aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/NonLinearOptimization/lmpar.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/src/NonLinearOptimization/lmpar.h')
-rw-r--r--unsupported/Eigen/src/NonLinearOptimization/lmpar.h294
1 files changed, 294 insertions, 0 deletions
diff --git a/unsupported/Eigen/src/NonLinearOptimization/lmpar.h b/unsupported/Eigen/src/NonLinearOptimization/lmpar.h
new file mode 100644
index 000000000..cc1ca530f
--- /dev/null
+++ b/unsupported/Eigen/src/NonLinearOptimization/lmpar.h
@@ -0,0 +1,294 @@
+namespace Eigen {
+
+namespace internal {
+
+template <typename Scalar>
+void lmpar(
+ Matrix< Scalar, Dynamic, Dynamic > &r,
+ const VectorXi &ipvt,
+ const Matrix< Scalar, Dynamic, 1 > &diag,
+ const Matrix< Scalar, Dynamic, 1 > &qtb,
+ Scalar delta,
+ Scalar &par,
+ Matrix< Scalar, Dynamic, 1 > &x)
+{
+ typedef DenseIndex Index;
+
+ /* Local variables */
+ Index i, j, l;
+ Scalar fp;
+ Scalar parc, parl;
+ Index iter;
+ Scalar temp, paru;
+ Scalar gnorm;
+ Scalar dxnorm;
+
+
+ /* Function Body */
+ const Scalar dwarf = std::numeric_limits<Scalar>::min();
+ const Index n = r.cols();
+ assert(n==diag.size());
+ assert(n==qtb.size());
+ assert(n==x.size());
+
+ Matrix< Scalar, Dynamic, 1 > wa1, wa2;
+
+ /* compute and store in x the gauss-newton direction. if the */
+ /* jacobian is rank-deficient, obtain a least squares solution. */
+ Index nsing = n-1;
+ wa1 = qtb;
+ for (j = 0; j < n; ++j) {
+ if (r(j,j) == 0. && nsing == n-1)
+ nsing = j - 1;
+ if (nsing < n-1)
+ wa1[j] = 0.;
+ }
+ for (j = nsing; j>=0; --j) {
+ wa1[j] /= r(j,j);
+ temp = wa1[j];
+ for (i = 0; i < j ; ++i)
+ wa1[i] -= r(i,j) * temp;
+ }
+
+ for (j = 0; j < n; ++j)
+ x[ipvt[j]] = wa1[j];
+
+ /* initialize the iteration counter. */
+ /* evaluate the function at the origin, and test */
+ /* for acceptance of the gauss-newton direction. */
+ iter = 0;
+ wa2 = diag.cwiseProduct(x);
+ dxnorm = wa2.blueNorm();
+ fp = dxnorm - delta;
+ if (fp <= Scalar(0.1) * delta) {
+ par = 0;
+ return;
+ }
+
+ /* if the jacobian is not rank deficient, the newton */
+ /* step provides a lower bound, parl, for the zero of */
+ /* the function. otherwise set this bound to zero. */
+ parl = 0.;
+ if (nsing >= n-1) {
+ for (j = 0; j < n; ++j) {
+ l = ipvt[j];
+ wa1[j] = diag[l] * (wa2[l] / dxnorm);
+ }
+ // it's actually a triangularView.solveInplace(), though in a weird
+ // way:
+ for (j = 0; j < n; ++j) {
+ Scalar sum = 0.;
+ for (i = 0; i < j; ++i)
+ sum += r(i,j) * wa1[i];
+ wa1[j] = (wa1[j] - sum) / r(j,j);
+ }
+ temp = wa1.blueNorm();
+ parl = fp / delta / temp / temp;
+ }
+
+ /* calculate an upper bound, paru, for the zero of the function. */
+ for (j = 0; j < n; ++j)
+ wa1[j] = r.col(j).head(j+1).dot(qtb.head(j+1)) / diag[ipvt[j]];
+
+ gnorm = wa1.stableNorm();
+ paru = gnorm / delta;
+ if (paru == 0.)
+ paru = dwarf / (std::min)(delta,Scalar(0.1));
+
+ /* if the input par lies outside of the interval (parl,paru), */
+ /* set par to the closer endpoint. */
+ par = (std::max)(par,parl);
+ par = (std::min)(par,paru);
+ if (par == 0.)
+ par = gnorm / dxnorm;
+
+ /* beginning of an iteration. */
+ while (true) {
+ ++iter;
+
+ /* evaluate the function at the current value of par. */
+ if (par == 0.)
+ par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
+ wa1 = sqrt(par)* diag;
+
+ Matrix< Scalar, Dynamic, 1 > sdiag(n);
+ qrsolv<Scalar>(r, ipvt, wa1, qtb, x, sdiag);
+
+ wa2 = diag.cwiseProduct(x);
+ dxnorm = wa2.blueNorm();
+ temp = fp;
+ fp = dxnorm - delta;
+
+ /* if the function is small enough, accept the current value */
+ /* of par. also test for the exceptional cases where parl */
+ /* is zero or the number of iterations has reached 10. */
+ if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
+ break;
+
+ /* compute the newton correction. */
+ for (j = 0; j < n; ++j) {
+ l = ipvt[j];
+ wa1[j] = diag[l] * (wa2[l] / dxnorm);
+ }
+ for (j = 0; j < n; ++j) {
+ wa1[j] /= sdiag[j];
+ temp = wa1[j];
+ for (i = j+1; i < n; ++i)
+ wa1[i] -= r(i,j) * temp;
+ }
+ temp = wa1.blueNorm();
+ parc = fp / delta / temp / temp;
+
+ /* depending on the sign of the function, update parl or paru. */
+ if (fp > 0.)
