aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/src')
-rw-r--r--unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h49
-rwxr-xr-x[-rw-r--r--]unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h224
-rw-r--r--unsupported/Eigen/src/AutoDiff/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/BVH/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/CMakeLists.txt14
-rw-r--r--unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h14
-rw-r--r--unsupported/Eigen/src/EulerAngles/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/EulerAngles/EulerAngles.h386
-rw-r--r--unsupported/Eigen/src/EulerAngles/EulerSystem.h326
-rw-r--r--unsupported/Eigen/src/FFT/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/DGMRES.h61
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/GMRES.h409
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h278
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h39
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/MINRES.h87
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/Scaling.h6
-rw-r--r--unsupported/Eigen/src/KroneckerProduct/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h169
-rw-r--r--unsupported/Eigen/src/LevenbergMarquardt/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h1
-rw-r--r--unsupported/Eigen/src/LevenbergMarquardt/LMpar.h2
-rw-r--r--unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h9
-rw-r--r--unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h31
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h665
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h708
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixFunctionAtomic.h131
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h507
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixPower.h397
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h450
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/StemFunction.h172
-rw-r--r--unsupported/Eigen/src/MoreVectorization/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/NonLinearOptimization/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h4
-rw-r--r--unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h25
-rw-r--r--unsupported/Eigen/src/NumericalDiff/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/Polynomials/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/Polynomials/PolynomialSolver.h33
-rw-r--r--unsupported/Eigen/src/Polynomials/PolynomialUtils.h2
-rw-r--r--unsupported/Eigen/src/SVD/BDCSVD.h748
-rw-r--r--unsupported/Eigen/src/SVD/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/SVD/JacobiSVD.h782
-rw-r--r--unsupported/Eigen/src/SVD/SVDBase.h236
-rw-r--r--unsupported/Eigen/src/SVD/TODOBdcsvd.txt29
-rw-r--r--unsupported/Eigen/src/SVD/doneInBDCSVD.txt21
-rw-r--r--unsupported/Eigen/src/Skyline/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/Skyline/SkylineProduct.h6
-rw-r--r--unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h1079
-rw-r--r--unsupported/Eigen/src/SparseExtra/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h71
-rw-r--r--unsupported/Eigen/src/SparseExtra/MarketIO.h21
-rw-r--r--unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h43
-rw-r--r--unsupported/Eigen/src/SparseExtra/RandomSetter.h10
-rw-r--r--unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h124
-rw-r--r--unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h236
-rw-r--r--unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h47
-rw-r--r--unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h1565
-rw-r--r--unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h58
-rw-r--r--unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h165
-rw-r--r--unsupported/Eigen/src/Splines/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/Splines/Spline.h74
-rw-r--r--unsupported/Eigen/src/Splines/SplineFitting.h274
-rw-r--r--unsupported/Eigen/src/Splines/SplineFwd.h11
64 files changed, 6487 insertions, 4408 deletions
diff --git a/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h b/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
index 1a61e3367..33b6c393f 100644
--- a/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
+++ b/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
@@ -20,37 +20,60 @@ public:
AutoDiffJacobian(const Functor& f) : Functor(f) {}
// forward constructors
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ template<typename... T>
+ AutoDiffJacobian(const T& ...Values) : Functor(Values...) {}
+#else
template<typename T0>
AutoDiffJacobian(const T0& a0) : Functor(a0) {}
template<typename T0, typename T1>
AutoDiffJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {}
template<typename T0, typename T1, typename T2>
AutoDiffJacobian(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2) {}
+#endif
+
+ typedef typename Functor::InputType InputType;
+ typedef typename Functor::ValueType ValueType;
+ typedef typename ValueType::Scalar Scalar;
enum {
- InputsAtCompileTime = Functor::InputsAtCompileTime,
- ValuesAtCompileTime = Functor::ValuesAtCompileTime
+ InputsAtCompileTime = InputType::RowsAtCompileTime,
+ ValuesAtCompileTime = ValueType::RowsAtCompileTime
};
- typedef typename Functor::InputType InputType;
- typedef typename Functor::ValueType ValueType;
- typedef typename Functor::JacobianType JacobianType;
- typedef typename JacobianType::Scalar Scalar;
+ typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType;
typedef typename JacobianType::Index Index;
- typedef Matrix<Scalar,InputsAtCompileTime,1> DerivativeType;
+ typedef Matrix<Scalar, InputsAtCompileTime, 1> DerivativeType;
typedef AutoDiffScalar<DerivativeType> ActiveScalar;
-
typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput;
typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue;
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ // Some compilers don't accept variadic parameters after a default parameter,
+ // i.e., we can't just write _jac=0 but we need to overload operator():
+ EIGEN_STRONG_INLINE
+ void operator() (const InputType& x, ValueType* v) const
+ {
+ this->operator()(x, v, 0);
+ }
+ template<typename... ParamsType>
+ void operator() (const InputType& x, ValueType* v, JacobianType* _jac,
+ const ParamsType&... Params) const
+#else
void operator() (const InputType& x, ValueType* v, JacobianType* _jac=0) const
+#endif
{
eigen_assert(v!=0);
+
if (!_jac)
{
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ Functor::operator()(x, v, Params...);
+#else
Functor::operator()(x, v);
+#endif
return;
}
@@ -61,12 +84,16 @@ public:
if(InputsAtCompileTime==Dynamic)
for (Index j=0; j<jac.rows(); j++)
- av[j].derivatives().resize(this->inputs());
+ av[j].derivatives().resize(x.rows());
for (Index i=0; i<jac.cols(); i++)
- ax[i].derivatives() = DerivativeType::Unit(this->inputs(),i);
+ ax[i].derivatives() = DerivativeType::Unit(x.rows(),i);
+#if EIGEN_HAS_VARIADIC_TEMPLATES
+ Functor::operator()(ax, &av, Params...);
+#else
Functor::operator()(ax, &av);
+#endif
for (Index i=0; i<jac.rows(); i++)
{
@@ -74,8 +101,6 @@ public:
jac.row(i) = av[i].derivatives();
}
}
-protected:
-
};
}
diff --git a/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h b/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
index 8d42e69b9..50fedf6ac 100644..100755
--- a/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
+++ b/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
@@ -30,6 +30,13 @@ template<typename _DerType, bool Enable> struct auto_diff_special_op;
} // end namespace internal
+template<typename _DerType> class AutoDiffScalar;
+
+template<typename NewDerType>
+inline AutoDiffScalar<NewDerType> MakeAutoDiffScalar(const typename NewDerType::Scalar& value, const NewDerType &der) {
+ return AutoDiffScalar<NewDerType>(value,der);
+}
+
/** \class AutoDiffScalar
* \brief A scalar type replacement with automatic differentation capability
*
@@ -60,7 +67,7 @@ template<typename _DerType>
class AutoDiffScalar
: public internal::auto_diff_special_op
<_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar,
- typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value>
+ typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value>
{
public:
typedef internal::auto_diff_special_op
@@ -99,7 +106,11 @@ class AutoDiffScalar
{}
template<typename OtherDerType>
- AutoDiffScalar(const AutoDiffScalar<OtherDerType>& other)
+ AutoDiffScalar(const AutoDiffScalar<OtherDerType>& other
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+ , typename internal::enable_if<internal::is_same<Scalar, typename internal::traits<typename internal::remove_all<OtherDerType>::type>::Scalar>::value,void*>::type = 0
+#endif
+ )
: m_value(other.value()), m_derivatives(other.derivatives())
{}
@@ -127,6 +138,14 @@ class AutoDiffScalar
return *this;
}
+ inline AutoDiffScalar& operator=(const Scalar& other)
+ {
+ m_value = other;
+ if(m_derivatives.size()>0)
+ m_derivatives.setZero();
+ return *this;
+ }
+
// inline operator const Scalar& () const { return m_value; }
// inline operator Scalar& () { return m_value; }
@@ -245,20 +264,16 @@ class AutoDiffScalar
-m_derivatives);
}
- inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >
+ inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
operator*(const Scalar& other) const
{
- return AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >(
- m_value * other,
- (m_derivatives * other));
+ return MakeAutoDiffScalar(m_value * other, m_derivatives * other);
}
- friend inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >
+ friend inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
operator*(const Scalar& other, const AutoDiffScalar& a)
{
- return AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >(
- a.value() * other,
- a.derivatives() * other);
+ return MakeAutoDiffScalar(a.value() * other, a.derivatives() * other);
}
// inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
@@ -277,20 +292,16 @@ class AutoDiffScalar
// a.derivatives() * other);
// }
- inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >
+ inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
operator/(const Scalar& other) const
{
- return AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >(
- m_value / other,
- (m_derivatives * (Scalar(1)/other)));
+ return MakeAutoDiffScalar(m_value / other, (m_derivatives * (Scalar(1)/other)));
}
- friend inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >
+ friend inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
operator/(const Scalar& other, const AutoDiffScalar& a)
{
- return AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >(
- other / a.value(),
- a.derivatives() * (Scalar(-other) / (a.value()*a.value())));
+ return MakeAutoDiffScalar(other / a.value(), a.derivatives() * (Scalar(-other) / (a.value()*a.value())));
}
// inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
@@ -310,34 +321,29 @@ class AutoDiffScalar
// }
template<typename OtherDerType>
- inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>,
- const CwiseBinaryOp<internal::scalar_difference_op<Scalar>,
- const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType>,
- const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const typename internal::remove_all<OtherDerType>::type > > > >
+ inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(
+ CwiseBinaryOp<internal::scalar_difference_op<Scalar> EIGEN_COMMA
+ const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) EIGEN_COMMA
+ const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) >,Scalar,product) >
operator/(const AutoDiffScalar<OtherDerType>& other) const
{
internal::make_coherent(m_derivatives, other.derivatives());
- return AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>,
- const CwiseBinaryOp<internal::scalar_difference_op<Scalar>,
- const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType>,
- const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const typename internal::remove_all<OtherDerType>::type > > > >(
+ return MakeAutoDiffScalar(
m_value / other.value(),
- ((m_derivatives * other.value()) - (m_value * other.derivatives()))
+ ((m_derivatives * other.value()) - (other.derivatives() * m_value))
* (Scalar(1)/(other.value()*other.value())));
}
template<typename OtherDerType>
inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
- const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType>,
- const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const typename internal::remove_all<OtherDerType>::type> > >
+ const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product),
+ const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) > >
operator*(const AutoDiffScalar<OtherDerType>& other) const
{
internal::make_coherent(m_derivatives, other.derivatives());
- return AutoDiffScalar<const CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
- const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType>,
- const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const typename internal::remove_all<OtherDerType>::type > > >(
+ return MakeAutoDiffScalar(
m_value * other.value(),
- (m_derivatives * other.value()) + (m_value * other.derivatives()));
+ (m_derivatives * other.value()) + (other.derivatives() * m_value));
}
inline AutoDiffScalar& operator*=(const Scalar& other)
@@ -414,18 +420,18 @@ struct auto_diff_special_op<_DerType, true>
}
- inline const AutoDiffScalar<typename CwiseUnaryOp<scalar_multiple2_op<Scalar,Real>, DerType>::Type >
+ inline const AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar,Real> >, DerType>::Type >
operator*(const Real& other) const
{
- return AutoDiffScalar<typename CwiseUnaryOp<scalar_multiple2_op<Scalar,Real>, DerType>::Type >(
+ return AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar,Real> >, DerType>::Type >(
derived().value() * other,
derived().derivatives() * other);
}
- friend inline const AutoDiffScalar<typename CwiseUnaryOp<scalar_multiple2_op<Scalar,Real>, DerType>::Type >
+ friend inline const AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type >
operator*(const Real& other, const AutoDiffScalar<_DerType>& a)
{
- return AutoDiffScalar<typename CwiseUnaryOp<scalar_multiple2_op<Scalar,Real>, DerType>::Type >(
+ return AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type >(
a.value() * other,
a.derivatives() * other);
}
@@ -489,43 +495,44 @@ struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows,
}
};
-template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols>
-struct scalar_product_traits<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>,A_Scalar>
-{
- enum { Defined = 1 };
- typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> ReturnType;
-};
-
-template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols>
-struct scalar_product_traits<A_Scalar, Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> >
-{
- enum { Defined = 1 };
- typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> ReturnType;
-};
+} // end namespace internal
-template<typename DerType>
-struct scalar_product_traits<AutoDiffScalar<DerType>,typename DerType::Scalar>
+template<typename DerType, typename BinOp>
+struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,typename DerType::Scalar,BinOp>
{
- enum { Defined = 1 };
typedef AutoDiffScalar<DerType> ReturnType;
};
-template<typename DerType>
-struct scalar_product_traits<typename DerType::Scalar,AutoDiffScalar<DerType> >
+template<typename DerType, typename BinOp>
+struct ScalarBinaryOpTraits<typename DerType::Scalar,AutoDiffScalar<DerType>, BinOp>
{
- enum { Defined = 1 };
typedef AutoDiffScalar<DerType> ReturnType;
};
-} // end namespace internal
+
+// The following is an attempt to let Eigen's known about expression template, but that's more tricky!
