aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/src/MatrixFunctions/MatrixPower.h')
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixPower.h397
1 files changed, 299 insertions, 98 deletions
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h b/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
index 78a307e96..ebc433d89 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
@@ -14,16 +14,48 @@ namespace Eigen {
template<typename MatrixType> class MatrixPower;
+/**
+ * \ingroup MatrixFunctions_Module
+ *
+ * \brief Proxy for the matrix power of some matrix.
+ *
+ * \tparam MatrixType type of the base, a matrix.
+ *
+ * This class holds the arguments to the matrix power until it is
+ * assigned or evaluated for some other reason (so the argument
+ * should not be changed in the meantime). It is the return type of
+ * MatrixPower::operator() and related functions and most of the
+ * time this is the only way it is used.
+ */
+/* TODO This class is only used by MatrixPower, so it should be nested
+ * into MatrixPower, like MatrixPower::ReturnValue. However, my
+ * compiler complained about unused template parameter in the
+ * following declaration in namespace internal.
+ *
+ * template<typename MatrixType>
+ * struct traits<MatrixPower<MatrixType>::ReturnValue>;
+ */
template<typename MatrixType>
-class MatrixPowerRetval : public ReturnByValue< MatrixPowerRetval<MatrixType> >
+class MatrixPowerParenthesesReturnValue : public ReturnByValue< MatrixPowerParenthesesReturnValue<MatrixType> >
{
public:
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
- MatrixPowerRetval(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
+ /**
+ * \brief Constructor.
+ *
+ * \param[in] pow %MatrixPower storing the base.
+ * \param[in] p scalar, the exponent of the matrix power.
+ */
+ MatrixPowerParenthesesReturnValue(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
{ }
+ /**
+ * \brief Compute the matrix power.
+ *
+ * \param[out] result
+ */
template<typename ResultType>
inline void evalTo(ResultType& res) const
{ m_pow.compute(res, m_p); }
@@ -34,11 +66,25 @@ class MatrixPowerRetval : public ReturnByValue< MatrixPowerRetval<MatrixType> >
private:
MatrixPower<MatrixType>& m_pow;
const RealScalar m_p;
- MatrixPowerRetval& operator=(const MatrixPowerRetval&);
};
+/**
+ * \ingroup MatrixFunctions_Module
+ *
+ * \brief Class for computing matrix powers.
+ *
+ * \tparam MatrixType type of the base, expected to be an instantiation
+ * of the Matrix class template.
+ *
+ * This class is capable of computing triangular real/complex matrices
+ * raised to a power in the interval \f$ (-1, 1) \f$.
+ *
+ * \note Currently this class is only used by MatrixPower. One may
+ * insist that this be nested into MatrixPower. This class is here to
+ * faciliate future development of triangular matrix functions.
+ */
template<typename MatrixType>
-class MatrixPowerAtomic
+class MatrixPowerAtomic : internal::noncopyable
{
private:
enum {
@@ -49,14 +95,14 @@ class MatrixPowerAtomic
typedef typename MatrixType::RealScalar RealScalar;
typedef std::complex<RealScalar> ComplexScalar;
typedef typename MatrixType::Index Index;
- typedef Array<Scalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> ArrayType;
+ typedef Block<MatrixType,Dynamic,Dynamic> ResultType;
const MatrixType& m_A;
RealScalar m_p;
- void computePade(int degree, const MatrixType& IminusT, MatrixType& res) const;
- void compute2x2(MatrixType& res, RealScalar p) const;
- void computeBig(MatrixType& res) const;
+ void computePade(int degree, const MatrixType& IminusT, ResultType& res) const;
+ void compute2x2(ResultType& res, RealScalar p) const;
+ void computeBig(ResultType& res) const;
static int getPadeDegree(float normIminusT);
static int getPadeDegree(double normIminusT);
static int getPadeDegree(long double normIminusT);
@@ -64,24 +110,45 @@ class MatrixPowerAtomic
static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);
public:
+ /**
+ * \brief Constructor.
+ *
+ * \param[in] T the base of the matrix power.
+ * \param[in] p the exponent of the matrix power, should be in
+ * \f$ (-1, 1) \f$.
+ *
+ * The class stores a reference to T, so it should not be changed
+ * (or destroyed) before evaluation. Only the upper triangular
+ * part of T is read.
+ */
MatrixPowerAtomic(const MatrixType& T, RealScalar p);
- void compute(MatrixType& res) const;
+
+ /**
+ * \brief Compute the matrix power.
