aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/EulerAngles/EulerAngles.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/src/EulerAngles/EulerAngles.h')
-rw-r--r--unsupported/Eigen/src/EulerAngles/EulerAngles.h386
1 files changed, 386 insertions, 0 deletions
diff --git a/unsupported/Eigen/src/EulerAngles/EulerAngles.h b/unsupported/Eigen/src/EulerAngles/EulerAngles.h
new file mode 100644
index 000000000..13a0da1ab
--- /dev/null
+++ b/unsupported/Eigen/src/EulerAngles/EulerAngles.h
@@ -0,0 +1,386 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_EULERANGLESCLASS_H// TODO: Fix previous "EIGEN_EULERANGLES_H" definition?
+#define EIGEN_EULERANGLESCLASS_H
+
+namespace Eigen
+{
+ /*template<typename Other,
+ int OtherRows=Other::RowsAtCompileTime,
+ int OtherCols=Other::ColsAtCompileTime>
+ struct ei_eulerangles_assign_impl;*/
+
+ /** \class EulerAngles
+ *
+ * \ingroup EulerAngles_Module
+ *
+ * \brief Represents a rotation in a 3 dimensional space as three Euler angles.
+ *
+ * Euler rotation is a set of three rotation of three angles over three fixed axes, defined by the EulerSystem given as a template parameter.
+ *
+ * Here is how intrinsic Euler angles works:
+ * - first, rotate the axes system over the alpha axis in angle alpha
+ * - then, rotate the axes system over the beta axis(which was rotated in the first stage) in angle beta
+ * - then, rotate the axes system over the gamma axis(which was rotated in the two stages above) in angle gamma
+ *
+ * \note This class support only intrinsic Euler angles for simplicity,
+ * see EulerSystem how to easily overcome this for extrinsic systems.
+ *
+ * ### Rotation representation and conversions ###
+ *
+ * It has been proved(see Wikipedia link below) that every rotation can be represented
+ * by Euler angles, but there is no singular representation (e.g. unlike rotation matrices).
+ * Therefore, you can convert from Eigen rotation and to them
+ * (including rotation matrices, which is not called "rotations" by Eigen design).
+ *
+ * Euler angles usually used for:
+ * - convenient human representation of rotation, especially in interactive GUI.
+ * - gimbal systems and robotics
+ * - efficient encoding(i.e. 3 floats only) of rotation for network protocols.
+ *
+ * However, Euler angles are slow comparing to quaternion or matrices,
+ * because their unnatural math definition, although it's simple for human.
+ * To overcome this, this class provide easy movement from the math friendly representation
+ * to the human friendly representation, and vise-versa.
+ *
+ * All the user need to do is a safe simple C++ type conversion,
+ * and this class take care for the math.
+ * Additionally, some axes related computation is done in compile time.
+ *
+ * #### Euler angles ranges in conversions ####
+ *
+ * When converting some rotation to Euler angles, there are some ways you can guarantee
+ * the Euler angles ranges.
+ *
+ * #### implicit ranges ####
+ * When using implicit ranges, all angles are guarantee to be in the range [-PI, +PI],
+ * unless you convert from some other Euler angles.
+ * In this case, the range is __undefined__ (might be even less than -PI or greater than +2*PI).
+ * \sa EulerAngles(const MatrixBase<Derived>&)
+ * \sa EulerAngles(const RotationBase<Derived, 3>&)
+ *
+ * #### explicit ranges ####
+ * When using explicit ranges, all angles are guarantee to be in the range you choose.
+ * In the range Boolean parameter, you're been ask whether you prefer the positive range or not:
+ * - _true_ - force the range between [0, +2*PI]
+ * - _false_ - force the range between [-PI, +PI]
+ *
+ * ##### compile time ranges #####
+ * This is when you have compile time ranges and you prefer to
+ * use template parameter. (e.g. for performance)
+ * \sa FromRotation()
+ *
+ * ##### run-time time ranges #####
+ * Run-time ranges are also supported.
+ * \sa EulerAngles(const MatrixBase<Derived>&, bool, bool, bool)
+ * \sa EulerAngles(const RotationBase<Derived, 3>&, bool, bool, bool)
+ *
+ * ### Convenient user typedefs ###
+ *
+ * Convenient typedefs for EulerAngles exist for float and double scalar,
+ * in a form of EulerAngles{A}{B}{C}{scalar},
+ * e.g. \ref EulerAnglesXYZd, \ref EulerAnglesZYZf.
+ *
+ * Only for positive axes{+x,+y,+z} Euler systems are have convenient typedef.
+ * If you need negative axes{-x,-y,-z}, it is recommended to create you own typedef with
+ * a word that represent what you need.
+ *
+ * ### Example ###
+ *
+ * \include EulerAngles.cpp
+ * Output: \verbinclude EulerAngles.out
+ *
+ * ### Additional reading ###
+ *
+ * If you're want to get more idea about how Euler system work in Eigen see EulerSystem.