+ parl = (std::max)(parl,par);
+ if (fp < 0.)
+ paru = (std::min)(paru,par);
+
+ /* compute an improved estimate for par. */
+ /* Computing MAX */
+ par = (std::max)(parl,par+parc);
+
+ /* end of an iteration. */
+ }
+
+ /* termination. */
+ if (iter == 0)
+ par = 0.;
+ return;
+}
+
+template <typename Scalar>
+void lmpar2(
+ const ColPivHouseholderQR<Matrix< Scalar, Dynamic, Dynamic> > &qr,
+ const Matrix< Scalar, Dynamic, 1 > &diag,
+ const Matrix< Scalar, Dynamic, 1 > &qtb,
+ Scalar delta,
+ Scalar &par,
+ Matrix< Scalar, Dynamic, 1 > &x)
+
+{
+ typedef DenseIndex Index;
+
+ /* Local variables */
+ Index j;
+ Scalar fp;
+ Scalar parc, parl;
+ Index iter;
+ Scalar temp, paru;
+ Scalar gnorm;
+ Scalar dxnorm;
+
+
+ /* Function Body */
+ const Scalar dwarf = std::numeric_limits<Scalar>::min();
+ const Index n = qr.matrixQR().cols();
+ assert(n==diag.size());
+ assert(n==qtb.size());
+
+ Matrix< Scalar, Dynamic, 1 > wa1, wa2;
+
+ /* compute and store in x the gauss-newton direction. if the */
+ /* jacobian is rank-deficient, obtain a least squares solution. */
+
+// const Index rank = qr.nonzeroPivots(); // exactly double(0.)
+ const Index rank = qr.rank(); // use a threshold
+ wa1 = qtb;
+ wa1.tail(n-rank).setZero();
+ qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank));
+
+ x = qr.colsPermutation()*wa1;
+
+ /* initialize the iteration counter. */
+ /* evaluate the function at the origin, and test */
+ /* for acceptance of the gauss-newton direction. */
+ iter = 0;
+ wa2 = diag.cwiseProduct(x);
+ dxnorm = wa2.blueNorm();
+ fp = dxnorm - delta;
+ if (fp <= Scalar(0.1) * delta) {
+ par = 0;
+ return;
+ }
+
+ /* if the jacobian is not rank deficient, the newton */
+ /* step provides a lower bound, parl, for the zero of */
+ /* the function. otherwise set this bound to zero. */
+ parl = 0.;
+ if (rank==n) {
+ wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2)/dxnorm;
+ qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
+ temp = wa1.blueNorm();
+ parl = fp / delta / temp / temp;
+ }
+
+ /* calculate an upper bound, paru, for the zero of the function. */
+ for (j = 0; j < n; ++j)
+ wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
+
+ gnorm = wa1.stableNorm();
+ paru = gnorm / delta;
+ if (paru == 0.)
+ paru = dwarf / (std::min)(delta,Scalar(0.1));
+
+ /* if the input par lies outside of the interval (parl,paru), */
+ /* set par to the closer endpoint. */
+ par = (std::max)(par,parl);
+ par = (std::min)(par,paru);
+ if (par == 0.)
+ par = gnorm / dxnorm;
+
+ /* beginning of an iteration. */
+ Matrix< Scalar, Dynamic, Dynamic > s = qr.matrixQR();
+ while (true) {
+ ++iter;
+
+ /* evaluate the function at the current value of par. */
+ if (par == 0.)
+ par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
+ wa1 = sqrt(par)* diag;
+
+ Matrix< Scalar, Dynamic, 1 > sdiag(n);
+ qrsolv<Scalar>(s, qr.colsPermutation().indices(), wa1, qtb, x, sdiag);
+
+ wa2 = diag.cwiseProduct(x);
+ dxnorm = wa2.blueNorm();
+ temp = fp;
+ fp = dxnorm - delta;
+
+ /* if the function is small enough, accept the current value */
+ /* of par. also test for the exceptional cases where parl */
+ /* is zero or the number of iterations has reached 10. */
+ if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
+ break;
+
+ /* compute the newton correction. */
+ wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
+ // we could almost use this here, but the diagonal is outside qr, in sdiag[]
+ // qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
+ for (j = 0; j < n; ++j) {
+ wa1[j] /= sdiag[j];
+ temp = wa1[j];
+ for (Index i = j+1; i < n; ++i)
+ wa1[i] -= s(i,j) * temp;
+ }
+ temp = wa1.blueNorm();
+ parc = fp / delta / temp / temp;
+
+ /* depending on the sign of the function, update parl or paru. */
+ if (fp > 0.)
+ parl = (std::max)(parl,par);
+ if (fp < 0.)
+ paru = (std::min)(paru,par);
+
+ /* compute an improved estimate for par. */
+ par = (std::max)(parl,par+parc);
+ }
+ if (iter == 0)
+ par = 0.;
+ return;
+}
+
+} // end namespace internal
+
+} // end namespace Eigen