+
+// template<typename DerType, typename BinOp>
+// struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,AutoDiffScalar<DerType>, BinOp>
+// {
+// enum { Defined = 1 };
+// typedef AutoDiffScalar<typename DerType::PlainObject> ReturnType;
+// };
+//
+// template<typename DerType1,typename DerType2, typename BinOp>
+// struct ScalarBinaryOpTraits<AutoDiffScalar<DerType1>,AutoDiffScalar<DerType2>, BinOp>
+// {
+// enum { Defined = 1 };//internal::is_same<typename DerType1::Scalar,typename DerType2::Scalar>::value };
+// typedef AutoDiffScalar<typename DerType1::PlainObject> ReturnType;
+// };
#define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC,CODE) \
template<typename DerType> \
- inline const Eigen::AutoDiffScalar<Eigen::CwiseUnaryOp<Eigen::internal::scalar_multiple_op<typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar>, const typename Eigen::internal::remove_all<DerType>::type> > \
+ inline const Eigen::AutoDiffScalar< \
+ EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename Eigen::internal::remove_all<DerType>::type, typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar, product) > \
FUNC(const Eigen::AutoDiffScalar<DerType>& x) { \
using namespace Eigen; \
- typedef typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar Scalar; \
- typedef AutoDiffScalar<CwiseUnaryOp<Eigen::internal::scalar_multiple_op<Scalar>, const typename Eigen::internal::remove_all<DerType>::type> > ReturnType; \
+ EIGEN_UNUSED typedef typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar Scalar; \
CODE; \
}
@@ -536,75 +543,92 @@ inline const AutoDiffScalar<DerType>& real(const AutoDiffScalar<DerType>& x) {
template<typename DerType>
inline typename DerType::Scalar imag(const AutoDiffScalar<DerType>&) { return 0.; }
template<typename DerType, typename T>
-inline AutoDiffScalar<DerType> (min)(const AutoDiffScalar<DerType>& x, const T& y) { return (x <= y ? x : y); }
+inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const AutoDiffScalar<DerType>& x, const T& y) {
+ typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
+ return (x <= y ? ADS(x) : ADS(y));
+}
template<typename DerType, typename T>
-inline AutoDiffScalar<DerType> (max)(const AutoDiffScalar<DerType>& x, const T& y) { return (x >= y ? x : y); }
+inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const AutoDiffScalar<DerType>& x, const T& y) {
+ typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
+ return (x >= y ? ADS(x) : ADS(y));
+}
template<typename DerType, typename T>
-inline AutoDiffScalar<DerType> (min)(const T& x, const AutoDiffScalar<DerType>& y) { return (x < y ? x : y); }
+inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const T& x, const AutoDiffScalar<DerType>& y) {
+ typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
+ return (x < y ? ADS(x) : ADS(y));
+}
template<typename DerType, typename T>
-inline AutoDiffScalar<DerType> (max)(const T& x, const AutoDiffScalar<DerType>& y) { return (x > y ? x : y); }
+inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const T& x, const AutoDiffScalar<DerType>& y) {
+ typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
+ return (x > y ? ADS(x) : ADS(y));
+}
+template<typename DerType>
+inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) {
+ return (x.value() < y.value() ? x : y);
+}
+template<typename DerType>
+inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) {
+ return (x.value() >= y.value() ? x : y);
+}
+
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs,
using std::abs;
- return ReturnType(abs(x.value()), x.derivatives() * (x.value()<0 ? -1 : 1) );)
+ return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() * (x.value()<0 ? -1 : 1) );)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2,
using numext::abs2;
- return ReturnType(abs2(x.value()), x.derivatives() * (Scalar(2)*x.value()));)
+ return Eigen::MakeAutoDiffScalar(abs2(x.value()), x.derivatives() * (Scalar(2)*x.value()));)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sqrt,
using std::sqrt;
Scalar sqrtx = sqrt(x.value());
- return ReturnType(sqrtx,x.derivatives() * (Scalar(0.5) / sqrtx));)
+ return Eigen::MakeAutoDiffScalar(sqrtx,x.derivatives() * (Scalar(0.5) / sqrtx));)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos,
using std::cos;
using std::sin;
- return ReturnType(cos(x.value()), x.derivatives() * (-sin(x.value())));)
+ return Eigen::MakeAutoDiffScalar(cos(x.value()), x.derivatives() * (-sin(x.value())));)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sin,
using std::sin;
using std::cos;
- return ReturnType(sin(x.value()),x.derivatives() * cos(x.value()));)
+ return Eigen::MakeAutoDiffScalar(sin(x.value()),x.derivatives() * cos(x.value()));)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp,
using std::exp;
Scalar expx = exp(x.value());
- return ReturnType(expx,x.derivatives() * expx);)
+ return Eigen::MakeAutoDiffScalar(expx,x.derivatives() * expx);)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(log,
using std::log;
- return ReturnType(log(x.value()),x.derivatives() * (Scalar(1)/x.value()));)
+ return Eigen::MakeAutoDiffScalar(log(x.value()),x.derivatives() * (Scalar(1)/x.value()));)
template<typename DerType>
-inline const Eigen::AutoDiffScalar<Eigen::CwiseUnaryOp<Eigen::internal::scalar_multiple_op<typename Eigen::internal::traits<DerType>::Scalar>, const DerType> >
-pow(const Eigen::AutoDiffScalar<DerType>& x, typename Eigen::internal::traits<DerType>::Scalar y)
+inline const Eigen::AutoDiffScalar<
+EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<DerType>::type,typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar,product) >
+pow(const Eigen::AutoDiffScalar<DerType> &x, const typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar &y)
{
using namespace Eigen;
- typedef typename Eigen::internal::traits<DerType>::Scalar Scalar;
- return AutoDiffScalar<CwiseUnaryOp<Eigen::internal::scalar_multiple_op<Scalar>, const DerType> >(
- std::pow(x.value(),y),
- x.derivatives() * (y * std::pow(x.value(),y-1)));
+ using std::pow;
+ return Eigen::MakeAutoDiffScalar(pow(x.value(),y), x.derivatives() * (y * pow(x.value(),y-1)));
}
template<typename DerTypeA,typename DerTypeB>
-inline const AutoDiffScalar<Matrix<typename internal::traits<DerTypeA>::Scalar,Dynamic,1> >
+inline const AutoDiffScalar<Matrix<typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar,Dynamic,1> >
atan2(const AutoDiffScalar<DerTypeA>& a, const AutoDiffScalar<DerTypeB>& b)
{
using std::atan2;
- using std::max;
- typedef typename internal::traits<DerTypeA>::Scalar Scalar;
+ typedef typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar Scalar;
typedef AutoDiffScalar<Matrix<Scalar,Dynamic,1> > PlainADS;
PlainADS ret;
ret.value() = atan2(a.value(), b.value());
- Scalar tmp2 = a.value() * a.value();
- Scalar tmp3 = b.value() * b.value();
- Scalar tmp4 = tmp3/(tmp2+tmp3);
+ Scalar squared_hypot = a.value() * a.value() + b.value() * b.value();
- if (tmp4!=0)
- ret.derivatives() = (a.derivatives() * b.value() - a.value() * b.derivatives()) * (tmp2+tmp3);
+ // if (squared_hypot==0) the derivation is undefined and the following results in a NaN:
+ ret.derivatives() = (a.derivatives() * b.value() - a.value() * b.derivatives()) / squared_hypot;
return ret;
}
@@ -612,26 +636,44 @@ atan2(const AutoDiffScalar<DerTypeA>& a, const AutoDiffScalar<DerTypeB>& b)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tan,
using std::tan;
using std::cos;
- return ReturnType(tan(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cos(x.value()))));)
+ return Eigen::MakeAutoDiffScalar(tan(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cos(x.value()))));)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin,
using std::sqrt;
using std::asin;
- return ReturnType(asin(x.value()),x.derivatives() * (Scalar(1)/sqrt(1-numext::abs2(x.value()))));)
+ return Eigen::MakeAutoDiffScalar(asin(x.value()),x.derivatives() * (Scalar(1)/sqrt(1-numext::abs2(x.value()))));)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(acos,
using std::sqrt;
using std::acos;
- return ReturnType(acos(x.value()),x.derivatives() * (Scalar(-1)/sqrt(1-numext::abs2(x.value()))));)
+ return Eigen::MakeAutoDiffScalar(acos(x.value()),x.derivatives() * (Scalar(-1)/sqrt(1-numext::abs2(x.value()))));)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tanh,
+ using std::cosh;
+ using std::tanh;
+ return Eigen::MakeAutoDiffScalar(tanh(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cosh(x.value()))));)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sinh,
+ using std::sinh;
+ using std::cosh;
+ return Eigen::MakeAutoDiffScalar(sinh(x.value()),x.derivatives() * cosh(x.value()));)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh,
+ using std::sinh;
+ using std::cosh;
+ return Eigen::MakeAutoDiffScalar(cosh(x.value()),x.derivatives() * sinh(x.value()));)
#undef EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY
template<typename DerType> struct NumTraits<AutoDiffScalar<DerType> >
- : NumTraits< typename NumTraits<typename DerType::Scalar>::Real >
+ : NumTraits< typename NumTraits<typename internal::remove_all<DerType>::type::Scalar>::Real >
{
- typedef AutoDiffScalar<Matrix<typename NumTraits<typename DerType::Scalar>::Real,DerType::RowsAtCompileTime,DerType::ColsAtCompileTime> > Real;
+ typedef typename internal::remove_all<DerType>::type DerTypeCleaned;
+ typedef AutoDiffScalar<Matrix<typename NumTraits<typename DerTypeCleaned::Scalar>::Real,DerTypeCleaned::RowsAtCompileTime,DerTypeCleaned::ColsAtCompileTime,
+ 0, DerTypeCleaned::MaxRowsAtCompileTime, DerTypeCleaned::MaxColsAtCompileTime> > Real;
typedef AutoDiffScalar<DerType> NonInteger;
- typedef AutoDiffScalar<DerType>& Nested;
+ typedef AutoDiffScalar<DerType> Nested;
+ typedef typename NumTraits<typename DerTypeCleaned::Scalar>::Literal Literal;
enum{
RequireInitialization = 1
};
diff --git a/unsupported/Eigen/src/AutoDiff/CMakeLists.txt b/unsupported/Eigen/src/AutoDiff/CMakeLists.txt
deleted file mode 100644
index ad91fd9c4..000000000
--- a/unsupported/Eigen/src/AutoDiff/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_AutoDiff_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_AutoDiff_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/AutoDiff COMPONENT Devel
- )
diff --git a/unsupported/Eigen/src/BVH/CMakeLists.txt b/unsupported/Eigen/src/BVH/CMakeLists.txt
deleted file mode 100644
index b377d865c..000000000
--- a/unsupported/Eigen/src/BVH/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_BVH_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_BVH_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/BVH COMPONENT Devel
- )
diff --git a/unsupported/Eigen/src/CMakeLists.txt b/unsupported/Eigen/src/CMakeLists.txt
deleted file mode 100644
index 125c43fdf..000000000
--- a/unsupported/Eigen/src/CMakeLists.txt
+++ /dev/null
@@ -1,14 +0,0 @@
-ADD_SUBDIRECTORY(AutoDiff)
-ADD_SUBDIRECTORY(BVH)
-ADD_SUBDIRECTORY(FFT)
-ADD_SUBDIRECTORY(IterativeSolvers)
-ADD_SUBDIRECTORY(KroneckerProduct)
-ADD_SUBDIRECTORY(LevenbergMarquardt)
-ADD_SUBDIRECTORY(MatrixFunctions)
-ADD_SUBDIRECTORY(MoreVectorization)
-ADD_SUBDIRECTORY(NonLinearOptimization)
-ADD_SUBDIRECTORY(NumericalDiff)
-ADD_SUBDIRECTORY(Polynomials)
-ADD_SUBDIRECTORY(Skyline)
-ADD_SUBDIRECTORY(SparseExtra)
-ADD_SUBDIRECTORY(Splines)
diff --git a/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h b/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h
index 3b6a69aff..866a8a460 100644
--- a/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h
+++ b/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h
@@ -628,15 +628,15 @@ ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
m_info = Success;
}
- delete select;
+ delete[] select;
}
- delete v;
- delete iparam;
- delete ipntr;
- delete workd;
- delete workl;
- delete resid;
+ delete[] v;
+ delete[] iparam;
+ delete[] ipntr;
+ delete[] workd;
+ delete[] workl;
+ delete[] resid;
m_isInitialized = true;
diff --git a/unsupported/Eigen/src/EulerAngles/CMakeLists.txt b/unsupported/Eigen/src/EulerAngles/CMakeLists.txt
new file mode 100644
index 000000000..40af550e8
--- /dev/null
+++ b/unsupported/Eigen/src/EulerAngles/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_EulerAngles_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_EulerAngles_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/EulerAngles COMPONENT Devel
+ )
diff --git a/unsupported/Eigen/src/EulerAngles/EulerAngles.h b/unsupported/Eigen/src/EulerAngles/EulerAngles.h
new file mode 100644
index 000000000..13a0da1ab
--- /dev/null
+++ b/unsupported/Eigen/src/EulerAngles/EulerAngles.h
@@ -0,0 +1,386 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_EULERANGLESCLASS_H// TODO: Fix previous "EIGEN_EULERANGLES_H" definition?
