 0 : index / m_fastOtherStride;
+ const Index patch3DIndex = (NumDims == 5) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
+
+ // Calculate column index in the input original tensor.
+ const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
+ const Index colOffset = patchOffset / m_fastColStride;
+ const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
+ const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0);
+ if (inputCol < 0 || inputCol >= m_input_cols_eff ||
+ ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
+ return Scalar(m_paddingValue);
+ }
+
+ // Calculate row index in the original input tensor.
+ const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
+ const Index rowOffset = (patchOffset - colOffset * m_colStride) / m_fastRowStride;
+ const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
+ const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0);
+ if (inputRow < 0 || inputRow >= m_input_rows_eff ||
+ ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
+ return Scalar(m_paddingValue);
+ }
+
+ // Calculate plane index in the original input tensor.
+ const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex));
+ const Index planeOffset = patchOffset - colOffset * m_colStride - rowOffset * m_rowStride;
+ const Index inputPlane = planeIndex * m_plane_strides + planeOffset * m_in_plane_strides - m_planePaddingTop;
+ const Index origInputPlane = (m_plane_inflate_strides == 1) ? inputPlane : ((inputPlane >= 0) ? (inputPlane / m_fastInputPlaneStride) : 0);
+ if (inputPlane < 0 || inputPlane >= m_input_planes_eff ||
+ ((m_plane_inflate_strides != 1) && (inputPlane != origInputPlane * m_plane_inflate_strides))) {
+ return Scalar(m_paddingValue);
+ }
+
+ const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
+ const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
+
+ const Index inputIndex = depth +
+ origInputRow * m_rowInputStride +
+ origInputCol * m_colInputStride +
+ origInputPlane * m_planeInputStride +
+ otherIndex * m_otherInputStride;
+
+ return m_impl.coeff(inputIndex);
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
+
+ if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1 ||
+ m_in_plane_strides != 1 || m_plane_inflate_strides != 1) {
+ return packetWithPossibleZero(index);
+ }
+
+ const Index indices[2] = {index, index + PacketSize - 1};
+ const Index patchIndex = indices[0] / m_fastPatchStride;
+ if (patchIndex != indices[1] / m_fastPatchStride) {
+ return packetWithPossibleZero(index);
+ }
+ const Index otherIndex = (NumDims == 5) ? 0 : indices[0] / m_fastOtherStride;
+ eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
+
+ // Find the offset of the element wrt the location of the first element.
+ const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
+ (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
+
+ const Index patch3DIndex = (NumDims == 5) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
+ eigen_assert(patch3DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
+
+ const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
+ const Index colOffsets[2] = {
+ patchOffsets[0] / m_fastColStride,
+ patchOffsets[1] / m_fastColStride};
+
+ // Calculate col indices in the original input tensor.
+ const Index inputCols[2] = {
+ colIndex * m_col_strides + colOffsets[0] - m_colPaddingLeft,
+ colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
+ if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
+ return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
+ }
+
+ if (inputCols[0] != inputCols[1]) {
+ return packetWithPossibleZero(index);
+ }
+
+ const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
+ const Index rowOffsets[2] = {
+ (patchOffsets[0] - colOffsets[0] * m_colStride) / m_fastRowStride,
+ (patchOffsets[1] - colOffsets[1] * m_colStride) / m_fastRowStride};
+ eigen_assert(rowOffsets[0] <= rowOffsets[1]);
+ // Calculate col indices in the original input tensor.
