aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/MatrixFunctions
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/src/MatrixFunctions')
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h51
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h35
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h22
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixPower.h32
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h34
5 files changed, 83 insertions, 91 deletions
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h b/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
index bb6d9e1fe..02284b0dd 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
@@ -234,12 +234,13 @@ struct matrix_exp_computeUV<MatrixType, float>
template <typename MatrixType>
struct matrix_exp_computeUV<MatrixType, double>
{
+ typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
template <typename ArgType>
static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
{
using std::frexp;
using std::pow;
- const double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
+ const RealScalar l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
squarings = 0;
if (l1norm < 1.495585217958292e-002) {
matrix_exp_pade3(arg, U, V);
@@ -250,10 +251,10 @@ struct matrix_exp_computeUV<MatrixType, double>
} else if (l1norm < 2.097847961257068e+000) {
matrix_exp_pade9(arg, U, V);
} else {
- const double maxnorm = 5.371920351148152;
+ const RealScalar maxnorm = 5.371920351148152;
frexp(l1norm / maxnorm, &squarings);
if (squarings < 0) squarings = 0;
- MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<double>(squarings));
+ MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<RealScalar>(squarings));
matrix_exp_pade13(A, U, V);
}
}
@@ -313,7 +314,7 @@ struct matrix_exp_computeUV<MatrixType, long double>
matrix_exp_pade17(A, U, V);
}
-#elif LDBL_MANT_DIG <= 112 // quadruple precison
+#elif LDBL_MANT_DIG <= 113 // quadruple precision
if (l1norm < 1.639394610288918690547467954466970e-005L) {
matrix_exp_pade3(arg, U, V);
@@ -326,6 +327,7 @@ struct matrix_exp_computeUV<MatrixType, long double>
} else if (l1norm < 1.125358383453143065081397882891878e+000L) {
matrix_exp_pade13(arg, U, V);
} else {
+ const long double maxnorm = 2.884233277829519311757165057717815L;
frexp(l1norm / maxnorm, &squarings);
if (squarings < 0) squarings = 0;
MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
@@ -342,6 +344,27 @@ struct matrix_exp_computeUV<MatrixType, long double>
}
};
+template<typename T> struct is_exp_known_type : false_type {};
+template<> struct is_exp_known_type<float> : true_type {};
+template<> struct is_exp_known_type<double> : true_type {};
+#if LDBL_MANT_DIG <= 113
+template<> struct is_exp_known_type<long double> : true_type {};
+#endif
+
+template <typename ArgType, typename ResultType>
+void matrix_exp_compute(const ArgType& arg, ResultType &result, true_type) // natively supported scalar type
+{
+ typedef typename ArgType::PlainObject MatrixType;
+ MatrixType U, V;
+ int squarings;
+ matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V)
+ MatrixType numer = U + V;
+ MatrixType denom = -U + V;
+ result = denom.partialPivLu().solve(numer);
+ for (int i=0; i<squarings; i++)
+ result *= result; // undo scaling by repeated squaring
+}
+
/* Computes the matrix exponential
*
@@ -349,26 +372,13 @@ struct matrix_exp_computeUV<MatrixType, long double>
* \param result variable in which result will be stored
*/
template <typename ArgType, typename ResultType>
-void matrix_exp_compute(const ArgType& arg, ResultType &result)
+void matrix_exp_compute(const ArgType& arg, ResultType &result, false_type) // default
{
typedef typename ArgType::PlainObject MatrixType;
-#if LDBL_MANT_DIG > 112 // rarely happens
typedef typename traits<MatrixType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename std::complex<RealScalar> ComplexScalar;
- if (sizeof(RealScalar) > 14) {
- result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>);
- return;
- }
-#endif
- MatrixType U, V;
- int squarings;
- matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V)
- MatrixType numer = U + V;
- MatrixType denom = -U + V;
- result = denom.partialPivLu().solve(numer);
- for (int i=0; i<squarings; i++)
- result *= result; // undo scaling by repeated squaring
+ result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>);
}
} // end namespace Eigen::internal
@@ -386,7 +396,6 @@ void matrix_exp_compute(const ArgType& arg, ResultType &result)
template<typename Derived> struct MatrixExponentialReturnValue
: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
{
- typedef typename Derived::Index Index;
public:
/** \brief Constructor.