+#define EIGEN_EULERANGLESCLASS_H
+
+namespace Eigen
+{
+ /*template<typename Other,
+ int OtherRows=Other::RowsAtCompileTime,
+ int OtherCols=Other::ColsAtCompileTime>
+ struct ei_eulerangles_assign_impl;*/
+
+ /** \class EulerAngles
+ *
+ * \ingroup EulerAngles_Module
+ *
+ * \brief Represents a rotation in a 3 dimensional space as three Euler angles.
+ *
+ * Euler rotation is a set of three rotation of three angles over three fixed axes, defined by the EulerSystem given as a template parameter.
+ *
+ * Here is how intrinsic Euler angles works:
+ * - first, rotate the axes system over the alpha axis in angle alpha
+ * - then, rotate the axes system over the beta axis(which was rotated in the first stage) in angle beta
+ * - then, rotate the axes system over the gamma axis(which was rotated in the two stages above) in angle gamma
+ *
+ * \note This class support only intrinsic Euler angles for simplicity,
+ * see EulerSystem how to easily overcome this for extrinsic systems.
+ *
+ * ### Rotation representation and conversions ###
+ *
+ * It has been proved(see Wikipedia link below) that every rotation can be represented
+ * by Euler angles, but there is no singular representation (e.g. unlike rotation matrices).
+ * Therefore, you can convert from Eigen rotation and to them
+ * (including rotation matrices, which is not called "rotations" by Eigen design).
+ *
+ * Euler angles usually used for:
+ * - convenient human representation of rotation, especially in interactive GUI.
+ * - gimbal systems and robotics
+ * - efficient encoding(i.e. 3 floats only) of rotation for network protocols.
+ *
+ * However, Euler angles are slow comparing to quaternion or matrices,
+ * because their unnatural math definition, although it's simple for human.
+ * To overcome this, this class provide easy movement from the math friendly representation
+ * to the human friendly representation, and vise-versa.
+ *
+ * All the user need to do is a safe simple C++ type conversion,
+ * and this class take care for the math.
+ * Additionally, some axes related computation is done in compile time.
+ *
+ * #### Euler angles ranges in conversions ####
+ *
+ * When converting some rotation to Euler angles, there are some ways you can guarantee
+ * the Euler angles ranges.
+ *
+ * #### implicit ranges ####
+ * When using implicit ranges, all angles are guarantee to be in the range [-PI, +PI],
+ * unless you convert from some other Euler angles.
+ * In this case, the range is __undefined__ (might be even less than -PI or greater than +2*PI).
+ * \sa EulerAngles(const MatrixBase<Derived>&)
+ * \sa EulerAngles(const RotationBase<Derived, 3>&)
+ *
+ * #### explicit ranges ####
+ * When using explicit ranges, all angles are guarantee to be in the range you choose.
+ * In the range Boolean parameter, you're been ask whether you prefer the positive range or not:
+ * - _true_ - force the range between [0, +2*PI]
+ * - _false_ - force the range between [-PI, +PI]
+ *
+ * ##### compile time ranges #####
+ * This is when you have compile time ranges and you prefer to
+ * use template parameter. (e.g. for performance)
+ * \sa FromRotation()
+ *
+ * ##### run-time time ranges #####
+ * Run-time ranges are also supported.
+ * \sa EulerAngles(const MatrixBase<Derived>&, bool, bool, bool)
+ * \sa EulerAngles(const RotationBase<Derived, 3>&, bool, bool, bool)
+ *
+ * ### Convenient user typedefs ###
+ *
+ * Convenient typedefs for EulerAngles exist for float and double scalar,
+ * in a form of EulerAngles{A}{B}{C}{scalar},
+ * e.g. \ref EulerAnglesXYZd, \ref EulerAnglesZYZf.
+ *
+ * Only for positive axes{+x,+y,+z} Euler systems are have convenient typedef.
+ * If you need negative axes{-x,-y,-z}, it is recommended to create you own typedef with
+ * a word that represent what you need.
+ *
+ * ### Example ###
+ *
+ * \include EulerAngles.cpp
+ * Output: \verbinclude EulerAngles.out
+ *
+ * ### Additional reading ###
+ *
+ * If you're want to get more idea about how Euler system work in Eigen see EulerSystem.
+ *
+ * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
+ *
+ * \tparam _Scalar the scalar type, i.e., the type of the angles.
+ *
+ * \tparam _System the EulerSystem to use, which represents the axes of rotation.
+ */
+ template <typename _Scalar, class _System>
+ class EulerAngles : public RotationBase<EulerAngles<_Scalar, _System>, 3>
+ {
+ public:
+ /** the scalar type of the angles */
+ typedef _Scalar Scalar;
+
+ /** the EulerSystem to use, which represents the axes of rotation. */
+ typedef _System System;
+
+ typedef Matrix<Scalar,3,3> Matrix3; /*!< the equivalent rotation matrix type */
+ typedef Matrix<Scalar,3,1> Vector3; /*!< the equivalent 3 dimension vector type */
+ typedef Quaternion<Scalar> QuaternionType; /*!< the equivalent quaternion type */
+ typedef AngleAxis<Scalar> AngleAxisType; /*!< the equivalent angle-axis type */
+
+ /** \returns the axis vector of the first (alpha) rotation */
+ static Vector3 AlphaAxisVector() {
+ const Vector3& u = Vector3::Unit(System::AlphaAxisAbs - 1);
+ return System::IsAlphaOpposite ? -u : u;
+ }
+
+ /** \returns the axis vector of the second (beta) rotation */
+ static Vector3 BetaAxisVector() {
+ const Vector3& u = Vector3::Unit(System::BetaAxisAbs - 1);
+ return System::IsBetaOpposite ? -u : u;
+ }
+
+ /** \returns the axis vector of the third (gamma) rotation */
+ static Vector3 GammaAxisVector() {
+ const Vector3& u = Vector3::Unit(System::GammaAxisAbs - 1);
+ return System::IsGammaOpposite ? -u : u;
+ }
+
+ private:
+ Vector3 m_angles;
+
+ public:
+ /** Default constructor without initialization. */
+ EulerAngles() {}
+ /** Constructs and initialize Euler angles(\p alpha, \p beta, \p gamma). */
+ EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) :
+ m_angles(alpha, beta, gamma) {}
+
+ /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m.
+ *
+ * \note All angles will be in the range [-PI, PI].
+ */
+ template<typename Derived>
+ EulerAngles(const MatrixBase<Derived>& m) { *this = m; }
+
+ /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
+ * with options to choose for each angle the requested range.
+ *
+ * If positive range is true, then the specified angle will be in the range [0, +2*PI].
+ * Otherwise, the specified angle will be in the range [-PI, +PI].
+ *
+ * \param m The 3x3 rotation matrix to convert
+ * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ */
+ template<typename Derived>
+ EulerAngles(
+ const MatrixBase<Derived>& m,
+ bool positiveRangeAlpha,
+ bool positiveRangeBeta,
+ bool positiveRangeGamma) {
+
+ System::CalcEulerAngles(*this, m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
+ }
+
+ /** Constructs and initialize Euler angles from a rotation \p rot.
+ *
+ * \note All angles will be in the range [-PI, PI], unless \p rot is an EulerAngles.
+ * If rot is an EulerAngles, expected EulerAngles range is __undefined__.
+ * (Use other functions here for enforcing range if this effect is desired)
+ */
+ template<typename Derived>
+ EulerAngles(const RotationBase<Derived, 3>& rot) { *this = rot; }
+
+ /** Constructs and initialize Euler angles from a rotation \p rot,
+ * with options to choose for each angle the requested range.
+ *
+ * If positive range is true, then the specified angle will be in the range [0, +2*PI].
+ * Otherwise, the specified angle will be in the range [-PI, +PI].
+ *
+ * \param rot The 3x3 rotation matrix to convert
+ * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ */
+ template<typename Derived>
+ EulerAngles(
+ const RotationBase<Derived, 3>& rot,
+ bool positiveRangeAlpha,
+ bool positiveRangeBeta,
+ bool positiveRangeGamma) {
+
+ System::CalcEulerAngles(*this, rot.toRotationMatrix(), positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
+ }
+
+ /** \returns The angle values stored in a vector (alpha, beta, gamma). */
+ const Vector3& angles() const { return m_angles; }
+ /** \returns A read-write reference to the angle values stored in a vector (alpha, beta, gamma). */
+ Vector3& angles() { return m_angles; }
+
+ /** \returns The value of the first angle. */
+ Scalar alpha() const { return m_angles[0]; }
+ /** \returns A read-write reference to the angle of the first angle. */
+ Scalar& alpha() { return m_angles[0]; }
+
+ /** \returns The value of the second angle. */
+ Scalar beta() const { return m_angles[1]; }
+ /** \returns A read-write reference to the angle of the second angle. */
+ Scalar& beta() { return m_angles[1]; }
+
+ /** \returns The value of the third angle. */
+ Scalar gamma() const { return m_angles[2]; }
+ /** \returns A read-write reference to the angle of the third angle. */
+ Scalar& gamma() { return m_angles[2]; }
+
+ /** \returns The Euler angles rotation inverse (which is as same as the negative),
+ * (-alpha, -beta, -gamma).