+ *
+ * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
+ *
+ * \tparam _Scalar the scalar type, i.e., the type of the angles.
+ *
+ * \tparam _System the EulerSystem to use, which represents the axes of rotation.
+ */
+ template <typename _Scalar, class _System>
+ class EulerAngles : public RotationBase<EulerAngles<_Scalar, _System>, 3>
+ {
+ public:
+ /** the scalar type of the angles */
+ typedef _Scalar Scalar;
+
+ /** the EulerSystem to use, which represents the axes of rotation. */
+ typedef _System System;
+
+ typedef Matrix<Scalar,3,3> Matrix3; /*!< the equivalent rotation matrix type */
+ typedef Matrix<Scalar,3,1> Vector3; /*!< the equivalent 3 dimension vector type */
+ typedef Quaternion<Scalar> QuaternionType; /*!< the equivalent quaternion type */
+ typedef AngleAxis<Scalar> AngleAxisType; /*!< the equivalent angle-axis type */
+
+ /** \returns the axis vector of the first (alpha) rotation */
+ static Vector3 AlphaAxisVector() {
+ const Vector3& u = Vector3::Unit(System::AlphaAxisAbs - 1);
+ return System::IsAlphaOpposite ? -u : u;
+ }
+
+ /** \returns the axis vector of the second (beta) rotation */
+ static Vector3 BetaAxisVector() {
+ const Vector3& u = Vector3::Unit(System::BetaAxisAbs - 1);
+ return System::IsBetaOpposite ? -u : u;
+ }
+
+ /** \returns the axis vector of the third (gamma) rotation */
+ static Vector3 GammaAxisVector() {
+ const Vector3& u = Vector3::Unit(System::GammaAxisAbs - 1);
+ return System::IsGammaOpposite ? -u : u;
+ }
+
+ private:
+ Vector3 m_angles;
+
+ public:
+ /** Default constructor without initialization. */
+ EulerAngles() {}
+ /** Constructs and initialize Euler angles(\p alpha, \p beta, \p gamma). */
+ EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) :
+ m_angles(alpha, beta, gamma) {}
+
+ /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m.
+ *
+ * \note All angles will be in the range [-PI, PI].
+ */
+ template<typename Derived>
+ EulerAngles(const MatrixBase<Derived>& m) { *this = m; }
+
+ /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
+ * with options to choose for each angle the requested range.
+ *
+ * If positive range is true, then the specified angle will be in the range [0, +2*PI].
+ * Otherwise, the specified angle will be in the range [-PI, +PI].
+ *
+ * \param m The 3x3 rotation matrix to convert
+ * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ */
+ template<typename Derived>
+ EulerAngles(
+ const MatrixBase<Derived>& m,
+ bool positiveRangeAlpha,
+ bool positiveRangeBeta,
+ bool positiveRangeGamma) {
+
+ System::CalcEulerAngles(*this, m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
+ }
+
+ /** Constructs and initialize Euler angles from a rotation \p rot.
+ *
+ * \note All angles will be in the range [-PI, PI], unless \p rot is an EulerAngles.
+ * If rot is an EulerAngles, expected EulerAngles range is __undefined__.
+ * (Use other functions here for enforcing range if this effect is desired)
+ */
+ template<typename Derived>
+ EulerAngles(const RotationBase<Derived, 3>& rot) { *this = rot; }
+
+ /** Constructs and initialize Euler angles from a rotation \p rot,
+ * with options to choose for each angle the requested range.
+ *
+ * If positive range is true, then the specified angle will be in the range [0, +2*PI].
+ * Otherwise, the specified angle will be in the range [-PI, +PI].
+ *
+ * \param rot The 3x3 rotation matrix to convert
+ * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ */
+ template<typename Derived>
+ EulerAngles(
+ const RotationBase<Derived, 3>& rot,
+ bool positiveRangeAlpha,
+ bool positiveRangeBeta,
+ bool positiveRangeGamma) {
+
+ System::CalcEulerAngles(*this, rot.toRotationMatrix(), positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
+ }
+
+ /** \returns The angle values stored in a vector (alpha, beta, gamma). */
+ const Vector3& angles() const { return m_angles; }
+ /** \returns A read-write reference to the angle values stored in a vector (alpha, beta, gamma). */
+ Vector3& angles() { return m_angles; }
+
+ /** \returns The value of the first angle. */
+ Scalar alpha() const { return m_angles[0]; }
+ /** \returns A read-write reference to the angle of the first angle. */
+ Scalar& alpha() { return m_angles[0]; }
+
+ /** \returns The value of the second angle. */
+ Scalar beta() const { return m_angles[1]; }
+ /** \returns A read-write reference to the angle of the second angle. */
+ Scalar& beta() { return m_angles[1]; }
+
+ /** \returns The value of the third angle. */
+ Scalar gamma() const { return m_angles[2]; }
+ /** \returns A read-write reference to the angle of the third angle. */
+ Scalar& gamma() { return m_angles[2]; }
+
+ /** \returns The Euler angles rotation inverse (which is as same as the negative),
+ * (-alpha, -beta, -gamma).