*
@@ -402,7 +411,7 @@ template<typename Derived> struct MatrixExponentialReturnValue
inline void evalTo(ResultType& result) const
{
const typename internal::nested_eval<Derived, 10>::type tmp(m_src);
- internal::matrix_exp_compute(tmp, result);
+ internal::matrix_exp_compute(tmp, result, internal::is_exp_known_type<typename Derived::RealScalar>());
}
Index rows() const { return m_src.rows(); }
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h b/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
index 3f7d77710..cc12ab62b 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
@@ -7,8 +7,8 @@
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-#ifndef EIGEN_MATRIX_FUNCTION
-#define EIGEN_MATRIX_FUNCTION
+#ifndef EIGEN_MATRIX_FUNCTION_H
+#define EIGEN_MATRIX_FUNCTION_H
#include "StemFunction.h"
@@ -53,7 +53,7 @@ template <typename MatrixType>
typename NumTraits<typename MatrixType::Scalar>::Real matrix_function_compute_mu(const MatrixType& A)
{
typedef typename plain_col_type<MatrixType>::type VectorType;
- typename MatrixType::Index rows = A.rows();
+ Index rows = A.rows();
const MatrixType N = MatrixType::Identity(rows, rows) - A;
VectorType e = VectorType::Ones(rows);
N.template triangularView<Upper>().solveInPlace(e);
@@ -65,7 +65,6 @@ MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A)
{
// TODO: Use that A is upper triangular
typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
Index rows = A.rows();
Scalar avgEival = A.trace() / Scalar(RealScalar(rows));
MatrixType Ashifted = A - avgEival * MatrixType::Identity(rows, rows);
@@ -73,10 +72,10 @@ MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A)
MatrixType F = m_f(avgEival, 0) * MatrixType::Identity(rows, rows);
MatrixType P = Ashifted;
MatrixType Fincr;
- for (Index s = 1; s < 1.1 * rows + 10; s++) { // upper limit is fairly arbitrary
+ for (Index s = 1; double(s) < 1.1 * double(rows) + 10.0; s++) { // upper limit is fairly arbitrary
Fincr = m_f(avgEival, static_cast<int>(s)) * P;
F += Fincr;
- P = Scalar(RealScalar(1.0/(s + 1))) * P * Ashifted;
+ P = Scalar(RealScalar(1)/RealScalar(s + 1)) * P * Ashifted;
// test whether Taylor series converged
const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff();
@@ -131,7 +130,6 @@ typename ListOfClusters::iterator matrix_function_find_cluster(Index key, ListOf
template <typename EivalsType, typename Cluster>
void matrix_function_partition_eigenvalues(const EivalsType& eivals, std::list<Cluster>& clusters)
{
- typedef typename EivalsType::Index Index;
typedef typename EivalsType::RealScalar RealScalar;
for (Index i=0; i<eivals.rows(); ++i) {
// Find cluster containing i-th ei'val, adding a new cluster if necessary
@@ -179,7 +177,7 @@ void matrix_function_compute_block_start(const VectorType& clusterSize, VectorTy
{
blockStart.resize(clusterSize.rows());
blockStart(0) = 0;
- for (typename VectorType::Index i = 1; i < clusterSize.rows(); i++) {
+ for (Index i = 1; i < clusterSize.rows(); i++) {
blockStart(i) = blockStart(i-1) + clusterSize(i-1);
}
}
@@ -188,7 +186,6 @@ void matrix_function_compute_block_start(const VectorType& clusterSize, VectorTy
template <typename EivalsType, typename ListOfClusters, typename VectorType>
void matrix_function_compute_map(const EivalsType& eivals, const ListOfClusters& clusters, VectorType& eivalToCluster)
{
- typedef typename EivalsType::Index Index;
eivalToCluster.resize(eivals.rows());
Index clusterIndex = 0;
for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
@@ -205,7 +202,6 @@ void matrix_function_compute_map(const EivalsType& eivals, const ListOfClusters&
template <typename DynVectorType, typename VectorType>
void matrix_function_compute_permutation(const DynVectorType& blockStart, const DynVectorType& eivalToCluster, VectorType& permutation)
{
- typedef typename VectorType::Index Index;
DynVectorType indexNextEntry = blockStart;
permutation.resize(eivalToCluster.rows());
for (Index i = 0; i < eivalToCluster.rows(); i++) {
@@ -219,7 +215,6 @@ void matrix_function_compute_permutation(const DynVectorType& blockStart, const