+ */
+ EulerAngles inverse() const
+ {
+ EulerAngles res;
+ res.m_angles = -m_angles;
+ return res;
+ }
+
+ /** \returns The Euler angles rotation negative (which is as same as the inverse),
+ * (-alpha, -beta, -gamma).
+ */
+ EulerAngles operator -() const
+ {
+ return inverse();
+ }
+
+ /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
+ * with options to choose for each angle the requested range (__only in compile time__).
+ *
+ * If positive range is true, then the specified angle will be in the range [0, +2*PI].
+ * Otherwise, the specified angle will be in the range [-PI, +PI].
+ *
+ * \param m The 3x3 rotation matrix to convert
+ * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ */
+ template<
+ bool PositiveRangeAlpha,
+ bool PositiveRangeBeta,
+ bool PositiveRangeGamma,
+ typename Derived>
+ static EulerAngles FromRotation(const MatrixBase<Derived>& m)
+ {
+ EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
+
+ EulerAngles e;
+ System::template CalcEulerAngles<
+ PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma, _Scalar>(e, m);
+ return e;
+ }
+
+ /** Constructs and initialize Euler angles from a rotation \p rot,
+ * with options to choose for each angle the requested range (__only in compile time__).
+ *
+ * If positive range is true, then the specified angle will be in the range [0, +2*PI].
+ * Otherwise, the specified angle will be in the range [-PI, +PI].
+ *
+ * \param rot The 3x3 rotation matrix to convert
+ * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ */
+ template<
+ bool PositiveRangeAlpha,
+ bool PositiveRangeBeta,
+ bool PositiveRangeGamma,
+ typename Derived>
+ static EulerAngles FromRotation(const RotationBase<Derived, 3>& rot)
+ {
+ return FromRotation<PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma>(rot.toRotationMatrix());
+ }
+
+ /*EulerAngles& fromQuaternion(const QuaternionType& q)
+ {
+ // TODO: Implement it in a faster way for quaternions
+ // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
+ // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below)
+ // Currently we compute all matrix cells from quaternion.
+
+ // Special case only for ZYX
+ //Scalar y2 = q.y() * q.y();
+ //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z())));
+ //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x()));
+ //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2)));
+ }*/
+
+ /** Set \c *this from a rotation matrix(i.e. pure orthogonal matrix with determinant of +1). */
+ template<typename Derived>
+ EulerAngles& operator=(const MatrixBase<Derived>& m) {
+ EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
+
+ System::CalcEulerAngles(*this, m);
+ return *this;
+ }
+
+ // TODO: Assign and construct from another EulerAngles (with different system)
+
+ /** Set \c *this from a rotation. */
+ template<typename Derived>
+ EulerAngles& operator=(const RotationBase<Derived, 3>& rot) {
+ System::CalcEulerAngles(*this, rot.toRotationMatrix());
+ return *this;
+ }
+
+ // TODO: Support isApprox function
+
+ /** \returns an equivalent 3x3 rotation matrix. */
+ Matrix3 toRotationMatrix() const
+ {
+ return static_cast<QuaternionType>(*this).toRotationMatrix();
+ }
+
+ /** Convert the Euler angles to quaternion. */
+ operator QuaternionType() const
+ {
+ return
+ AngleAxisType(alpha(), AlphaAxisVector()) *
+ AngleAxisType(beta(), BetaAxisVector()) *
+ AngleAxisType(gamma(), GammaAxisVector());
+ }
+
+ friend std::ostream& operator<<(std::ostream& s, const EulerAngles<Scalar, System>& eulerAngles)
+ {
+ s << eulerAngles.angles().transpose();
+ return s;
+ }
+ };
+
+#define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(AXES, SCALAR_TYPE, SCALAR_POSTFIX) \
+ /** \ingroup EulerAngles_Module */ \
+ typedef EulerAngles<SCALAR_TYPE, EulerSystem##AXES> EulerAngles##AXES##SCALAR_POSTFIX;
+
+#define EIGEN_EULER_ANGLES_TYPEDEFS(SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYZ, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYX, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZY, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZX, SCALAR_TYPE, SCALAR_POSTFIX) \
+ \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZX, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZY, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXY, SCALAR_TYPE, SCALAR_POSTFIX) \
+ \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXY, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYX, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYZ, SCALAR_TYPE, SCALAR_POSTFIX)
+
+EIGEN_EULER_ANGLES_TYPEDEFS(float, f)
+EIGEN_EULER_ANGLES_TYPEDEFS(double, d)
+
+ namespace internal
+ {
+ template<typename _Scalar, class _System>
+ struct traits<EulerAngles<_Scalar, _System> >
+ {
+ typedef _Scalar Scalar;
+ };
+ }
+
+}
+
+#endif // EIGEN_EULERANGLESCLASS_H
diff --git a/unsupported/Eigen/src/EulerAngles/EulerSystem.h b/unsupported/Eigen/src/EulerAngles/EulerSystem.h
new file mode 100644
index 000000000..98f9f647d
--- /dev/null
+++ b/unsupported/Eigen/src/EulerAngles/EulerSystem.h
@@ -0,0 +1,326 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_EULERSYSTEM_H
+#define EIGEN_EULERSYSTEM_H
+
+namespace Eigen
+{
+ // Forward declerations
+ template <typename _Scalar, class _System>
+ class EulerAngles;
+
+ namespace internal
+ {
+ // TODO: Check if already exists on the rest API
+ template <int Num, bool IsPositive = (Num > 0)>
+ struct Abs
+ {
+ enum { value = Num };
+ };
+
+ template <int Num>
+ struct Abs<Num, false>
+ {
+ enum { value = -Num };
+ };
+
+ template <int Axis>
+ struct IsValidAxis
+ {
+ enum { value = Axis != 0 && Abs<Axis>::value <= 3 };
+ };
+ }
+
+ #define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
+
+ /** \brief Representation of a fixed signed rotation axis for EulerSystem.
+ *
+ * \ingroup EulerAngles_Module
+ *
+ * Values here represent:
+ * - The axis of the rotation: X, Y or Z.
+ * - The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-)
+ *
+ * Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z}
+ *
+ * For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}.
+ */
+ enum EulerAxis
+ {
+ EULER_X = 1, /*!< the X axis */
+ EULER_Y = 2, /*!< the Y axis */
+ EULER_Z = 3 /*!< the Z axis */
+ };
+
+ /** \class EulerSystem
+ *
+ * \ingroup EulerAngles_Module
+ *
+ * \brief Represents a fixed Euler rotation system.
+ *
+ * This meta-class goal is to represent the Euler system in compilation time, for EulerAngles.
+ *
+ * You can use this class to get two things:
+ * - Build an Euler system, and then pass it as a template parameter to EulerAngles.
+ * - Query some compile time data about an Euler system. (e.g. Whether it's tait bryan)
+ *
+ * Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles)
+ * This meta-class store constantly those signed axes. (see \ref EulerAxis)
+ *
+ * ### Types of Euler systems ###
+ *
+ * All and only valid 3 dimension Euler rotation over standard
+ * signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
+ * - all axes X, Y, Z in each valid order (see below what order is valid)
+ * - rotation over the axis is supported both over the positive and negative directions.
+ * - both tait bryan and proper/classic Euler angles (i.e. the opposite).
+ *
+ * Since EulerSystem support both positive and negative directions,
+ * you may call this rotation distinction in other names:
+ * - _right handed_ or _left handed_
+ * - _counterclockwise_ or _clockwise_
+ *
+ * Notice all axed combination are valid, and would trigger a static assertion.
+ * Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
+ * This yield two and only two classes:
+ * - _tait bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
+ * - _proper/classic Euler angles_ - The first and the third unsigned axes is equal,
+ * and the second is different, e.g. {X,Y,X}
+ *
+ * ### Intrinsic vs extrinsic Euler systems ###
+ *
+ * Only intrinsic Euler systems are supported for simplicity.
+ * If you want to use extrinsic Euler systems,
+ * just use the equal intrinsic opposite order for axes and angles.
+ * I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a).
+ *
+ * ### Convenient user typedefs ###
+ *
+ * Convenient typedefs for EulerSystem exist (only for positive axes Euler systems),
+ * in a form of EulerSystem{A}{B}{C}, e.g. \ref EulerSystemXYZ.
+ *
+ * ### Additional reading ###
+ *
+ * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
+ *
+ * \tparam _AlphaAxis the first fixed EulerAxis
+ *
+ * \tparam _AlphaAxis the second fixed EulerAxis
+ *
+ * \tparam _AlphaAxis the third fixed EulerAxis
+ */
+ template <int _AlphaAxis, int _BetaAxis, int _GammaAxis>
+ class EulerSystem
+ {
+ public:
+ // It's defined this way and not as enum, because I think
+ // that enum is not guerantee to support negative numbers
+
+ /** The first rotation axis */
+ static const int AlphaAxis = _AlphaAxis;
+
+ /** The second rotation axis */
+ static const int BetaAxis = _BetaAxis;
+
+ /** The third rotation axis */
+ static const int GammaAxis = _GammaAxis;
+
+ enum
+ {
+ AlphaAxisAbs = internal::Abs<AlphaAxis>::value, /*!< the first rotation axis unsigned */
+ BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */
+ GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */
+
+ IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< weather alpha axis is negative */
+ IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< weather beta axis is negative */
+ IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< weather gamma axis is negative */
+
+ IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< weather the Euler system is odd */
+ IsEven = IsOdd ? 0 : 1, /*!< weather the Euler system is even */
+
+ IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< weather the Euler system is tait bryan */
+ };
+
+ private:
+
+ EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<AlphaAxis>::value,
+ ALPHA_AXIS_IS_INVALID);
+
+ EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<BetaAxis>::value,
+ BETA_AXIS_IS_INVALID);
+
+ EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<GammaAxis>::value,
+ GAMMA_AXIS_IS_INVALID);
+
+ EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)AlphaAxisAbs != (unsigned)BetaAxisAbs,
+ ALPHA_AXIS_CANT_BE_EQUAL_TO_BETA_AXIS);
+
+ EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)BetaAxisAbs != (unsigned)GammaAxisAbs,
+ BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS);
+
+ enum
+ {
+ // I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system.
+ // They are used in this class converters.
+ // They are always different from each other, and their possible values are: 0, 1, or 2.
+ I = AlphaAxisAbs - 1,
+ J = (AlphaAxisAbs - 1 + 1 + IsOdd)%3,
+ K = (AlphaAxisAbs - 1 + 2 - IsOdd)%3
+ };
+
+ // TODO: Get @mat parameter in form that avoids double evaluation.