+ *
+ * \param[out] res \f$ A^p \f$ where A and p are specified in the
+ * constructor.
+ */
+ void compute(ResultType& res) const;
};
template<typename MatrixType>
MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) :
m_A(T), m_p(p)
-{ eigen_assert(T.rows() == T.cols()); }
+{
+ eigen_assert(T.rows() == T.cols());
+ eigen_assert(p > -1 && p < 1);
+}
template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::compute(MatrixType& res) const
+void MatrixPowerAtomic<MatrixType>::compute(ResultType& res) const
{
- res.resizeLike(m_A);
+ using std::pow;
switch (m_A.rows()) {
case 0:
break;
case 1:
- res(0,0) = std::pow(m_A(0,0), m_p);
+ res(0,0) = pow(m_A(0,0), m_p);
break;
case 2:
compute2x2(res, m_p);
@@ -92,24 +159,24 @@ void MatrixPowerAtomic<MatrixType>::compute(MatrixType& res) const
}
template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res) const
+void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, ResultType& res) const
{
- int i = degree<<1;
- res = (m_p-degree) / ((i-1)<<1) * IminusT;
+ int i = 2*degree;
+ res = (m_p-degree) / (2*i-2) * IminusT;
+
for (--i; i; --i) {
res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
- .solve((i==1 ? -m_p : i&1 ? (-m_p-(i>>1))/(i<<1) : (m_p-(i>>1))/((i-1)<<1)) * IminusT).eval();
+ .solve((i==1 ? -m_p : i&1 ? (-m_p-i/2)/(2*i) : (m_p-i/2)/(2*i-2)) * IminusT).eval();
}
res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
}
// This function assumes that res has the correct size (see bug 614)
template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const
+void MatrixPowerAtomic<MatrixType>::compute2x2(ResultType& res, RealScalar p) const
{
using std::abs;
using std::pow;
-
res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
for (Index i=1; i < m_A.cols(); ++i) {
@@ -125,32 +192,20 @@ void MatrixPowerAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) co
}
template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::computeBig(MatrixType& res) const
+void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const
{
+ using std::ldexp;
const int digits = std::numeric_limits<RealScalar>::digits;
- const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f: // sigle precision
- digits <= 53? 2.789358995219730e-1: // double precision
- digits <= 64? 2.4471944416607995472e-1L: // extended precision
- digits <= 106? 1.1016843812851143391275867258512e-1L: // double-double
- 9.134603732914548552537150753385375e-2L; // quadruple precision
+ const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1L // single precision
+ : digits <= 53? 2.789358995219730e-1L // double precision
+ : digits <= 64? 2.4471944416607995472e-1L // extended precision
+ : digits <= 106? 1.1016843812851143391275867258512e-1L // double-double
+ : 9.134603732914548552537150753385375e-2L; // quadruple precision
MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
RealScalar normIminusT;
int degree, degree2, numberOfSquareRoots = 0;
bool hasExtraSquareRoot = false;
- /* FIXME
- * For singular T, norm(I - T) >= 1 but maxNormForPade < 1, leads to infinite
- * loop. We should move 0 eigenvalues to bottom right corner. We need not
- * worry about tiny values (e.g. 1e-300) because they will reach 1 if
- * repetitively sqrt'ed.
- *
- * If the 0 eigenvalues are semisimple, they can form a 0 matrix at the
- * bottom right corner.