+ */
+ EulerAngles inverse() const
+ {
+ EulerAngles res;
+ res.m_angles = -m_angles;
+ return res;
+ }
+
+ /** \returns The Euler angles rotation negative (which is as same as the inverse),
+ * (-alpha, -beta, -gamma).
+ */
+ EulerAngles operator -() const
+ {
+ return inverse();
+ }
+
+ /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
+ * with options to choose for each angle the requested range (__only in compile time__).
+ *
+ * If positive range is true, then the specified angle will be in the range [0, +2*PI].
+ * Otherwise, the specified angle will be in the range [-PI, +PI].
+ *
+ * \param m The 3x3 rotation matrix to convert
+ * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ */
+ template<
+ bool PositiveRangeAlpha,
+ bool PositiveRangeBeta,
+ bool PositiveRangeGamma,
+ typename Derived>
+ static EulerAngles FromRotation(const MatrixBase<Derived>& m)
+ {
+ EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
+
+ EulerAngles e;
+ System::template CalcEulerAngles<
+ PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma, _Scalar>(e, m);
+ return e;
+ }
+
+ /** Constructs and initialize Euler angles from a rotation \p rot,
+ * with options to choose for each angle the requested range (__only in compile time__).
+ *
+ * If positive range is true, then the specified angle will be in the range [0, +2*PI].
+ * Otherwise, the specified angle will be in the range [-PI, +PI].
+ *
+ * \param rot The 3x3 rotation matrix to convert
+ * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ */
+ template<
+ bool PositiveRangeAlpha,
+ bool PositiveRangeBeta,
+ bool PositiveRangeGamma,
+ typename Derived>
+ static EulerAngles FromRotation(const RotationBase<Derived, 3>& rot)
+ {
+ return FromRotation<PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma>(rot.toRotationMatrix());
+ }
+
+ /*EulerAngles& fromQuaternion(const QuaternionType& q)
+ {
+ // TODO: Implement it in a faster way for quaternions
+ // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
+ // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below)
+ // Currently we compute all matrix cells from quaternion.
+
+ // Special case only for ZYX
+ //Scalar y2 = q.y() * q.y();
+ //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z())));
+ //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x()));
+ //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2)));
+ }*/
+
+ /** Set \c *this from a rotation matrix(i.e. pure orthogonal matrix with determinant of +1). */
+ template<typename Derived>
+ EulerAngles& operator=(const MatrixBase<Derived>& m) {
+ EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
+
+ System::CalcEulerAngles(*this, m);
+ return *this;
+ }
+
+ // TODO: Assign and construct from another EulerAngles (with different system)
+
+ /** Set \c *this from a rotation. */
+ template<typename Derived>
+ EulerAngles& operator=(const RotationBase<Derived, 3>& rot) {
+ System::CalcEulerAngles(*this, rot.toRotationMatrix());
+ return *this;
+ }
+
+ // TODO: Support isApprox function
+
+ /** \returns an equivalent 3x3 rotation matrix. */
+ Matrix3 toRotationMatrix() const
+ {
+ return static_cast<QuaternionType>(*this).toRotationMatrix();
+ }
+
+ /** Convert the Euler angles to quaternion. */
+ operator QuaternionType() const
+ {
+ return
+ AngleAxisType(alpha(), AlphaAxisVector()) *
+ AngleAxisType(beta(), BetaAxisVector()) *
+ AngleAxisType(gamma(), GammaAxisVector());
+ }
+
+ friend std::ostream& operator<<(std::ostream& s, const EulerAngles<Scalar, System>& eulerAngles)
+ {
+ s << eulerAngles.angles().transpose();
+ return s;
+ }
+ };
+
+#define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(AXES, SCALAR_TYPE, SCALAR_POSTFIX) \
+ /** \ingroup EulerAngles_Module */ \
+ typedef EulerAngles<SCALAR_TYPE, EulerSystem##AXES> EulerAngles##AXES##SCALAR_POSTFIX;
+
+#define EIGEN_EULER_ANGLES_TYPEDEFS(SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYZ, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYX, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZY, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZX, SCALAR_TYPE, SCALAR_POSTFIX) \
+ \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZX, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZY, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXY, SCALAR_TYPE, SCALAR_POSTFIX) \
+ \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXY, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYX, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYZ, SCALAR_TYPE, SCALAR_POSTFIX)
+
+EIGEN_EULER_ANGLES_TYPEDEFS(float, f)
+EIGEN_EULER_ANGLES_TYPEDEFS(double, d)
+
+ namespace internal
+ {
+ template<typename _Scalar, class _System>
+ struct traits<EulerAngles<_Scalar, _System> >
+ {
+ typedef _Scalar Scalar;
+ };
+ }
+
+}
+
+#endif // EIGEN_EULERANGLESCLASS_H