template <typename VectorType, typename MatrixType>
void matrix_function_permute_schur(VectorType& permutation, MatrixType& U, MatrixType& T)
{
- typedef typename VectorType::Index Index;
for (Index i = 0; i < permutation.rows() - 1; i++) {
Index j;
for (j = i; j < permutation.rows(); j++) {
@@ -247,7 +242,7 @@ template <typename MatrixType, typename AtomicType, typename VectorType>
void matrix_function_compute_block_atomic(const MatrixType& T, AtomicType& atomic, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
{
fT.setZero(T.rows(), T.cols());
- for (typename VectorType::Index i = 0; i < clusterSize.rows(); ++i) {
+ for (Index i = 0; i < clusterSize.rows(); ++i) {
fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
= atomic.compute(T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)));
}
@@ -285,7 +280,6 @@ MatrixType matrix_function_solve_triangular_sylvester(const MatrixType& A, const
eigen_assert(C.rows() == A.rows());
eigen_assert(C.cols() == B.rows());
- typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
Index m = A.rows();
@@ -330,11 +324,8 @@ void matrix_function_compute_above_diagonal(const MatrixType& T, const VectorTyp
{
typedef internal::traits<MatrixType> Traits;
typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
- static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
static const int Options = MatrixType::Options;
- typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
+ typedef Matrix<Scalar, Dynamic, Dynamic, Options, Traits::RowsAtCompileTime, Traits::ColsAtCompileTime> DynMatrixType;
for (Index k = 1; k < clusterSize.rows(); k++) {
for (Index i = 0; i < clusterSize.rows() - k; i++) {
@@ -428,7 +419,8 @@ struct matrix_function_compute<MatrixType, 1>
typedef internal::traits<MatrixType> Traits;
// compute Schur decomposition of A
- const ComplexSchur<MatrixType> schurOfA(A);
+ const ComplexSchur<MatrixType> schurOfA(A);
+ eigen_assert(schurOfA.info()==Success);
MatrixType T = schurOfA.matrixT();
MatrixType U = schurOfA.matrixU();
@@ -480,7 +472,6 @@ template<typename Derived> class MatrixFunctionReturnValue
{
public:
typedef typename Derived::Scalar Scalar;
- typedef typename Derived::Index Index;
typedef typename internal::stem_function<Scalar>::type StemFunction;
protected:
@@ -505,10 +496,8 @@ template<typename Derived> class MatrixFunctionReturnValue
typedef typename internal::nested_eval<Derived, 10>::type NestedEvalType;
typedef typename internal::remove_all<NestedEvalType>::type NestedEvalTypeClean;
typedef internal::traits<NestedEvalTypeClean> Traits;
- static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
- static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
- typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
+ typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, Traits::RowsAtCompileTime, Traits::ColsAtCompileTime> DynMatrixType;
typedef internal::MatrixFunctionAtomic<DynMatrixType> AtomicType;
AtomicType atomic(m_f);
@@ -577,4 +566,4 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
} // end namespace Eigen
-#endif // EIGEN_MATRIX_FUNCTION
+#endif // EIGEN_MATRIX_FUNCTION_H
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h b/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
index ff8f6e732..e917013e0 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
@@ -62,8 +62,8 @@ void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result)
else
{
// computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
- int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI)));
- result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,2*EIGEN_PI*unwindingNumber)) / y;
+ RealScalar unwindingNumber = ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI));
+ result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,RealScalar(2*EIGEN_PI)*unwindingNumber)) / y;
}
}
@@ -135,7 +135,8 @@ void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree
const int minPadeDegree = 3;
const int maxPadeDegree = 11;
assert(degree >= minPadeDegree && degree <= maxPadeDegree);
-
+ // FIXME this creates float-conversion-warnings if these are enabled.