- *
- * [ T A ]^p [ T^p (T^-1 T^p A) ]
- * [ ] = [ ]
- * [ 0 0 ] [ 0 0 ]
- */
for (Index i=0; i < m_A.cols(); ++i)
eigen_assert(m_A(i,i) != RealScalar(0));
@@ -164,14 +219,14 @@ void MatrixPowerAtomic<MatrixType>::computeBig(MatrixType& res) const
break;
hasExtraSquareRoot = true;
}
- MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
+ matrix_sqrt_triangular(T, sqrtT);
T = sqrtT.template triangularView<Upper>();
++numberOfSquareRoots;
}
computePade(degree, IminusT, res);
for (; numberOfSquareRoots; --numberOfSquareRoots) {
- compute2x2(res, std::ldexp(m_p, -numberOfSquareRoots));
+ compute2x2(res, ldexp(m_p, -numberOfSquareRoots));
res = res.template triangularView<Upper>() * res;
}
compute2x2(res, m_p);
@@ -209,7 +264,7 @@ inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT)
1.999045567181744e-1L, 2.789358995219730e-1L };
#elif LDBL_MANT_DIG <= 64
const int maxPadeDegree = 8;
- const double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
+ const long double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
#elif LDBL_MANT_DIG <= 106
const int maxPadeDegree = 10;
@@ -236,19 +291,28 @@ template<typename MatrixType>
inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p)
{
- ComplexScalar logCurr = std::log(curr);
- ComplexScalar logPrev = std::log(prev);
- int unwindingNumber = std::ceil((numext::imag(logCurr - logPrev) - M_PI) / (2*M_PI));
- ComplexScalar w = numext::atanh2(curr - prev, curr + prev) + ComplexScalar(0, M_PI*unwindingNumber);
- return RealScalar(2) * std::exp(RealScalar(0.5) * p * (logCurr + logPrev)) * std::sinh(p * w) / (curr - prev);
+ using std::ceil;
+ using std::exp;
+ using std::log;
+ using std::sinh;
+
+ ComplexScalar logCurr = log(curr);
+ ComplexScalar logPrev = log(prev);
+ int unwindingNumber = ceil((numext::imag(logCurr - logPrev) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI));
+ ComplexScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2) + ComplexScalar(0, EIGEN_PI*unwindingNumber);
+ return RealScalar(2) * exp(RealScalar(0.5) * p * (logCurr + logPrev)) * sinh(p * w) / (curr - prev);
}
template<typename MatrixType>
inline typename MatrixPowerAtomic<MatrixType>::RealScalar
MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p)
{
- RealScalar w = numext::atanh2(curr - prev, curr + prev);
- return 2 * std::exp(p * (std::log(curr) + std::log(prev)) / 2) * std::sinh(p * w) / (curr - prev);
+ using std::exp;
+ using std::log;
+ using std::sinh;
+
+ RealScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2);
+ return 2 * exp(p * (log(curr) + log(prev)) / 2) * sinh(p * w) / (curr - prev);
}
/**
@@ -271,15 +335,9 @@ MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev
* Output: \verbinclude MatrixPower_optimal.out
*/
template<typename MatrixType>
-class MatrixPower
+class MatrixPower : internal::noncopyable
{
private:
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
@@ -293,7 +351,11 @@ class MatrixPower
* The class stores a reference to A, so it should not be changed
* (or destroyed) before evaluation.
*/
- explicit MatrixPower(const MatrixType& A) : m_A(A), m_conditionNumber(0)
+ explicit MatrixPower(const MatrixType& A) :
+ m_A(A),
+ m_conditionNumber(0),
+ m_rank(A.cols()),
+ m_nulls(0)
{ eigen_assert(A.rows() == A.cols()); }
/**
@@ -303,8 +365,8 @@ class MatrixPower
* \return The expression \f$ A^p \f$, where A is specified in the
* constructor.
*/
- const MatrixPowerRetval<MatrixType> operator()(RealScalar p)
- { return MatrixPowerRetval<MatrixType>(*this, p); }
+ const MatrixPowerParenthesesReturnValue<MatrixType> operator()(RealScalar p)
+ { return MatrixPowerParenthesesReturnValue<MatrixType>(*this, p); }
/**
* \brief Compute the matrix power.
@@ -321,21 +383,54 @@ class MatrixPower
private:
typedef std::complex<RealScalar> ComplexScalar;
- typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, MatrixType::Options,
- MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrix;
+ typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0,
+ MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> ComplexMatrix;
+ /** \brief Reference to the base of matrix power. */
typename MatrixType::Nested m_A;
+
+ /** \brief Temporary storage. */
MatrixType m_tmp;
- ComplexMatrix m_T, m_U, m_fT;
+
+ /** \brief Store the result of Schur decomposition. */
+ ComplexMatrix m_T, m_U;
+
+ /** \brief Store fractional power of m_T. */
+ ComplexMatrix m_fT;
+
+ /**
+ * \brief Condition number of m_A.
+ *
+ * It is initialized as 0 to avoid performing unnecessary Schur
+ * decomposition, which is the bottleneck.
+ */
RealScalar m_conditionNumber;
- RealScalar modfAndInit(RealScalar, RealScalar*);
+ /** \brief Rank of m_A. */
+ Index m_rank;
+
+ /** \brief Rank deficiency of m_A. */
+ Index m_nulls;
+
+ /**
+ * \brief Split p into integral part and fractional part.
+ *
+ * \param[in] p The exponent.
+ * \param[out] p The fractional part ranging in \f$ (-1, 1) \f$.
+ * \param[out] intpart The integral part.
+ *
+ * Only if the fractional part is nonzero, it calls initialize().