+ const Index inputRows[2] = {
+ rowIndex * m_row_strides + rowOffsets[0] - m_rowPaddingTop,
+ rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
+
+ if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
+ return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
+ }
+
+ if (inputRows[0] != inputRows[1]) {
+ return packetWithPossibleZero(index);
+ }
+
+ const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex));
+ const Index planeOffsets[2] = {
+ patchOffsets[0] - colOffsets[0] * m_colStride - rowOffsets[0] * m_rowStride,
+ patchOffsets[1] - colOffsets[1] * m_colStride - rowOffsets[1] * m_rowStride};
+ eigen_assert(planeOffsets[0] <= planeOffsets[1]);
+ const Index inputPlanes[2] = {
+ planeIndex * m_plane_strides + planeOffsets[0] - m_planePaddingTop,
+ planeIndex * m_plane_strides + planeOffsets[1] - m_planePaddingTop};
+
+ if (inputPlanes[1] < 0 || inputPlanes[0] >= m_inputPlanes) {
+ return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
+ }
+
+ if (inputPlanes[0] >= 0 && inputPlanes[1] < m_inputPlanes) {
+ // no padding
+ const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
+ const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
+ const Index inputIndex = depth +
+ inputRows[0] * m_rowInputStride +
+ inputCols[0] * m_colInputStride +
+ m_planeInputStride * inputPlanes[0] +
+ otherIndex * m_otherInputStride;
+ return m_impl.template packet<Unaligned>(inputIndex);
+ }
+
+ return packetWithPossibleZero(index);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
+ costPerCoeff(bool vectorized) const {
+ const double compute_cost =
+ 10 * TensorOpCost::DivCost<Index>() + 21 * TensorOpCost::MulCost<Index>() +
+ 8 * TensorOpCost::AddCost<Index>();
+ return TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
+
+ Index planePaddingTop() const { return m_planePaddingTop; }
+ Index rowPaddingTop() const { return m_rowPaddingTop; }
+ Index colPaddingLeft() const { return m_colPaddingLeft; }
+ Index outputPlanes() const { return m_outputPlanes; }
+ Index outputRows() const { return m_outputRows; }
+ Index outputCols() const { return m_outputCols; }
+ Index userPlaneStride() const { return m_plane_strides; }
+ Index userRowStride() const { return m_row_strides; }
+ Index userColStride() const { return m_col_strides; }
+ Index userInPlaneStride() const { return m_in_plane_strides; }
+ Index userInRowStride() const { return m_in_row_strides; }
+ Index userInColStride() const { return m_in_col_strides; }
+ Index planeInflateStride() const { return m_plane_inflate_strides; }
+ Index rowInflateStride() const { return m_row_inflate_strides; }
+ Index colInflateStride() const { return m_col_inflate_strides; }
+
+ protected:
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
+ {
+ EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
+ for (int i = 0; i < PacketSize; ++i) {
+ values[i] = coeff(index+i);
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+
+ Dimensions m_dimensions;
+
+ // Parameters passed to the costructor.
+ Index m_plane_strides;
+ Index m_row_strides;
+ Index m_col_strides;
+
+ Index m_outputPlanes;
+ Index m_outputRows;
+ Index m_outputCols;
+
+ Index m_planePaddingTop;
+ Index m_rowPaddingTop;
+ Index m_colPaddingLeft;
+
+ Index m_in_plane_strides;
+ Index m_in_row_strides;
+ Index m_in_col_strides;
+
+ Index m_plane_inflate_strides;
+ Index m_row_inflate_strides;
+ Index m_col_inflate_strides;
+
+ // Cached input size.
+ Index m_inputDepth;
+ Index m_inputPlanes;
+ Index m_inputRows;
+ Index m_inputCols;
+
+ // Other cached variables.
+ Index m_outputPlanesRows;
+
+ // Effective input/patch post-inflation size.
+ Index m_input_planes_eff;
+ Index m_input_rows_eff;
+ Index m_input_cols_eff;
+ Index m_patch_planes_eff;
+ Index m_patch_rows_eff;
+ Index m_patch_cols_eff;
+
+ // Strides for the output tensor.
+ Index m_otherStride;
+ Index m_patchStride;
+ Index m_rowStride;
+ Index m_colStride;
+
+ // Strides for the input tensor.
+ Index m_planeInputStride;
+ Index m_rowInputStride;
+ Index m_colInputStride;
+ Index m_otherInputStride;
+
+ internal::TensorIntDivisor<Index> m_fastOtherStride;
+ internal::TensorIntDivisor<Index> m_fastPatchStride;
+ internal::TensorIntDivisor<Index> m_fastColStride;
+ internal::TensorIntDivisor<Index> m_fastRowStride;
+ internal::TensorIntDivisor<Index> m_fastInputPlaneStride;
+ internal::TensorIntDivisor<Index> m_fastInputRowStride;
+ internal::TensorIntDivisor<Index> m_fastInputColStride;
+ internal::TensorIntDivisor<Index> m_fastInputColsEff;
+ internal::TensorIntDivisor<Index> m_fastOutputPlanesRows;
+ internal::TensorIntDivisor<Index> m_fastOutputPlanes;
+ internal::TensorIntDivisor<Index> m_fastOutputDepth;
+
+ Scalar m_paddingValue;
+
+ TensorEvaluator<ArgType, Device> m_impl;
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H