+ // Either manually convert each value, or disable the warning locally
const RealScalar nodes[][maxPadeDegree] = {
{ 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L, // degree 3
0.8872983346207416885179265399782400L },
@@ -232,12 +233,13 @@ void matrix_log_compute_big(const MatrixType& A, MatrixType& result)
int degree;
MatrixType T = A, sqrtT;
- int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value;
- const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1L: // single precision
+ const int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value;
+ const RealScalar maxNormForPade = RealScalar(
+ maxPadeDegree<= 5? 5.3149729967117310e-1L: // single precision
maxPadeDegree<= 7? 2.6429608311114350e-1L: // double precision
maxPadeDegree<= 8? 2.32777776523703892094e-1L: // extended precision
maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L: // double-double
- 1.1880960220216759245467951592883642e-1L; // quadruple precision
+ 1.1880960220216759245467951592883642e-1L); // quadruple precision
while (true) {
RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
@@ -254,7 +256,7 @@ void matrix_log_compute_big(const MatrixType& A, MatrixType& result)
}
matrix_log_compute_pade(result, T, degree);
- result *= pow(RealScalar(2), numberOfSquareRoots);
+ result *= pow(RealScalar(2), RealScalar(numberOfSquareRoots)); // TODO replace by bitshift if possible
}
/** \ingroup MatrixFunctions_Module
@@ -324,7 +326,7 @@ public:
/** \brief Compute the matrix logarithm.
*
- * \param[out] result Logarithm of \p A, where \A is as specified in the constructor.
+ * \param[out] result Logarithm of \c A, where \c A is as specified in the constructor.
*/
template <typename ResultType>
inline void evalTo(ResultType& result) const
@@ -332,10 +334,8 @@ public:
typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
typedef internal::traits<DerivedEvalTypeClean> Traits;
- static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
- static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
- typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
+ typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, Traits::RowsAtCompileTime, Traits::ColsAtCompileTime> DynMatrixType;
typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType;
AtomicType atomic;
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h b/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
index ebc433d89..d7672d7c9 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
@@ -40,7 +40,6 @@ class MatrixPowerParenthesesReturnValue : public ReturnByValue< MatrixPowerParen
{
public:
typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
/**
* \brief Constructor.
@@ -57,8 +56,8 @@ class MatrixPowerParenthesesReturnValue : public ReturnByValue< MatrixPowerParen
* \param[out] result
*/
template<typename ResultType>
- inline void evalTo(ResultType& res) const
- { m_pow.compute(res, m_p); }
+ inline void evalTo(ResultType& result) const
+ { m_pow.compute(result, m_p); }
Index rows() const { return m_pow.rows(); }
Index cols() const { return m_pow.cols(); }
@@ -81,7 +80,7 @@ class MatrixPowerParenthesesReturnValue : public ReturnByValue< MatrixPowerParen
*
* \note Currently this class is only used by MatrixPower. One may
* insist that this be nested into MatrixPower. This class is here to
- * faciliate future development of triangular matrix functions.
+ * facilitate future development of triangular matrix functions.
