aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/src/Polynomials/PolynomialUtils.h')
-rw-r--r--unsupported/Eigen/src/Polynomials/PolynomialUtils.h141
1 files changed, 141 insertions, 0 deletions
diff --git a/unsupported/Eigen/src/Polynomials/PolynomialUtils.h b/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
new file mode 100644
index 000000000..c23204c65
--- /dev/null
+++ b/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
@@ -0,0 +1,141 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_POLYNOMIAL_UTILS_H
+#define EIGEN_POLYNOMIAL_UTILS_H
+
+namespace Eigen {
+
+/** \ingroup Polynomials_Module
+ * \returns the evaluation of the polynomial at x using Horner algorithm.
+ *
+ * \param[in] poly : the vector of coefficients of the polynomial ordered
+ * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
+ * e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
+ * \param[in] x : the value to evaluate the polynomial at.
+ *
+ * <i><b>Note for stability:</b></i>
+ * <dd> \f$ |x| \le 1 \f$ </dd>
+ */
+template <typename Polynomials, typename T>
+inline
+T poly_eval_horner( const Polynomials& poly, const T& x )
+{
+ T val=poly[poly.size()-1];
+ for(DenseIndex i=poly.size()-2; i>=0; --i ){
+ val = val*x + poly[i]; }
+ return val;
+}
+
+/** \ingroup Polynomials_Module
+ * \returns the evaluation of the polynomial at x using stabilized Horner algorithm.
+ *
+ * \param[in] poly : the vector of coefficients of the polynomial ordered
+ * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
+ * e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
+ * \param[in] x : the value to evaluate the polynomial at.
+ */
+template <typename Polynomials, typename T>
+inline
+T poly_eval( const Polynomials& poly, const T& x )
+{
+ typedef typename NumTraits<T>::Real Real;
+
+ if( internal::abs2( x ) <= Real(1) ){
+ return poly_eval_horner( poly, x ); }
+ else
+ {
+ T val=poly[0];
+ T inv_x = T(1)/x;
+ for( DenseIndex i=1; i<poly.size(); ++i ){
+ val = val*inv_x + poly[i]; }
+
+ return std::pow(x,(T)(poly.size()-1)) * val;
+ }
+}
+
+/** \ingroup Polynomials_Module
+ * \returns a maximum bound for the absolute value of any root of the polynomial.
+ *
+ * \param[in] poly : the vector of coefficients of the polynomial ordered
+ * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
+ * e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
+ *
+ * <i><b>Precondition:</b></i>
+ * <dd> the leading coefficient of the input polynomial poly must be non zero </dd>
+ */
+template <typename Polynomial>
+inline
+typename NumTraits<typename Polynomial::Scalar>::Real cauchy_max_bound( const Polynomial& poly )
+{
+ typedef typename Polynomial::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real Real;
+
+ assert( Scalar(0) != poly[poly.size()-1] );
+ const Scalar inv_leading_coeff = Scalar(1)/poly[poly.size()-1];
+ Real cb(0);
+
+ for( DenseIndex i=0; i<poly.size()-1; ++i ){
+ cb += internal::abs(poly[i]*inv_leading_coeff); }
+ return cb + Real(1);
+}
+
+/** \ingroup Polynomials_Module
+ * \returns a minimum bound for the absolute value of any non zero root of the polynomial.
+ * \param[in] poly : the vector of coefficients of the polynomial ordered
+ * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
+ * e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
+ */
+template <typename Polynomial>
+inline
+typename NumTraits<typename Polynomial::Scalar>::Real cauchy_min_bound( const Polynomial& poly )
+{
+ typedef typename Polynomial::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real Real;
+
+ DenseIndex i=0;
+ while( i<poly.size()-1 && Scalar(0) == poly(i) ){ ++i; }
+ if( poly.size()-1 == i ){
+ return Real(1); }
+
+ const Scalar inv_min_coeff = Scalar(1)/poly[i];
+ Real cb(1);
+ for( DenseIndex j=i+1; j<poly.size(); ++j ){
+ cb += internal::abs(poly[j]*inv_min_coeff); }
+ return Real(1)/cb;
+}
+
+/** \ingroup Polynomials_Module
+ * Given the roots of a polynomial compute the coefficients in the
+ * monomial basis of the monic polynomial with same roots and minimal degree.
+ * If RootVector is a vector of complexes, Polynomial should also be a vector
+ * of complexes.
+ * \param[in] rv : a vector containing the roots of a polynomial.
+ * \param[out] poly : the vector of coefficients of the polynomial ordered
+ * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
+ * e.g. \f$ 3 + x^2 \f$ is stored as a vector \f$ [ 3, 0, 1 ] \f$.
+ */
+template <typename RootVector, typename Polynomial>
+void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
+{
+
+ typedef typename Polynomial::Scalar Scalar;
+
+ poly.setZero( rv.size()+1 );
+ poly[0] = -rv[0]; poly[1] = Scalar(1);
+ for( DenseIndex i=1; i< rv.size(); ++i )
+ {
+ for( DenseIndex j=i+1; j>0; --j ){ poly[j] = poly[j-1] - rv[i]*poly[j]; }
+ poly[0] = -rv[i]*poly[0];
+ }
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_POLYNOMIAL_UTILS_H