+ template <typename Derived>
+ static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/)
+ {
+ using std::atan2;
+ using std::sin;
+ using std::cos;
+
+ typedef typename Derived::Scalar Scalar;
+ typedef Matrix<Scalar,2,1> Vector2;
+
+ res[0] = atan2(mat(J,K), mat(K,K));
+ Scalar c2 = Vector2(mat(I,I), mat(I,J)).norm();
+ if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0))) {
+ if(res[0] > Scalar(0)) {
+ res[0] -= Scalar(EIGEN_PI);
+ }
+ else {
+ res[0] += Scalar(EIGEN_PI);
+ }
+ res[1] = atan2(-mat(I,K), -c2);
+ }
+ else
+ res[1] = atan2(-mat(I,K), c2);
+ Scalar s1 = sin(res[0]);
+ Scalar c1 = cos(res[0]);
+ res[2] = atan2(s1*mat(K,I)-c1*mat(J,I), c1*mat(J,J) - s1 * mat(K,J));
+ }
+
+ template <typename Derived>
+ static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res, const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
+ {
+ using std::atan2;
+ using std::sin;
+ using std::cos;
+
+ typedef typename Derived::Scalar Scalar;
+ typedef Matrix<Scalar,2,1> Vector2;
+
+ res[0] = atan2(mat(J,I), mat(K,I));
+ if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0)))
+ {
+ if(res[0] > Scalar(0)) {
+ res[0] -= Scalar(EIGEN_PI);
+ }
+ else {
+ res[0] += Scalar(EIGEN_PI);
+ }
+ Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
+ res[1] = -atan2(s2, mat(I,I));
+ }
+ else
+ {
+ Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
+ res[1] = atan2(s2, mat(I,I));
+ }
+
+ // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
+ // we can compute their respective rotation, and apply its inverse to M. Since the result must
+ // be a rotation around x, we have:
+ //
+ // c2 s1.s2 c1.s2 1 0 0
+ // 0 c1 -s1 * M = 0 c3 s3
+ // -s2 s1.c2 c1.c2 0 -s3 c3
+ //
+ // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3
+
+ Scalar s1 = sin(res[0]);
+ Scalar c1 = cos(res[0]);
+ res[2] = atan2(c1*mat(J,K)-s1*mat(K,K), c1*mat(J,J) - s1 * mat(K,J));
+ }
+
+ template<typename Scalar>
+ static void CalcEulerAngles(
+ EulerAngles<Scalar, EulerSystem>& res,
+ const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
+ {
+ CalcEulerAngles(res, mat, false, false, false);
+ }
+
+ template<
+ bool PositiveRangeAlpha,
+ bool PositiveRangeBeta,
+ bool PositiveRangeGamma,
+ typename Scalar>
+ static void CalcEulerAngles(
+ EulerAngles<Scalar, EulerSystem>& res,
+ const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
+ {
+ CalcEulerAngles(res, mat, PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma);
+ }
+
+ template<typename Scalar>
+ static void CalcEulerAngles(
+ EulerAngles<Scalar, EulerSystem>& res,
+ const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat,
+ bool PositiveRangeAlpha,
+ bool PositiveRangeBeta,
+ bool PositiveRangeGamma)
+ {
+ CalcEulerAngles_imp(
+ res.angles(), mat,
+ typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type());
+
+ if (IsAlphaOpposite == IsOdd)
+ res.alpha() = -res.alpha();
+
+ if (IsBetaOpposite == IsOdd)
+ res.beta() = -res.beta();
+
+ if (IsGammaOpposite == IsOdd)
+ res.gamma() = -res.gamma();
+
+ // Saturate results to the requested range
+ if (PositiveRangeAlpha && (res.alpha() < 0))
+ res.alpha() += Scalar(2 * EIGEN_PI);
+
+ if (PositiveRangeBeta && (res.beta() < 0))
+ res.beta() += Scalar(2 * EIGEN_PI);
+
+ if (PositiveRangeGamma && (res.gamma() < 0))
+ res.gamma() += Scalar(2 * EIGEN_PI);
+ }
+
+ template <typename _Scalar, class _System>
+ friend class Eigen::EulerAngles;
+ };
+
+#define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \
+ /** \ingroup EulerAngles_Module */ \
+ typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C;
+
+ EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,Z)
+ EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,X)
+ EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,Y)
+ EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,X)
+
+ EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,X)
+ EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,Y)
+ EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Z)
+ EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Y)
+
+ EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Y)
+ EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Z)
+ EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,X)
+ EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,Z)
+}
+
+#endif // EIGEN_EULERSYSTEM_H
diff --git a/unsupported/Eigen/src/FFT/CMakeLists.txt b/unsupported/Eigen/src/FFT/CMakeLists.txt
deleted file mode 100644
index edcffcb18..000000000
--- a/unsupported/Eigen/src/FFT/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_FFT_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_FFT_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/FFT COMPONENT Devel
- )
diff --git a/unsupported/Eigen/src/IterativeSolvers/CMakeLists.txt b/unsupported/Eigen/src/IterativeSolvers/CMakeLists.txt
deleted file mode 100644
index 7986afc5e..000000000
--- a/unsupported/Eigen/src/IterativeSolvers/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_IterativeSolvers_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_IterativeSolvers_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/IterativeSolvers COMPONENT Devel
- )
diff --git a/unsupported/Eigen/src/IterativeSolvers/DGMRES.h b/unsupported/Eigen/src/IterativeSolvers/DGMRES.h
index 9fcc8a8d9..bae04fc30 100644
--- a/unsupported/Eigen/src/IterativeSolvers/DGMRES.h
+++ b/unsupported/Eigen/src/IterativeSolvers/DGMRES.h
@@ -40,7 +40,6 @@ void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::
{
eigen_assert(vec.size() == perm.size());
typedef typename IndexType::Scalar Index;
- typedef typename VectorType::Scalar Scalar;
bool flag;
for (Index k = 0; k < ncut; k++)
{
@@ -84,6 +83,8 @@ void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::
* x = solver.solve(b);
* \endcode
*
+ * DGMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
+ *
* References :
* [1] D. NUENTSA WAKAM and F. PACULL, Memory Efficient Hybrid
* Algebraic Solvers for Linear Systems Arising from Compressible
@@ -101,16 +102,18 @@ template< typename _MatrixType, typename _Preconditioner>
class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
{
typedef IterativeSolverBase<DGMRES> Base;
- using Base::mp_matrix;
+ using Base::matrix;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
using Base::m_isInitialized;
using Base::m_tolerance;
public:
+ using Base::_solve_impl;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::StorageIndex StorageIndex;
typedef typename MatrixType::RealScalar RealScalar;
typedef _Preconditioner Preconditioner;
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
@@ -133,30 +136,14 @@ class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
- DGMRES(const MatrixType& A) : Base(A),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false)
- {}
+ template<typename MatrixDerived>
+ explicit DGMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
~DGMRES() {}
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
- * \a x0 as an initial solution.
- *
- * \sa compute()
- */
- template<typename Rhs,typename Guess>
- inline const internal::solve_retval_with_guess<DGMRES, Rhs, Guess>
- solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
- {
- eigen_assert(m_isInitialized && "DGMRES is not initialized.");
- eigen_assert(Base::rows()==b.rows()
- && "DGMRES::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval_with_guess
- <DGMRES, Rhs, Guess>(*this, b.derived(), x0);
- }
-
/** \internal */
template<typename Rhs,typename Dest>
- void _solveWithGuess(const Rhs& b, Dest& x) const
+ void _solve_with_guess_impl(const Rhs& b, Dest& x) const
{
bool failed = false;
for(int j=0; j<b.cols(); ++j)
@@ -165,7 +152,7 @@ class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
m_error = Base::m_tolerance;
typename Dest::ColXpr xj(x,j);
- dgmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner);
+ dgmres(matrix(), b.col(j), xj, Base::m_preconditioner);
}
m_info = failed ? NumericalIssue
: m_error <= Base::m_tolerance ? Success
@@ -175,10 +162,10 @@ class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
/** \internal */
template<typename Rhs,typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const Rhs& b, MatrixBase<Dest>& x) const
{
x = b;
- _solveWithGuess(b,x);
+ _solve_with_guess_impl(b,x.derived());
}
/**
* Get the restart value
@@ -217,7 +204,7 @@ class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
template<typename Dest>
int dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const;
// Compute data to use for deflation
- int dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const;
+ int dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const;
// Apply deflation to a vector
template<typename RhsType, typename DestType>
int dgmresApplyDeflation(const RhsType& In, DestType& Out) const;
@@ -233,7 +220,7 @@ class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles)
mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */
mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T
- mutable int m_neig; //Number of eigenvalues to extract at each restart
+ mutable StorageIndex m_neig; //Number of eigenvalues to extract at each restart
mutable int m_r; // Current number of deflated eigenvalues, size of m_U
mutable int m_maxNeig; // Maximum number of eigenvalues to deflate
mutable RealScalar m_lambdaN; //Modulus of the largest eigenvalue of A
@@ -353,7 +340,7 @@ int DGMRES<_MatrixType, _Preconditioner>::dgmresCycle(const MatrixType& mat, con
beta = std::abs(g(it+1));
m_error = beta/normRhs;
- std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
+ // std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
it++; nbIts++;
if (m_error < m_tolerance)
@@ -431,7 +418,7 @@ inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_Matr
}
template< typename _MatrixType, typename _Preconditioner>
-int DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const
+int DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const
{
// First, find the Schur form of the Hessenberg matrix H
typename internal::conditional<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> >::type schurofH;
@@ -441,7 +428,7 @@ int DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const Matri
schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU);
ComplexVector eig(it);
- Matrix<Index,Dynamic,1>perm(it);
+ Matrix<StorageIndex,Dynamic,1>perm(it);
eig = this->schurValues(schurofH);
// Reorder the absolute values of Schur values
@@ -522,21 +509,5 @@ int DGMRES<_MatrixType, _Preconditioner>::dgmresApplyDeflation(const RhsType &x,
return 0;
}
-namespace internal {
-
- template<typename _MatrixType, typename _Preconditioner, typename Rhs>
-struct solve_retval<DGMRES<_MatrixType, _Preconditioner>, Rhs>
- : solve_retval_base<DGMRES<_MatrixType, _Preconditioner>, Rhs>
-{
- typedef DGMRES<_MatrixType, _Preconditioner> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-} // end namespace internal
-
} // end namespace Eigen
#endif
diff --git a/unsupported/Eigen/src/IterativeSolvers/GMRES.h b/unsupported/Eigen/src/IterativeSolvers/GMRES.h
index 7ba13afd2..5a82b0df6 100644
--- a/unsupported/Eigen/src/IterativeSolvers/GMRES.h
+++ b/unsupported/Eigen/src/IterativeSolvers/GMRES.h
@@ -11,193 +11,197 @@
#ifndef EIGEN_GMRES_H
#define EIGEN_GMRES_H
-namespace Eigen {
+namespace Eigen {
namespace internal {
/**
- * Generalized Minimal Residual Algorithm based on the
- * Arnoldi algorithm implemented with Householder reflections.
- *
- * Parameters:
- * \param mat matrix of linear system of equations
- * \param Rhs right hand side vector of linear system of equations
- * \param x on input: initial guess, on output: solution
- * \param precond preconditioner used
- * \param iters on input: maximum number of iterations to perform
- * on output: number of iterations performed
- * \param restart number of iterations for a restart
- * \param tol_error on input: residual tolerance
- * on output: residuum achieved
- *
- * \sa IterativeMethods::bicgstab()
- *
- *
- * For references, please see:
- *
- * Saad, Y. and Schultz, M. H.
- * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
- * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
- *
- * Saad, Y.
- * Iterative Methods for Sparse Linear Systems.
- * Society for Industrial and Applied Mathematics, Philadelphia, 2003.
- *
- * Walker, H. F.
- * Implementations of the GMRES method.
- * Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
- *
- * Walker, H. F.
- * Implementation of the GMRES Method using Householder Transformations.
- * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
- *
- */
+* Generalized Minimal Residual Algorithm based on the
+* Arnoldi algorithm implemented with Householder reflections.
+*
+* Parameters:
+* \param mat matrix of linear system of equations
+* \param Rhs right hand side vector of linear system of equations
+* \param x on input: initial guess, on output: solution
+* \param precond preconditioner used
+* \param iters on input: maximum number of iterations to perform
+* on output: number of iterations performed
+* \param restart number of iterations for a restart
+* \param tol_error on input: relative residual tolerance
+* on output: residuum achieved
+*
+* \sa IterativeMethods::bicgstab()
+*
+*
+* For references, please see:
+*
+* Saad, Y. and Schultz, M. H.
+* GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
+* SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
+*
+* Saad, Y.
+* Iterative Methods for Sparse Linear Systems.
+* Society for Industrial and Applied Mathematics, Philadelphia, 2003.
+*
+* Walker, H. F.
+* Implementations of the GMRES method.
+* Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
+*
+* Walker, H. F.
+* Implementation of the GMRES Method using Householder Transformations.
+* SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
+*
+*/
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
- int &iters, const int &restart, typename Dest::RealScalar & tol_error) {
+ Index &iters, const Index &restart, typename Dest::RealScalar & tol_error) {
- using std::sqrt;
- using std::abs;
+ using std::sqrt;
+ using std::abs;
- typedef typename Dest::RealScalar RealScalar;
- typedef typename Dest::Scalar Scalar;
- typedef Matrix < Scalar, Dynamic, 1 > VectorType;
- typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType;
+ typedef typename Dest::RealScalar RealScalar;
+ typedef typename Dest::Scalar Scalar;
+ typedef Matrix < Scalar, Dynamic, 1 > VectorType;
+ typedef Matrix < Scalar, Dynamic, Dynamic, ColMajor> FMatrixType;
- RealScalar tol = tol_error;
- const int maxIters = iters;
- iters = 0;
+ RealScalar tol = tol_error;
+ const Index maxIters = iters;
+ iters = 0;
- const int m = mat.rows();
+ const Index m = mat.rows();
- VectorType p0 = rhs - mat*x;
- VectorType r0 = precond.solve(p0);
-
- // is initial guess already good enough?
- if(abs(r0.norm()) < tol) {
- return true;
- }
+ // residual and preconditioned residual
+ VectorType p0 = rhs - mat*x;
+ VectorType r0 = precond.solve(p0);
- VectorType w = VectorType::Zero(restart + 1);
+ const RealScalar r0Norm = r0.norm();
- FMatrixType H = FMatrixType::Zero(m, restart + 1); // Hessenberg matrix
- VectorType tau = VectorType::Zero(restart + 1);
- std::vector < JacobiRotation < Scalar > > G(restart);
-
- // generate first Householder vector
- VectorType e(m-1);
- RealScalar beta;
- r0.makeHouseholder(e, tau.coeffRef(0), beta);
- w(0)=(Scalar) beta;
- H.bottomLeftCorner(m - 1, 1) = e;
-
- for (int k = 1; k <= restart; ++k) {
-
- ++iters;
-
- VectorType v = VectorType::Unit(m, k - 1), workspace(m);
-
- // apply Householder reflections H_{1} ... H_{k-1} to v
- for (int i = k - 1; i >= 0; --i) {
- v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
- }
-
- // apply matrix M to v: v = mat * v;
- VectorType t=mat*v;
- v=precond.solve(t);
-
- // apply Householder reflections H_{k-1} ... H_{1} to v
- for (int i = 0; i < k; ++i) {
- v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
- }
-
- if (v.tail(m - k).norm() != 0.0) {
-
- if (k <= restart) {
-
- // generate new Householder vector
- VectorType e(m - k - 1);
- RealScalar beta;
- v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta);
- H.col(k).tail(m - k - 1) = e;
-
- // apply Householder reflection H_{k} to v
- v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data());
-
- }
- }
-
- if (k > 1) {
- for (int i = 0; i < k - 1; ++i) {
- // apply old Givens rotations to v
- v.applyOnTheLeft(i, i + 1, G[i].adjoint());
- }
- }
-
- if (k<m && v(k) != (Scalar) 0) {
- // determine next Givens rotation
- G[k - 1].makeGivens(v(k - 1), v(k));
-
- // apply Givens rotation to v and w
- v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
- w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
-
- }
-
- // insert coefficients into upper matrix triangle
- H.col(k - 1).head(k) = v.head(k);
-
- bool stop=(k==m || abs(w(k)) < tol || iters == maxIters);
+ // is initial guess already good enough?
+ if(r0Norm == 0)
+ {
+ tol_error = 0;
+ return true;
+ }
- if (stop || k == restart) {
+ // storage for Hessenberg matrix and Householder data
+ FMatrixType H = FMatrixType::Zero(m, restart + 1);
+ VectorType w = VectorType::Zero(restart + 1);
+ VectorType tau = VectorType::Zero(restart + 1);
- // solve upper triangular system
- VectorType y = w.head(k);
- H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y);
+ // storage for Jacobi rotations
+ std::vector < JacobiRotation < Scalar > > G(restart);
+
+ // storage for temporaries
+ VectorType t(m), v(m), workspace(m), x_new(m);
+
+ // generate first Householder vector
+ Ref<VectorType> H0_tail = H.col(0).tail(m - 1);
+ RealScalar beta;
+ r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
+ w(0) = Scalar(beta);
+
+ for (Index k = 1; k <= restart; ++k)
+ {
+ ++iters;
- // use Horner-like scheme to calculate solution vector
- VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
+ v = VectorType::Unit(m, k - 1);
- // apply Householder reflection H_{k} to x_new
- x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
+ // apply Householder reflections H_{1} ... H_{k-1} to v
+ // TODO: use a HouseholderSequence
+ for (Index i = k - 1; i >= 0; --i) {
+ v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
+ }
- for (int i = k - 2; i >= 0; --i) {
- x_new += y(i) * VectorType::Unit(m, i);
- // apply Householder reflection H_{i} to x_new
- x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
- }
+ // apply matrix M to v: v = mat * v;
+ t.noalias() = mat * v;
+ v = precond.solve(t);
- x += x_new;
+ // apply Householder reflections H_{k-1} ... H_{1} to v
+ // TODO: use a HouseholderSequence
+ for (Index i = 0; i < k; ++i) {
+ v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
+ }
- if (stop) {
- return true;
- } else {
- k=0;
+ if (v.tail(m - k).norm() != 0.0)
+ {
+ if (k <= restart)
+ {
+ // generate new Householder vector
+ Ref<VectorType> Hk_tail = H.col(k).tail(m - k - 1);
+ v.tail(m - k).makeHouseholder(Hk_tail, tau.coeffRef(k), beta);
+
+ // apply Householder reflection H_{k} to v
+ v.tail(m - k).applyHouseholderOnTheLeft(Hk_tail, tau.coeffRef(k), workspace.data());
+ }
+ }
- // reset data for a restart r0 = rhs - mat * x;
- VectorType p0=mat*x;
- VectorType p1=precond.solve(p0);
- r0 = rhs - p1;
-// r0_sqnorm = r0.squaredNorm();
- w = VectorType::Zero(restart + 1);
- H = FMatrixType::Zero(m, restart + 1);
- tau = VectorType::Zero(restart + 1);
+ if (k > 1)
+ {
+ for (Index i = 0; i < k - 1; ++i)
+ {
+ // apply old Givens rotations to v
+ v.applyOnTheLeft(i, i + 1, G[i].adjoint());
+ }
+ }
- // generate first Householder vector
- RealScalar beta;
- r0.makeHouseholder(e, tau.coeffRef(0), beta);
- w(0)=(Scalar) beta;
- H.bottomLeftCorner(m - 1, 1) = e;
+ if (k<m && v(k) != (Scalar) 0)
+ {
+ // determine next Givens rotation
+ G[k - 1].makeGivens(v(k - 1), v(k));
- }
+ // apply Givens rotation to v and w
+ v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
+ w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
+ }
- }
+ // insert coefficients into upper matrix triangle
+ H.col(k-1).head(k) = v.head(k);
+ tol_error = abs(w(k)) / r0Norm;
+ bool stop = (k==m || tol_error < tol || iters == maxIters);
+ if (stop || k == restart)
+ {
+ // solve upper triangular system
+ Ref<VectorType> y = w.head(k);
+ H.topLeftCorner(k, k).template triangularView <Upper>().solveInPlace(y);
+
+ // use Horner-like scheme to calculate solution vector
+ x_new.setZero();
+ for (Index i = k - 1; i >= 0; --i)
+ {
+ x_new(i) += y(i);
+ // apply Householder reflection H_{i} to x_new
+ x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
+ }
+
+ x += x_new;
+
+ if(stop)
+ {
+ return true;
+ }
+ else
+ {
+ k=0;
+
+ // reset data for restart
+ p0.noalias() = rhs - mat*x;
+ r0 = precond.solve(p0);
+
+ // clear Hessenberg matrix and Householder data
+ H.setZero();
+ w.setZero();
+ tau.setZero();
+
+ // generate first Householder vector
+ r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
+ w(0) = Scalar(beta);
+ }
+ }
+ }
- }
-
- return false;
+ return false;
}
@@ -230,7 +234,7 @@ struct traits<GMRES<_MatrixType,_Preconditioner> >
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
* and NumTraits<Scalar>::epsilon() for the tolerance.
- *
+ *
* This class can be used as the direct solver classes. Here is a typical usage example:
* \code
* int n = 10000;
@@ -244,29 +248,31 @@ struct traits<GMRES<_MatrixType,_Preconditioner> >
* // update b, and solve again
* x = solver.solve(b);
* \endcode
- *
+ *
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method.
*
+ * GMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
+ *
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename _MatrixType, typename _Preconditioner>
class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> >
{
typedef IterativeSolverBase<GMRES> Base;
- using Base::mp_matrix;
+ using Base::matrix;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
using Base::m_isInitialized;
-
+
private:
- int m_restart;
-
+ Index m_restart;
+
public:
+ using Base::_solve_impl;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
typedef typename MatrixType::RealScalar RealScalar;
typedef _Preconditioner Preconditioner;
@@ -276,95 +282,62 @@ public:
GMRES() : Base(), m_restart(30) {}
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
- *
+ *
* This constructor is a shortcut for the default constructor followed
* by a call to compute().
- *
+ *
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
- GMRES(const MatrixType& A) : Base(A), m_restart(30) {}
+ template<typename MatrixDerived>
+ explicit GMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30) {}
~GMRES() {}
-
+
/** Get the number of iterations after that a restart is performed.
*/
- int get_restart() { return m_restart; }
-
+ Index get_restart() { return m_restart; }
+
/** Set the number of iterations after that a restart is performed.
* \param restart number of iterations for a restarti, default is 30.
*/
- void set_restart(const int restart) { m_restart=restart; }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
- * \a x0 as an initial solution.
- *
- * \sa compute()
- */
- template<typename Rhs,typename Guess>
- inline const internal::solve_retval_with_guess<GMRES, Rhs, Guess>
- solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
- {
- eigen_assert(m_isInitialized && "GMRES is not initialized.");
- eigen_assert(Base::rows()==b.rows()
- && "GMRES::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval_with_guess
- <GMRES, Rhs, Guess>(*this, b.derived(), x0);
- }
-
+ void set_restart(const Index restart) { m_restart=restart; }
+
/** \internal */
template<typename Rhs,typename Dest>
- void _solveWithGuess(const Rhs& b, Dest& x) const
- {
+ void _solve_with_guess_impl(const Rhs& b, Dest& x) const
+ {
bool failed = false;
- for(int j=0; j<b.cols(); ++j)
+ for(Index j=0; j<b.cols(); ++j)
{
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
-
+
typename Dest::ColXpr xj(x,j);
- if(!internal::gmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
+ if(!internal::gmres(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
failed = true;
}
m_info = failed ? NumericalIssue
- : m_error <= Base::m_tolerance ? Success
- : NoConvergence;
+ : m_error <= Base::m_tolerance ? Success
+ : NoConvergence;
m_isInitialized = true;
}
/** \internal */
template<typename Rhs,typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const Rhs& b, MatrixBase<Dest> &x) const
{
x = b;
if(x.squaredNorm() == 0) return; // Check Zero right hand side
- _solveWithGuess(b,x);
+ _solve_with_guess_impl(b,x.derived());
}
protected:
};
-
-namespace internal {
-
- template<typename _MatrixType, typename _Preconditioner, typename Rhs>
-struct solve_retval<GMRES<_MatrixType, _Preconditioner>, Rhs>
- : solve_retval_base<GMRES<_MatrixType, _Preconditioner>, Rhs>
-{
- typedef GMRES<_MatrixType, _Preconditioner> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_GMRES_H
diff --git a/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h b/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
deleted file mode 100644
index 661c1f2e0..000000000
--- a/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
+++ /dev/null
@@ -1,278 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_INCOMPLETE_CHOlESKY_H
-#define EIGEN_INCOMPLETE_CHOlESKY_H
-#include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h"
-#include <Eigen/OrderingMethods>
-#include <list>
-
-namespace Eigen {
-/**
- * \brief Modified Incomplete Cholesky with dual threshold
- *
- * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
- * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
- *
- * \tparam _MatrixType The type of the sparse matrix. It should be a symmetric
- * matrix. It is advised to give a row-oriented sparse matrix
- * \tparam _UpLo The triangular part of the matrix to reference.
