aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h')
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h484
1 files changed, 484 insertions, 0 deletions
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h b/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
new file mode 100644
index 000000000..10319fa17
--- /dev/null
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
@@ -0,0 +1,484 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATRIX_SQUARE_ROOT
+#define EIGEN_MATRIX_SQUARE_ROOT
+
+namespace Eigen {
+
+/** \ingroup MatrixFunctions_Module
+ * \brief Class for computing matrix square roots of upper quasi-triangular matrices.
+ * \tparam MatrixType type of the argument of the matrix square root,
+ * expected to be an instantiation of the Matrix class template.
+ *
+ * This class computes the square root of the upper quasi-triangular
+ * matrix stored in the upper Hessenberg part of the matrix passed to
+ * the constructor.
+ *
+ * \sa MatrixSquareRoot, MatrixSquareRootTriangular
+ */
+template <typename MatrixType>
+class MatrixSquareRootQuasiTriangular
+{
+ public:
+
+ /** \brief Constructor.
+ *
+ * \param[in] A upper quasi-triangular matrix whose square root
+ * is to be computed.
+ *
+ * The class stores a reference to \p A, so it should not be
+ * changed (or destroyed) before compute() is called.
+ */
+ MatrixSquareRootQuasiTriangular(const MatrixType& A)
+ : m_A(A)
+ {
+ eigen_assert(A.rows() == A.cols());
+ }
+
+ /** \brief Compute the matrix square root
+ *
+ * \param[out] result square root of \p A, as specified in the constructor.
+ *
+ * Only the upper Hessenberg part of \p result is updated, the
+ * rest is not touched. See MatrixBase::sqrt() for details on
+ * how this computation is implemented.
+ */
+ template <typename ResultType> void compute(ResultType &result);
+
+ private:
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+
+ void computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
+ void computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
+ void compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i);
+ void compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
+ typename MatrixType::Index i, typename MatrixType::Index j);
+ void compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
+ typename MatrixType::Index i, typename MatrixType::Index j);
+ void compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
+ typename MatrixType::Index i, typename MatrixType::Index j);
+ void compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
+ typename MatrixType::Index i, typename MatrixType::Index j);
+
+ template <typename SmallMatrixType>
+ static void solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
+ const SmallMatrixType& B, const SmallMatrixType& C);
+
+ const MatrixType& m_A;
+};
+
+template <typename MatrixType>
+template <typename ResultType>
+void MatrixSquareRootQuasiTriangular<MatrixType>::compute(ResultType &result)
+{
+ // Compute Schur decomposition of m_A
+ const RealSchur<MatrixType> schurOfA(m_A);
+ const MatrixType& T = schurOfA.matrixT();
+ const MatrixType& U = schurOfA.matrixU();
+
+ // Compute square root of T
+ MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.rows());
+ computeDiagonalPartOfSqrt(sqrtT, T);
+ computeOffDiagonalPartOfSqrt(sqrtT, T);
+
+ // Compute square root of m_A
+ result = U * sqrtT * U.adjoint();
+}
+
+// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
+// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>::computeDiagonalPartOfSqrt(MatrixType& sqrtT,
+ const MatrixType& T)
+{
+ const Index size = m_A.rows();
+ for (Index i = 0; i < size; i++) {
+ if (i == size - 1 || T.coeff(i+1, i) == 0) {
+ eigen_assert(T(i,i) > 0);
+ sqrtT.coeffRef(i,i) = internal::sqrt(T.coeff(i,i));
+ }
+ else {
+ compute2x2diagonalBlock(sqrtT, T, i);
+ ++i;
+ }
+ }
+}
+
+// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
+// post: sqrtT is the square root of T.
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>::computeOffDiagonalPartOfSqrt(MatrixType& sqrtT,
+ const MatrixType& T)
+{
+ const Index size = m_A.rows();
+ for (Index j = 1; j < size; j++) {
+ if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block
+ continue;
+ for (Index i = j-1; i >= 0; i--) {
+ if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block
+ continue;
+ bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
+ bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
+ if (iBlockIs2x2 && jBlockIs2x2)
+ compute2x2offDiagonalBlock(sqrtT, T, i, j);
+ else if (iBlockIs2x2 && !jBlockIs2x2)
+ compute2x1offDiagonalBlock(sqrtT, T, i, j);
+ else if (!iBlockIs2x2 && jBlockIs2x2)
+ compute1x2offDiagonalBlock(sqrtT, T, i, j);
+ else if (!iBlockIs2x2 && !jBlockIs2x2)
+ compute1x1offDiagonalBlock(sqrtT, T, i, j);
+ }
+ }
+}
+
+// pre: T.block(i,i,2,2) has complex conjugate eigenvalues
+// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+ ::compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i)
+{
+ // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
+ // in EigenSolver. If we expose it, we could call it directly from here.
+ Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
+ EigenSolver<Matrix<Scalar,2,2> > es(block);
+ sqrtT.template block<2,2>(i,i)
+ = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real();
+}
+
+// pre: block structure of T is such that (i,j) is a 1x1 block,
+// all blocks of sqrtT to left of and below (i,j) are correct
+// post: sqrtT(i,j) has the correct value
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+ ::compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
+ typename MatrixType::Index i, typename MatrixType::Index j)
+{
+ Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
+ sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
+}
+
+// similar to compute1x1offDiagonalBlock()
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+ ::compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
+ typename MatrixType::Index i, typename MatrixType::Index j)
+{
+ Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
+ if (j-i > 1)
+ rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
+ Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity();
+ A += sqrtT.template block<2,2>(j,j).transpose();
+ sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose());
+}
+
+// similar to compute1x1offDiagonalBlock()
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+ ::compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
+ typename MatrixType::Index i, typename MatrixType::Index j)
+{
+ Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
+ if (j-i > 2)
+ rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
+ Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity();
+ A += sqrtT.template block<2,2>(i,i);
+ sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs);
+}
+
+// similar to compute1x1offDiagonalBlock()
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+ ::compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
+ typename MatrixType::Index i, typename MatrixType::Index j)
+{
+ Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
+ Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
+ Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
+ if (j-i > 2)
+ C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
+ Matrix<Scalar,2,2> X;
+ solveAuxiliaryEquation(X, A, B, C);
+ sqrtT.template block<2,2>(i,j) = X;
+}
+
+// solves the equation A X + X B = C where all matrices are 2-by-2
+template <typename MatrixType>
+template <typename SmallMatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+ ::solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
+ const SmallMatrixType& B, const SmallMatrixType& C)
+{
+ EIGEN_STATIC_ASSERT((internal::is_same<SmallMatrixType, Matrix<Scalar,2,2> >::value),
+ EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT);
+
+ Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
+ coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
+ coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
+ coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0);
+ coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1);
+ coeffMatrix.coeffRef(0,1) = B.coeff(1,0);
+ coeffMatrix.coeffRef(0,2) = A.coeff(0,1);
+ coeffMatrix.coeffRef(1,0) = B.coeff(0,1);
+ coeffMatrix.coeffRef(1,3) = A.coeff(0,1);
+ coeffMatrix.coeffRef(2,0) = A.coeff(1,0);
+ coeffMatrix.coeffRef(2,3) = B.coeff(1,0);
+ coeffMatrix.coeffRef(3,1) = A.coeff(1,0);
+ coeffMatrix.coeffRef(3,2) = B.coeff(0,1);
+
+ Matrix<Scalar,4,1> rhs;
+ rhs.coeffRef(0) = C.coeff(0,0);
+ rhs.coeffRef(1) = C.coeff(0,1);
+ rhs.coeffRef(2) = C.coeff(1,0);
+ rhs.coeffRef(3) = C.coeff(1,1);
+
+ Matrix<Scalar,4,1> result;
+ result = coeffMatrix.fullPivLu().solve(rhs);
+
+ X.coeffRef(0,0) = result.coeff(0);
+ X.coeffRef(0,1) = result.coeff(1);
+ X.coeffRef(1,0) = result.coeff(2);
+ X.coeffRef(1,1) = result.coeff(3);
+}
+
+
+/** \ingroup MatrixFunctions_Module
+ * \brief Class for computing matrix square roots of upper triangular matrices.
+ * \tparam MatrixType type of the argument of the matrix square root,
+ * expected to be an instantiation of the Matrix class template.
+ *
+ * This class computes the square root of the upper triangular matrix
+ * stored in the upper triangular part (including the diagonal) of
+ * the matrix passed to the constructor.
+ *
+ * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
+ */
+template <typename MatrixType>
+class MatrixSquareRootTriangular
+{
+ public:
+ MatrixSquareRootTriangular(const MatrixType& A)
+ : m_A(A)
+ {
+ eigen_assert(A.rows() == A.cols());
+ }
+
+ /** \brief Compute the matrix square root
+ *
+ * \param[out] result square root of \p A, as specified in the constructor.
+ *
+ * Only the upper triangular part (including the diagonal) of
+ * \p result is updated, the rest is not touched. See
+ * MatrixBase::sqrt() for details on how this computation is
+ * implemented.
+ */
+ template <typename ResultType> void compute(ResultType &result);
+
+ private:
+ const MatrixType& m_A;
+};
+
+template <typename MatrixType>
+template <typename ResultType>
+void MatrixSquareRootTriangular<MatrixType>::compute(ResultType &result)
+{
+ // Compute Schur decomposition of m_A
+ const ComplexSchur<MatrixType> schurOfA(m_A);
+ const MatrixType& T = schurOfA.matrixT();
+ const MatrixType& U = schurOfA.matrixU();
+
+ // Compute square root of T and store it in upper triangular part of result
+ // This uses that the square root of triangular matrices can be computed directly.
+ result.resize(m_A.rows(), m_A.cols());
+ typedef typename MatrixType::Index Index;
+ for (Index i = 0; i < m_A.rows(); i++) {
+ result.coeffRef(i,i) = internal::sqrt(T.coeff(i,i));
+ }
+ for (Index j = 1; j < m_A.cols(); j++) {
+ for (Index i = j-1; i >= 0; i--) {
+ typedef typename MatrixType::Scalar Scalar;
+ // if i = j-1, then segment has length 0 so tmp = 0
+ Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
+ // denominator may be zero if original matrix is singular
+ result.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
+ }
+ }
+
+ // Compute square root of m_A as U * result * U.adjoint()
+ MatrixType tmp;
+ tmp.noalias() = U * result.template triangularView<Upper>();
+ result.noalias() = tmp * U.adjoint();
+}
+
+
+/** \ingroup MatrixFunctions_Module
+ * \brief Class for computing matrix square roots of general matrices.
+ * \tparam MatrixType type of the argument of the matrix square root,
+ * expected to be an instantiation of the Matrix class template.
+ *
+ * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
+ */
+template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
+class MatrixSquareRoot
+{
+ public:
+
+ /** \brief Constructor.
+ *
+ * \param[in] A matrix whose square root is to be computed.
+ *
+ * The class stores a reference to \p A, so it should not be
+ * changed (or destroyed) before compute() is called.
+ */
+ MatrixSquareRoot(const MatrixType& A);
+
+ /** \brief Compute the matrix square root
+ *
+ * \param[out] result square root of \p A, as specified in the constructor.
+ *
+ * See MatrixBase::sqrt() for details on how this computation is
+ * implemented.
+ */
+ template <typename ResultType> void compute(ResultType &result);
+};
+
+
+// ********** Partial specialization for real matrices **********
+
+template <typename MatrixType>
+class MatrixSquareRoot<MatrixType, 0>
+{
+ public:
+
+ MatrixSquareRoot(const MatrixType& A)
+ : m_A(A)
+ {
+ eigen_assert(A.rows() == A.cols());
+ }
+
+ template <typename ResultType> void compute(ResultType &result)
+ {
+ // Compute Schur decomposition of m_A
+ const RealSchur<MatrixType> schurOfA(m_A);
+ const MatrixType& T = schurOfA.matrixT();
+ const MatrixType& U = schurOfA.matrixU();
+
+ // Compute square root of T
+ MatrixSquareRootQuasiTriangular<MatrixType> tmp(T);
+ MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.rows());
+ tmp.compute(sqrtT);
+
+ // Compute square root of m_A
+ result = U * sqrtT * U.adjoint();
+ }
+
+ private:
+ const MatrixType& m_A;
+};
+
+
+// ********** Partial specialization for complex matrices **********
+
+template <typename MatrixType>
+class MatrixSquareRoot<MatrixType, 1>
+{
+ public:
+
+ MatrixSquareRoot(const MatrixType& A)
+ : m_A(A)
+ {
+ eigen_assert(A.rows() == A.cols());
+ }
+
+ template <typename ResultType> void compute(ResultType &result)
+ {
+ // Compute Schur decomposition of m_A
+ const ComplexSchur<MatrixType> schurOfA(m_A);
+ const MatrixType& T = schurOfA.matrixT();
+ const MatrixType& U = schurOfA.matrixU();
+
+ // Compute square root of T
+ MatrixSquareRootTriangular<MatrixType> tmp(T);
+ MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.rows());
+ tmp.compute(sqrtT);
+
+ // Compute square root of m_A
+ result = U * sqrtT * U.adjoint();
+ }
+
+ private:
+ const MatrixType& m_A;
+};
+
+
+/** \ingroup MatrixFunctions_Module
+ *
+ * \brief Proxy for the matrix square root of some matrix (expression).
+ *
+ * \tparam Derived Type of the argument to the matrix square root.
+ *
+ * This class holds the argument to the matrix square root until it
+ * is assigned or evaluated for some other reason (so the argument
+ * should not be changed in the meantime). It is the return type of
+ * MatrixBase::sqrt() and most of the time this is the only way it is
+ * used.
+ */
+template<typename Derived> class MatrixSquareRootReturnValue
+: public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
+{
+ typedef typename Derived::Index Index;
+ public:
+ /** \brief Constructor.
+ *
+ * \param[in] src %Matrix (expression) forming the argument of the
+ * matrix square root.
+ */
+ MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }
+
+ /** \brief Compute the matrix square root.
+ *
+ * \param[out] result the matrix square root of \p src in the
+ * constructor.
+ */
+ template <typename ResultType>
+ inline void evalTo(ResultType& result) const
+ {
+ const typename Derived::PlainObject srcEvaluated = m_src.eval();
+ MatrixSquareRoot<typename Derived::PlainObject> me(srcEvaluated);
+ me.compute(result);
+ }
+
+ Index rows() const { return m_src.rows(); }
+ Index cols() const { return m_src.cols(); }
+
+ protected:
+ const Derived& m_src;
+ private:
+ MatrixSquareRootReturnValue& operator=(const MatrixSquareRootReturnValue&);
+};
+
+namespace internal {
+template<typename Derived>
+struct traits<MatrixSquareRootReturnValue<Derived> >
+{
+ typedef typename Derived::PlainObject ReturnType;
+};
+}
+
+template <typename Derived>
+const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
+{
+ eigen_assert(rows() == cols());
+ return MatrixSquareRootReturnValue<Derived>(derived());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_MATRIX_FUNCTION