*/
template<typename MatrixType>
class MatrixPowerAtomic : internal::noncopyable
@@ -94,7 +93,6 @@ class MatrixPowerAtomic : internal::noncopyable
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef std::complex<RealScalar> ComplexScalar;
- typedef typename MatrixType::Index Index;
typedef Block<MatrixType,Dynamic,Dynamic> ResultType;
const MatrixType& m_A;
@@ -162,11 +160,11 @@ template<typename MatrixType>
void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, ResultType& res) const
{
int i = 2*degree;
- res = (m_p-degree) / (2*i-2) * IminusT;
+ res = (m_p-RealScalar(degree)) / RealScalar(2*i-2) * IminusT;
for (--i; i; --i) {
res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
- .solve((i==1 ? -m_p : i&1 ? (-m_p-i/2)/(2*i) : (m_p-i/2)/(2*i-2)) * IminusT).eval();
+ .solve((i==1 ? -m_p : i&1 ? (-m_p-RealScalar(i/2))/RealScalar(2*i) : (m_p-RealScalar(i/2))/RealScalar(2*i-2)) * IminusT).eval();
}
res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
}
@@ -196,11 +194,12 @@ void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const
{
using std::ldexp;
const int digits = std::numeric_limits<RealScalar>::digits;
- const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1L // single precision
+ const RealScalar maxNormForPade = RealScalar(
+ digits <= 24? 4.3386528e-1L // single precision
: digits <= 53? 2.789358995219730e-1L // double precision
: digits <= 64? 2.4471944416607995472e-1L // extended precision
: digits <= 106? 1.1016843812851143391275867258512e-1L // double-double
- : 9.134603732914548552537150753385375e-2L; // quadruple precision
+ : 9.134603732914548552537150753385375e-2L); // quadruple precision
MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
RealScalar normIminusT;
int degree, degree2, numberOfSquareRoots = 0;
@@ -298,8 +297,8 @@ MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const
ComplexScalar logCurr = log(curr);
ComplexScalar logPrev = log(prev);
- int unwindingNumber = ceil((numext::imag(logCurr - logPrev) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI));
- ComplexScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2) + ComplexScalar(0, EIGEN_PI*unwindingNumber);
+ RealScalar unwindingNumber = ceil((numext::imag(logCurr - logPrev) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI));
+ ComplexScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2) + ComplexScalar(0, RealScalar(EIGEN_PI)*unwindingNumber);
return RealScalar(2) * exp(RealScalar(0.5) * p * (logCurr + logPrev)) * sinh(p * w) / (curr - prev);
}
@@ -340,7 +339,6 @@ class MatrixPower : internal::noncopyable
private:
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
public:
/**
@@ -600,7 +598,6 @@ class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Deri
public:
typedef typename Derived::PlainObject PlainObject;
typedef typename Derived::RealScalar RealScalar;
- typedef typename Derived::Index Index;
/**
* \brief Constructor.
@@ -618,8 +615,8 @@ class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Deri
* constructor.
*/
template<typename ResultType>
- inline void evalTo(ResultType& res) const
- { MatrixPower<PlainObject>(m_A.eval()).compute(res, m_p); }
+ inline void evalTo(ResultType& result) const
+ { MatrixPower<PlainObject>(m_A.eval()).compute(result, m_p); }
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
@@ -648,7 +645,6 @@ class MatrixComplexPowerReturnValue : public ReturnByValue< MatrixComplexPowerRe
public:
typedef typename Derived::PlainObject PlainObject;
typedef typename std::complex<typename Derived::RealScalar> ComplexScalar;
- typedef typename Derived::Index Index;
/**
* \brief Constructor.
@@ -669,8 +665,8 @@ class MatrixComplexPowerReturnValue : public ReturnByValue< MatrixComplexPowerRe
* constructor.
*/
template<typename ResultType>
- inline void evalTo(ResultType& res) const
- { res = (m_p * m_A.log()).exp(); }
+ inline void evalTo(ResultType& result) const
+ { result = (m_p * m_A.log()).exp(); }
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h b/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
index afd88ec4d..e363e779d 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
@@ -17,7 +17,7 @@ namespace internal {
// pre: T.block(i,i,2,2) has complex conjugate eigenvalues
// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, typename MatrixType::Index i, ResultType& sqrtT)
+void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, Index i, ResultType& sqrtT)
{
// TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
// in EigenSolver. If we expose it, we could call it directly from here.