- * \tparam _OrderingType
- */
-
-template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> >
-class IncompleteCholesky : internal::noncopyable
-{
- public:
- typedef SparseMatrix<Scalar,ColMajor> MatrixType;
- typedef _OrderingType OrderingType;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
- typedef Matrix<Scalar,Dynamic,1> ScalarType;
- typedef Matrix<Index,Dynamic, 1> IndexType;
- typedef std::vector<std::list<Index> > VectorList;
- enum { UpLo = _UpLo };
- public:
- IncompleteCholesky() : m_shift(1),m_factorizationIsOk(false) {}
- IncompleteCholesky(const MatrixType& matrix) : m_shift(1),m_factorizationIsOk(false)
- {
- compute(matrix);
- }
-
- Index rows() const { return m_L.rows(); }
-
- Index cols() const { return m_L.cols(); }
-
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the matrix appears to be negative.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
- return m_info;
- }
-
- /**
- * \brief Set the initial shift parameter
- */
- void setShift( Scalar shift) { m_shift = shift; }
-
- /**
- * \brief Computes the fill reducing permutation vector.
- */
- template<typename MatrixType>
- void analyzePattern(const MatrixType& mat)
- {
- OrderingType ord;
- ord(mat.template selfadjointView<UpLo>(), m_perm);
- m_analysisIsOk = true;
- }
-
- template<typename MatrixType>
- void factorize(const MatrixType& amat);
-
- template<typename MatrixType>
- void compute (const MatrixType& matrix)
- {
- analyzePattern(matrix);
- factorize(matrix);
- }
-
- template<typename Rhs, typename Dest>
- void _solve(const Rhs& b, Dest& x) const
- {
- eigen_assert(m_factorizationIsOk && "factorize() should be called first");
- if (m_perm.rows() == b.rows())
- x = m_perm.inverse() * b;
- else
- x = b;
- x = m_scal.asDiagonal() * x;
- x = m_L.template triangularView<UnitLower>().solve(x);
- x = m_L.adjoint().template triangularView<Upper>().solve(x);
- if (m_perm.rows() == b.rows())
- x = m_perm * x;
- x = m_scal.asDiagonal() * x;
- }
- template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_factorizationIsOk && "IncompleteLLT did not succeed");
- eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
- eigen_assert(cols()==b.rows()
- && "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived());
- }
- protected:
- SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC
- ScalarType m_scal; // The vector for scaling the matrix
- Scalar m_shift; //The initial shift parameter
- bool m_analysisIsOk;
- bool m_factorizationIsOk;
- bool m_isInitialized;
- ComputationInfo m_info;
- PermutationType m_perm;
-
- private:
- template <typename IdxType, typename SclType>
- inline void updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol);
-};
-
-template<typename Scalar, int _UpLo, typename OrderingType>
-template<typename _MatrixType>
-void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
-{
- using std::sqrt;
- using std::min;
- eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
-
- // Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
-
- // Apply the fill-reducing permutation computed in analyzePattern()
- if (m_perm.rows() == mat.rows() ) // To detect the null permutation
- m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
- else
- m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
-
- Index n = m_L.cols();
- Index nnz = m_L.nonZeros();
- Map<ScalarType> vals(m_L.valuePtr(), nnz); //values
- Map<IndexType> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices
- Map<IndexType> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
- IndexType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
- VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
- ScalarType curCol(n); // Store a nonzero values in each column
- IndexType irow(n); // Row indices of nonzero elements in each column
-
-
- // Computes the scaling factors
- m_scal.resize(n);
- for (int j = 0; j < n; j++)
- {
- m_scal(j) = m_L.col(j).norm();
- m_scal(j) = sqrt(m_scal(j));
- }
- // Scale and compute the shift for the matrix
- Scalar mindiag = vals[0];
- for (int j = 0; j < n; j++){
- for (int k = colPtr[j]; k < colPtr[j+1]; k++)
- vals[k] /= (m_scal(j) * m_scal(rowIdx[k]));
- mindiag = (min)(vals[colPtr[j]], mindiag);
- }
-
- if(mindiag < Scalar(0.)) m_shift = m_shift - mindiag;
- // Apply the shift to the diagonal elements of the matrix
- for (int j = 0; j < n; j++)
- vals[colPtr[j]] += m_shift;
- // jki version of the Cholesky factorization
- for (int j=0; j < n; ++j)
- {
- //Left-looking factorize the column j
- // First, load the jth column into curCol
- Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
- curCol.setZero();
- irow.setLinSpaced(n,0,n-1);
- for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++)
- {
- curCol(rowIdx[i]) = vals[i];
- irow(rowIdx[i]) = rowIdx[i];
- }
- std::list<int>::iterator k;
- // Browse all previous columns that will update column j
- for(k = listCol[j].begin(); k != listCol[j].end(); k++)
- {
- int jk = firstElt(*k); // First element to use in the column
- jk += 1;
- for (int i = jk; i < colPtr[*k+1]; i++)
- {
- curCol(rowIdx[i]) -= vals[i] * vals[jk] ;
- }
- updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
- }
-
- // Scale the current column
- if(RealScalar(diag) <= 0)
- {
- std::cerr << "\nNegative diagonal during Incomplete factorization... "<< j << "\n";
- m_info = NumericalIssue;
- return;
- }
- RealScalar rdiag = sqrt(RealScalar(diag));
- vals[colPtr[j]] = rdiag;
- for (int i = j+1; i < n; i++)
- {
- //Scale
- curCol(i) /= rdiag;
- //Update the remaining diagonals with curCol
- vals[colPtr[i]] -= curCol(i) * curCol(i);
- }
- // Select the largest p elements
- // p is the original number of elements in the column (without the diagonal)
- int p = colPtr[j+1] - colPtr[j] - 1 ;
- internal::QuickSplit(curCol, irow, p);
- // Insert the largest p elements in the matrix
- int cpt = 0;
- for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
- {
- vals[i] = curCol(cpt);
- rowIdx[i] = irow(cpt);
- cpt ++;
- }
- // Get the first smallest row index and put it after the diagonal element
- Index jk = colPtr(j)+1;
- updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
- }
- m_factorizationIsOk = true;
- m_isInitialized = true;
- m_info = Success;
-}
-
-template<typename Scalar, int _UpLo, typename OrderingType>
-template <typename IdxType, typename SclType>
-inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol)
-{
- if (jk < colPtr(col+1) )
- {
- Index p = colPtr(col+1) - jk;
- Index minpos;
- rowIdx.segment(jk,p).minCoeff(&minpos);
- minpos += jk;
- if (rowIdx(minpos) != rowIdx(jk))
- {
- //Swap
- std::swap(rowIdx(jk),rowIdx(minpos));
- std::swap(vals(jk),vals(minpos));
- }
- firstElt(col) = jk;
- listCol[rowIdx(jk)].push_back(col);
- }
-}
-namespace internal {
-
-template<typename _Scalar, int _UpLo, typename OrderingType, typename Rhs>
-struct solve_retval<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
- : solve_retval_base<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
-{
- typedef IncompleteCholesky<_Scalar, _UpLo, OrderingType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif
diff --git a/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h b/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h
index 67e780181..7d08c3515 100644
--- a/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h
+++ b/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h
@@ -13,8 +13,12 @@
namespace Eigen {
template <typename _Scalar>
-class IncompleteLU
+class IncompleteLU : public SparseSolverBase<IncompleteLU<_Scalar> >
{
+ protected:
+ typedef SparseSolverBase<IncompleteLU<_Scalar> > Base;
+ using Base::m_isInitialized;
+
typedef _Scalar Scalar;
typedef Matrix<Scalar,Dynamic,1> Vector;
typedef typename Vector::Index Index;
@@ -23,10 +27,10 @@ class IncompleteLU
public:
typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
- IncompleteLU() : m_isInitialized(false) {}
+ IncompleteLU() {}
template<typename MatrixType>
- IncompleteLU(const MatrixType& mat) : m_isInitialized(false)
+ IncompleteLU(const MatrixType& mat)
{
compute(mat);
}
@@ -71,43 +75,16 @@ class IncompleteLU
}
template<typename Rhs, typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const Rhs& b, Dest& x) const
{
x = m_lu.template triangularView<UnitLower>().solve(b);
x = m_lu.template triangularView<Upper>().solve(x);
}
- template<typename Rhs> inline const internal::solve_retval<IncompleteLU, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "IncompleteLU is not initialized.");
- eigen_assert(cols()==b.rows()
- && "IncompleteLU::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<IncompleteLU, Rhs>(*this, b.derived());
- }
-
protected:
FactorType m_lu;
- bool m_isInitialized;
-};
-
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<IncompleteLU<_MatrixType>, Rhs>
- : solve_retval_base<IncompleteLU<_MatrixType>, Rhs>
-{
- typedef IncompleteLU<_MatrixType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
};
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_INCOMPLETE_LU_H
diff --git a/unsupported/Eigen/src/IterativeSolvers/MINRES.h b/unsupported/Eigen/src/IterativeSolvers/MINRES.h
index 30f26aa50..256990c1a 100644
--- a/unsupported/Eigen/src/IterativeSolvers/MINRES.h
+++ b/unsupported/Eigen/src/IterativeSolvers/MINRES.h
@@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2012 Giacomo Po <gpo@ucla.edu>
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -29,7 +29,7 @@ namespace Eigen {
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
EIGEN_DONT_INLINE
void minres(const MatrixType& mat, const Rhs& rhs, Dest& x,
- const Preconditioner& precond, int& iters,
+ const Preconditioner& precond, Index& iters,
typename Dest::RealScalar& tol_error)
{
using std::sqrt;
@@ -48,8 +48,8 @@ namespace Eigen {
}
// initialize
- const int maxIters(iters); // initialize maxIters to iters
- const int N(mat.cols()); // the size of the matrix
+ const Index maxIters(iters); // initialize maxIters to iters
+ const Index N(mat.cols()); // the size of the matrix
const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold (compared to residualNorm2)
// Initialize preconditioned Lanczos
@@ -144,7 +144,6 @@ namespace Eigen {
template< typename _MatrixType, int _UpLo=Lower,
typename _Preconditioner = IdentityPreconditioner>
-// typename _Preconditioner = IdentityPreconditioner<typename _MatrixType::Scalar> > // preconditioner must be positive definite
class MINRES;
namespace internal {
@@ -166,8 +165,8 @@ namespace Eigen {
* The vectors x and b can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower,
+ * Upper, or Lower|Upper in which the full matrix entries will be considered. Default is Lower.
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
*
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
@@ -192,6 +191,8 @@ namespace Eigen {
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method.
*
+ * MINRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
+ *
* \sa class ConjugateGradient, BiCGSTAB, SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
@@ -199,15 +200,15 @@ namespace Eigen {
{
typedef IterativeSolverBase<MINRES> Base;
- using Base::mp_matrix;
+ using Base::matrix;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
using Base::m_isInitialized;
public:
+ using Base::_solve_impl;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
typedef typename MatrixType::RealScalar RealScalar;
typedef _Preconditioner Preconditioner;
@@ -228,46 +229,41 @@ namespace Eigen {
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
- MINRES(const MatrixType& A) : Base(A) {}
+ template<typename MatrixDerived>
+ explicit MINRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
/** Destructor. */
~MINRES(){}
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
- * \a x0 as an initial solution.