+ */
+ void split(RealScalar& p, RealScalar& intpart);
+
+ /** \brief Perform Schur decomposition for fractional power. */
+ void initialize();
template<typename ResultType>
- void computeIntPower(ResultType&, RealScalar);
+ void computeIntPower(ResultType& res, RealScalar p);
template<typename ResultType>
- void computeFracPower(ResultType&, RealScalar);
+ void computeFracPower(ResultType& res, RealScalar p);
template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
static void revertSchur(
@@ -354,59 +449,102 @@ template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
{
+ using std::pow;
switch (cols()) {
case 0:
break;
case 1:
- res(0,0) = std::pow(m_A.coeff(0,0), p);
+ res(0,0) = pow(m_A.coeff(0,0), p);
break;
default:
- RealScalar intpart, x = modfAndInit(p, &intpart);
+ RealScalar intpart;
+ split(p, intpart);
+
+ res = MatrixType::Identity(rows(), cols());
computeIntPower(res, intpart);
- computeFracPower(res, x);
+ if (p) computeFracPower(res, p);
}
}
template<typename MatrixType>
-typename MatrixPower<MatrixType>::RealScalar
-MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
+void MatrixPower<MatrixType>::split(RealScalar& p, RealScalar& intpart)
{
- typedef Array<RealScalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> RealArray;
+ using std::floor;
+ using std::pow;
- *intpart = std::floor(x);
- RealScalar res = x - *intpart;
+ intpart = floor(p);
+ p -= intpart;
- if (!m_conditionNumber && res) {
- const ComplexSchur<MatrixType> schurOfA(m_A);
- m_T = schurOfA.matrixT();
- m_U = schurOfA.matrixU();
-
- const RealArray absTdiag = m_T.diagonal().array().abs();
- m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff();
+ // Perform Schur decomposition if it is not yet performed and the power is
+ // not an integer.
+ if (!m_conditionNumber && p)
+ initialize();
+
+ // Choose the more stable of intpart = floor(p) and intpart = ceil(p).
+ if (p > RealScalar(0.5) && p > (1-p) * pow(m_conditionNumber, p)) {
+ --p;
+ ++intpart;
+ }
+}
+
+template<typename MatrixType>
+void MatrixPower<MatrixType>::initialize()
+{
+ const ComplexSchur<MatrixType> schurOfA(m_A);
+ JacobiRotation<ComplexScalar> rot;
+ ComplexScalar eigenvalue;
+
+ m_fT.resizeLike(m_A);
+ m_T = schurOfA.matrixT();
+ m_U = schurOfA.matrixU();
+ m_conditionNumber = m_T.diagonal().array().abs().maxCoeff() / m_T.diagonal().array().abs().minCoeff();
+
+ // Move zero eigenvalues to the bottom right corner.
+ for (Index i = cols()-1; i>=0; --i) {
+ if (m_rank <= 2)
+ return;
+ if (m_T.coeff(i,i) == RealScalar(0)) {
+ for (Index j=i+1; j < m_rank; ++j) {
+ eigenvalue = m_T.coeff(j,j);
+ rot.makeGivens(m_T.coeff(j-1,j), eigenvalue);
+ m_T.applyOnTheRight(j-1, j, rot);
+ m_T.applyOnTheLeft(j-1, j, rot.adjoint());
+ m_T.coeffRef(j-1,j-1) = eigenvalue;
+ m_T.coeffRef(j,j) = RealScalar(0);
+ m_U.applyOnTheRight(j-1, j, rot);
+ }
+ --m_rank;
+ }
}
- if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber, res)) {
- --res;
- ++*intpart;
+ m_nulls = rows() - m_rank;
+ if (m_nulls) {
+ eigen_assert(m_T.bottomRightCorner(m_nulls, m_nulls).isZero()
+ && "Base of matrix power should be invertible or with a semisimple zero eigenvalue.");
+ m_fT.bottomRows(m_nulls).fill(RealScalar(0));
}
- return res;
}
template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
{
- RealScalar pp = std::abs(p);
+ using std::abs;
+ using std::fmod;
+ RealScalar pp = abs(p);
- if (p<0) m_tmp = m_A.inverse();
- else m_tmp = m_A;
+ if (p<0)
+ m_tmp = m_A.inverse();
+ else
+ m_tmp = m_A;
- res = MatrixType::Identity(rows(), cols());
- while (pp >= 1) {
- if (std::fmod(pp, 2) >= 1)
+ while (true) {
+ if (fmod(pp, 2) >= 1)
res = m_tmp * res;
- m_tmp *= m_tmp;
pp /= 2;
+ if (pp < 1)
+ break;
+ m_tmp *= m_tmp;
}
}
@@ -414,12 +552,17 @@ template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