@@ -32,7 +32,7 @@ void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, typena
// all blocks of sqrtT to left of and below (i,j) are correct
// post: sqrtT(i,j) has the correct value
template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
+void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, Index i, Index j, ResultType& sqrtT)
{
typedef typename traits<MatrixType>::Scalar Scalar;
Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
@@ -41,7 +41,7 @@ void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, ty
// similar to compute1x1offDiagonalBlock()
template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
+void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, Index i, Index j, ResultType& sqrtT)
{
typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
@@ -54,7 +54,7 @@ void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, ty
// similar to compute1x1offDiagonalBlock()
template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
+void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, Index i, Index j, ResultType& sqrtT)
{
typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
@@ -101,7 +101,7 @@ void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X, const
// similar to compute1x1offDiagonalBlock()
template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
+void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, Index i, Index j, ResultType& sqrtT)
{
typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
@@ -120,7 +120,6 @@ template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT)
{
using std::sqrt;
- typedef typename MatrixType::Index Index;
const Index size = T.rows();
for (Index i = 0; i < size; i++) {
if (i == size - 1 || T.coeff(i+1, i) == 0) {
@@ -139,7 +138,6 @@ void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrt
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT)
{
- typedef typename MatrixType::Index Index;
const Index size = T.rows();
for (Index j = 1; j < size; j++) {
if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block
@@ -206,8 +204,7 @@ template <typename MatrixType, typename ResultType>
void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
{
using std::sqrt;
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Scalar Scalar;
eigen_assert(arg.rows() == arg.cols());
@@ -256,18 +253,19 @@ struct matrix_sqrt_compute
template <typename MatrixType>
struct matrix_sqrt_compute<MatrixType, 0>
{
+ typedef typename MatrixType::PlainObject PlainType;
template <typename ResultType>
static void run(const MatrixType &arg, ResultType &result)
{
eigen_assert(arg.rows() == arg.cols());
// Compute Schur decomposition of arg
- const RealSchur<MatrixType> schurOfA(arg);
- const MatrixType& T = schurOfA.matrixT();
- const MatrixType& U = schurOfA.matrixU();
+ const RealSchur<PlainType> schurOfA(arg);
+ const PlainType& T = schurOfA.matrixT();
+ const PlainType& U = schurOfA.matrixU();
// Compute square root of T
- MatrixType sqrtT = MatrixType::Zero(arg.rows(), arg.cols());
+ PlainType sqrtT = PlainType::Zero(arg.rows(), arg.cols());
matrix_sqrt_quasi_triangular(T, sqrtT);
// Compute square root of arg
@@ -281,18 +279,19 @@ struct matrix_sqrt_compute<MatrixType, 0>
template <typename MatrixType>
struct matrix_sqrt_compute<MatrixType, 1>
{
+ typedef typename MatrixType::PlainObject PlainType;
template <typename ResultType>
static void run(const MatrixType &arg, ResultType &result)
{
eigen_assert(arg.rows() == arg.cols());
// Compute Schur decomposition of arg
- const ComplexSchur<MatrixType> schurOfA(arg);
- const MatrixType& T = schurOfA.matrixT();
- const MatrixType& U = schurOfA.matrixU();
+ const ComplexSchur<PlainType> schurOfA(arg);
+ const PlainType& T = schurOfA.matrixT();
+ const PlainType& U = schurOfA.matrixU();
// Compute square root of T
- MatrixType sqrtT;
+ PlainType sqrtT;
matrix_sqrt_triangular(T, sqrtT);
// Compute square root of arg
@@ -318,7 +317,6 @@ template<typename Derived> class MatrixSquareRootReturnValue
: public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
{
protected:
- typedef typename Derived::Index Index;
typedef typename internal::ref_selector<Derived>::type DerivedNested;
public: