aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/MatrixFunctions/MatrixFunctionAtomic.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/src/MatrixFunctions/MatrixFunctionAtomic.h')
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixFunctionAtomic.h131
1 files changed, 131 insertions, 0 deletions
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixFunctionAtomic.h b/unsupported/Eigen/src/MatrixFunctions/MatrixFunctionAtomic.h
new file mode 100644
index 000000000..efe332c48
--- /dev/null
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixFunctionAtomic.h
@@ -0,0 +1,131 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATRIX_FUNCTION_ATOMIC
+#define EIGEN_MATRIX_FUNCTION_ATOMIC
+
+namespace Eigen {
+
+/** \ingroup MatrixFunctions_Module
+ * \class MatrixFunctionAtomic
+ * \brief Helper class for computing matrix functions of atomic matrices.
+ *
+ * \internal
+ * Here, an atomic matrix is a triangular matrix whose diagonal
+ * entries are close to each other.
+ */
+template <typename MatrixType>
+class MatrixFunctionAtomic
+{
+ public:
+
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Index Index;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef typename internal::stem_function<Scalar>::type StemFunction;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
+
+ /** \brief Constructor
+ * \param[in] f matrix function to compute.
+ */
+ MatrixFunctionAtomic(StemFunction f) : m_f(f) { }
+
+ /** \brief Compute matrix function of atomic matrix
+ * \param[in] A argument of matrix function, should be upper triangular and atomic
+ * \returns f(A), the matrix function evaluated at the given matrix
+ */
+ MatrixType compute(const MatrixType& A);
+
+ private:
+
+ // Prevent copying
+ MatrixFunctionAtomic(const MatrixFunctionAtomic&);
+ MatrixFunctionAtomic& operator=(const MatrixFunctionAtomic&);
+
+ void computeMu();
+ bool taylorConverged(Index s, const MatrixType& F, const MatrixType& Fincr, const MatrixType& P);
+
+ /** \brief Pointer to scalar function */
+ StemFunction* m_f;
+
+ /** \brief Size of matrix function */
+ Index m_Arows;
+
+ /** \brief Mean of eigenvalues */
+ Scalar m_avgEival;
+
+ /** \brief Argument shifted by mean of eigenvalues */
+ MatrixType m_Ashifted;
+
+ /** \brief Constant used to determine whether Taylor series has converged */
+ RealScalar m_mu;
+};
+
+template <typename MatrixType>
+MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A)
+{
+ // TODO: Use that A is upper triangular
+ m_Arows = A.rows();
+ m_avgEival = A.trace() / Scalar(RealScalar(m_Arows));
+ m_Ashifted = A - m_avgEival * MatrixType::Identity(m_Arows, m_Arows);
+ computeMu();
+ MatrixType F = m_f(m_avgEival, 0) * MatrixType::Identity(m_Arows, m_Arows);
+ MatrixType P = m_Ashifted;
+ MatrixType Fincr;
+ for (Index s = 1; s < 1.1 * m_Arows + 10; s++) { // upper limit is fairly arbitrary
+ Fincr = m_f(m_avgEival, static_cast<int>(s)) * P;
+ F += Fincr;
+ P = Scalar(RealScalar(1.0/(s + 1))) * P * m_Ashifted;
+ if (taylorConverged(s, F, Fincr, P)) {
+ return F;
+ }
+ }
+ eigen_assert("Taylor series does not converge" && 0);
+ return F;
+}
+
+/** \brief Compute \c m_mu. */
+template <typename MatrixType>
+void MatrixFunctionAtomic<MatrixType>::computeMu()
+{
+ const MatrixType N = MatrixType::Identity(m_Arows, m_Arows) - m_Ashifted;
+ VectorType e = VectorType::Ones(m_Arows);
+ N.template triangularView<Upper>().solveInPlace(e);
+ m_mu = e.cwiseAbs().maxCoeff();
+}
+
+/** \brief Determine whether Taylor series has converged */
+template <typename MatrixType>
+bool MatrixFunctionAtomic<MatrixType>::taylorConverged(Index s, const MatrixType& F,
+ const MatrixType& Fincr, const MatrixType& P)
+{
+ const Index n = F.rows();
+ const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff();
+ const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff();
+ if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) {
+ RealScalar delta = 0;
+ RealScalar rfactorial = 1;
+ for (Index r = 0; r < n; r++) {
+ RealScalar mx = 0;
+ for (Index i = 0; i < n; i++)
+ mx = (std::max)(mx, std::abs(m_f(m_Ashifted(i, i) + m_avgEival, static_cast<int>(s+r))));
+ if (r != 0)
+ rfactorial *= RealScalar(r);
+ delta = (std::max)(delta, mx / rfactorial);
+ }
+ const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff();
+ if (m_mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm)
+ return true;
+ }
+ return false;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_MATRIX_FUNCTION_ATOMIC