{
- if (p) {
- eigen_assert(m_conditionNumber);
- MatrixPowerAtomic<ComplexMatrix>(m_T, p).compute(m_fT);
- revertSchur(m_tmp, m_fT, m_U);
- res = m_tmp * res;
+ Block<ComplexMatrix,Dynamic,Dynamic> blockTp(m_fT, 0, 0, m_rank, m_rank);
+ eigen_assert(m_conditionNumber);
+ eigen_assert(m_rank + m_nulls == rows());
+
+ MatrixPowerAtomic<ComplexMatrix>(m_T.topLeftCorner(m_rank, m_rank), p).compute(blockTp);
+ if (m_nulls) {
+ m_fT.topRightCorner(m_rank, m_nulls) = m_T.topLeftCorner(m_rank, m_rank).template triangularView<Upper>()
+ .solve(blockTp * m_T.topRightCorner(m_rank, m_nulls));
}
+ revertSchur(m_tmp, m_fT, m_U);
+ res = m_tmp * res;
}
template<typename MatrixType>
@@ -463,7 +606,7 @@ class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Deri
* \brief Constructor.
*
* \param[in] A %Matrix (expression), the base of the matrix power.
- * \param[in] p scalar, the exponent of the matrix power.
+ * \param[in] p real scalar, the exponent of the matrix power.
*/
MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p)
{ }
@@ -484,25 +627,83 @@ class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Deri
private:
const Derived& m_A;
const RealScalar m_p;
- MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
+};
+
+/**
+ * \ingroup MatrixFunctions_Module
+ *
+ * \brief Proxy for the matrix power of some matrix (expression).
+ *
+ * \tparam Derived type of the base, a matrix (expression).
+ *
+ * This class holds the arguments to the matrix power until it is
+ * assigned or evaluated for some other reason (so the argument
+ * should not be changed in the meantime). It is the return type of
+ * MatrixBase::pow() and related functions and most of the
+ * time this is the only way it is used.
+ */
+template<typename Derived>
+class MatrixComplexPowerReturnValue : public ReturnByValue< MatrixComplexPowerReturnValue<Derived> >
+{
+ public:
+ typedef typename Derived::PlainObject PlainObject;
+ typedef typename std::complex<typename Derived::RealScalar> ComplexScalar;
+ typedef typename Derived::Index Index;
+
+ /**
+ * \brief Constructor.
+ *
+ * \param[in] A %Matrix (expression), the base of the matrix power.
+ * \param[in] p complex scalar, the exponent of the matrix power.
+ */
+ MatrixComplexPowerReturnValue(const Derived& A, const ComplexScalar& p) : m_A(A), m_p(p)
+ { }
+
+ /**
+ * \brief Compute the matrix power.
+ *
+ * Because \p p is complex, \f$ A^p \f$ is simply evaluated as \f$
+ * \exp(p \log(A)) \f$.
+ *
+ * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the
+ * constructor.
+ */
+ template<typename ResultType>
+ inline void evalTo(ResultType& res) const
+ { res = (m_p * m_A.log()).exp(); }
+
+ Index rows() const { return m_A.rows(); }
+ Index cols() const { return m_A.cols(); }
+
+ private:
+ const Derived& m_A;
+ const ComplexScalar m_p;
};
namespace internal {
template<typename MatrixPowerType>
-struct traits< MatrixPowerRetval<MatrixPowerType> >
+struct traits< MatrixPowerParenthesesReturnValue<MatrixPowerType> >
{ typedef typename MatrixPowerType::PlainObject ReturnType; };
template<typename Derived>
struct traits< MatrixPowerReturnValue<Derived> >
{ typedef typename Derived::PlainObject ReturnType; };
+template<typename Derived>
+struct traits< MatrixComplexPowerReturnValue<Derived> >
+{ typedef typename Derived::PlainObject ReturnType; };
+
}
template<typename Derived>
const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const
{ return MatrixPowerReturnValue<Derived>(derived(), p); }
+template<typename Derived>
+const MatrixComplexPowerReturnValue<Derived> MatrixBase<Derived>::pow(const std::complex<RealScalar>& p) const
+{ return MatrixComplexPowerReturnValue<Derived>(derived(), p); }
+
} // namespace Eigen
#endif // EIGEN_MATRIX_POWER