- *
- * \sa compute()
- */
- template<typename Rhs,typename Guess>
- inline const internal::solve_retval_with_guess<MINRES, Rhs, Guess>
- solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
- {
- eigen_assert(m_isInitialized && "MINRES is not initialized.");
- eigen_assert(Base::rows()==b.rows()
- && "MINRES::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval_with_guess
- <MINRES, Rhs, Guess>(*this, b.derived(), x0);
- }
-
+
/** \internal */
template<typename Rhs,typename Dest>
- void _solveWithGuess(const Rhs& b, Dest& x) const
+ void _solve_with_guess_impl(const Rhs& b, Dest& x) const
{
+ typedef typename Base::MatrixWrapper MatrixWrapper;
+ typedef typename Base::ActualMatrixType ActualMatrixType;
+ enum {
+ TransposeInput = (!MatrixWrapper::MatrixFree)
+ && (UpLo==(Lower|Upper))
+ && (!MatrixType::IsRowMajor)
+ && (!NumTraits<Scalar>::IsComplex)
+ };
+ typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper;
+ EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
typedef typename internal::conditional<UpLo==(Lower|Upper),
- const MatrixType&,
- SparseSelfAdjointView<const MatrixType, UpLo>
- >::type MatrixWrapperType;
-
+ RowMajorWrapper,
+ typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type
+ >::type SelfAdjointWrapper;
+
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
-
+ RowMajorWrapper row_mat(matrix());
for(int j=0; j<b.cols(); ++j)
{
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
typename Dest::ColXpr xj(x,j);
- internal::minres(MatrixWrapperType(*mp_matrix), b.col(j), xj,
+ internal::minres(SelfAdjointWrapper(row_mat), b.col(j), xj,
Base::m_preconditioner, m_iterations, m_error);
}
@@ -277,33 +273,16 @@ namespace Eigen {
/** \internal */
template<typename Rhs,typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const Rhs& b, MatrixBase<Dest> &x) const
{
x.setZero();
- _solveWithGuess(b,x);
+ _solve_with_guess_impl(b,x.derived());
}
protected:
};
-
- namespace internal {
-
- template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
- struct solve_retval<MINRES<_MatrixType,_UpLo,_Preconditioner>, Rhs>
- : solve_retval_base<MINRES<_MatrixType,_UpLo,_Preconditioner>, Rhs>
- {
- typedef MINRES<_MatrixType,_UpLo,_Preconditioner> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
- };
-
- } // end namespace internal
-
+
} // end namespace Eigen
#endif // EIGEN_MINRES_H
diff --git a/unsupported/Eigen/src/IterativeSolvers/Scaling.h b/unsupported/Eigen/src/IterativeSolvers/Scaling.h
index 4fd439202..d113e6e90 100644
--- a/unsupported/Eigen/src/IterativeSolvers/Scaling.h
+++ b/unsupported/Eigen/src/IterativeSolvers/Scaling.h
@@ -9,6 +9,9 @@
#ifndef EIGEN_ITERSCALING_H
#define EIGEN_ITERSCALING_H
+
+namespace Eigen {
+
/**
* \ingroup IterativeSolvers_Module
* \brief iterative scaling algorithm to equilibrate rows and column norms in matrices
@@ -41,8 +44,6 @@
*
* \sa \ref IncompleteLUT
*/
-namespace Eigen {
-using std::abs;
template<typename _MatrixType>
class IterScaling
{
@@ -71,6 +72,7 @@ class IterScaling
*/
void compute (const MatrixType& mat)
{
+ using std::abs;
int m = mat.rows();
int n = mat.cols();
eigen_assert((m>0 && m == n) && "Please give a non - empty matrix");
diff --git a/unsupported/Eigen/src/KroneckerProduct/CMakeLists.txt b/unsupported/Eigen/src/KroneckerProduct/CMakeLists.txt
deleted file mode 100644
index 4daefebee..000000000
--- a/unsupported/Eigen/src/KroneckerProduct/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_KroneckerProduct_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_KroneckerProduct_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/KroneckerProduct COMPONENT Devel
- )
diff --git a/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h b/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h
index 532896c3b..582fa8512 100644
--- a/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h
+++ b/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h
@@ -12,58 +12,93 @@
#ifndef KRONECKER_TENSOR_PRODUCT_H
#define KRONECKER_TENSOR_PRODUCT_H
-namespace Eigen {
-
-template<typename Scalar, int Options, typename Index> class SparseMatrix;
+namespace Eigen {
/*!
- * \brief Kronecker tensor product helper class for dense matrices
+ * \ingroup KroneckerProduct_Module
*
- * This class is the return value of kroneckerProduct(MatrixBase,
- * MatrixBase). Use the function rather than construct this class
- * directly to avoid specifying template prarameters.
+ * \brief The base class of dense and sparse Kronecker product.
*
- * \tparam Lhs Type of the left-hand side, a matrix expression.
- * \tparam Rhs Type of the rignt-hand side, a matrix expression.
+ * \tparam Derived is the derived type.
*/
-template<typename Lhs, typename Rhs>
-class KroneckerProduct : public ReturnByValue<KroneckerProduct<Lhs,Rhs> >
+template<typename Derived>
+class KroneckerProductBase : public ReturnByValue<Derived>
{
private:
- typedef ReturnByValue<KroneckerProduct> Base;
- typedef typename Base::Scalar Scalar;
- typedef typename Base::Index Index;
+ typedef typename internal::traits<Derived> Traits;
+ typedef typename Traits::Scalar Scalar;
+
+ protected:
+ typedef typename Traits::Lhs Lhs;
+ typedef typename Traits::Rhs Rhs;
public:
/*! \brief Constructor. */
- KroneckerProduct(const Lhs& A, const Rhs& B)
+ KroneckerProductBase(const Lhs& A, const Rhs& B)
: m_A(A), m_B(B)
{}
- /*! \brief Evaluate the Kronecker tensor product. */
- template<typename Dest> void evalTo(Dest& dst) const;
-
inline Index rows() const { return m_A.rows() * m_B.rows(); }
inline Index cols() const { return m_A.cols() * m_B.cols(); }
+ /*!
+ * This overrides ReturnByValue::coeff because this function is
+ * efficient enough.
+ */
Scalar coeff(Index row, Index col) const
{
return m_A.coeff(row / m_B.rows(), col / m_B.cols()) *
m_B.coeff(row % m_B.rows(), col % m_B.cols());
}
+ /*!
+ * This overrides ReturnByValue::coeff because this function is
+ * efficient enough.
+ */
Scalar coeff(Index i) const
{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(KroneckerProduct);
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return m_A.coeff(i / m_A.size()) * m_B.coeff(i % m_A.size());
}
- private:
+ protected:
typename Lhs::Nested m_A;
typename Rhs::Nested m_B;
};
/*!
+ * \ingroup KroneckerProduct_Module
+ *
+ * \brief Kronecker tensor product helper class for dense matrices
+ *
+ * This class is the return value of kroneckerProduct(MatrixBase,
+ * MatrixBase). Use the function rather than construct this class
+ * directly to avoid specifying template prarameters.
+ *
+ * \tparam Lhs Type of the left-hand side, a matrix expression.
+ * \tparam Rhs Type of the rignt-hand side, a matrix expression.
+ */
+template<typename Lhs, typename Rhs>
+class KroneckerProduct : public KroneckerProductBase<KroneckerProduct<Lhs,Rhs> >
+{
+ private:
+ typedef KroneckerProductBase<KroneckerProduct> Base;
+ using Base::m_A;
+ using Base::m_B;
+
+ public:
+ /*! \brief Constructor. */
+ KroneckerProduct(const Lhs& A, const Rhs& B)
+ : Base(A, B)
+ {}
+
+ /*! \brief Evaluate the Kronecker tensor product. */
+ template<typename Dest> void evalTo(Dest& dst) const;
+};
+
+/*!
+ * \ingroup KroneckerProduct_Module
+ *
* \brief Kronecker tensor product helper class for sparse matrices
*
* If at least one of the operands is a sparse matrix expression,
@@ -77,34 +112,21 @@ class KroneckerProduct : public ReturnByValue<KroneckerProduct<Lhs,Rhs> >
* \tparam Rhs Type of the rignt-hand side, a matrix expression.
*/
template<typename Lhs, typename Rhs>
-class KroneckerProductSparse : public EigenBase<KroneckerProductSparse<Lhs,Rhs> >
+class KroneckerProductSparse : public KroneckerProductBase<KroneckerProductSparse<Lhs,Rhs> >
{
private:
- typedef typename internal::traits<KroneckerProductSparse>::Index Index;
+ typedef KroneckerProductBase<KroneckerProductSparse> Base;
+ using Base::m_A;
+ using Base::m_B;
public:
/*! \brief Constructor. */
KroneckerProductSparse(const Lhs& A, const Rhs& B)
- : m_A(A), m_B(B)
+ : Base(A, B)
{}
/*! \brief Evaluate the Kronecker tensor product. */
template<typename Dest> void evalTo(Dest& dst) const;
-
- inline Index rows() const { return m_A.rows() * m_B.rows(); }
- inline Index cols() const { return m_A.cols() * m_B.cols(); }
-
- template<typename Scalar, int Options, typename Index>
- operator SparseMatrix<Scalar, Options, Index>()
- {
- SparseMatrix<Scalar, Options, Index> result;
- evalTo(result.derived());
- return result;
- }
-
- private:
- typename Lhs::Nested m_A;
- typename Rhs::Nested m_B;
};
template<typename Lhs, typename Rhs>
@@ -124,22 +146,49 @@ template<typename Lhs, typename Rhs>
template<typename Dest>
void KroneckerProductSparse<Lhs,Rhs>::evalTo(Dest& dst) const
{
- const Index Br = m_B.rows(),
- Bc = m_B.cols();
- dst.resize(rows(),cols());
+ Index Br = m_B.rows(), Bc = m_B.cols();
+ dst.resize(this->rows(), this->cols());
dst.resizeNonZeros(0);
- dst.reserve(m_A.nonZeros() * m_B.nonZeros());
+
+ // 1 - evaluate the operands if needed:
+ typedef typename internal::nested_eval<Lhs,Dynamic>::type Lhs1;
+ typedef typename internal::remove_all<Lhs1>::type Lhs1Cleaned;
+ const Lhs1 lhs1(m_A);
+ typedef typename internal::nested_eval<Rhs,Dynamic>::type Rhs1;
+ typedef typename internal::remove_all<Rhs1>::type Rhs1Cleaned;
+ const Rhs1 rhs1(m_B);
+
+ // 2 - construct respective iterators
+ typedef Eigen::InnerIterator<Lhs1Cleaned> LhsInnerIterator;
+ typedef Eigen::InnerIterator<Rhs1Cleaned> RhsInnerIterator;
+
+ // compute number of non-zeros per innervectors of dst
+ {
+ // TODO VectorXi is not necessarily big enough!
+ VectorXi nnzA = VectorXi::Zero(Dest::IsRowMajor ? m_A.rows() : m_A.cols());
+ for (Index kA=0; kA < m_A.outerSize(); ++kA)
+ for (LhsInnerIterator itA(lhs1,kA); itA; ++itA)
+ nnzA(Dest::IsRowMajor ? itA.row() : itA.col())++;
+
+ VectorXi nnzB = VectorXi::Zero(Dest::IsRowMajor ? m_B.rows() : m_B.cols());
+ for (Index kB=0; kB < m_B.outerSize(); ++kB)
+ for (RhsInnerIterator itB(rhs1,kB); itB; ++itB)
+ nnzB(Dest::IsRowMajor ? itB.row() : itB.col())++;
+
+ Matrix<int,Dynamic,Dynamic,ColMajor> nnzAB = nnzB * nnzA.transpose();
+ dst.reserve(VectorXi::Map(nnzAB.data(), nnzAB.size()));
+ }
for (Index kA=0; kA < m_A.outerSize(); ++kA)
{
for (Index kB=0; kB < m_B.outerSize(); ++kB)
{
- for (typename Lhs::InnerIterator itA(m_A,kA); itA; ++itA)
+ for (LhsInnerIterator itA(lhs1,kA); itA; ++itA)
{
- for (typename Rhs::InnerIterator itB(m_B,kB); itB; ++itB)
+ for (RhsInnerIterator itB(rhs1,kB); itB; ++itB)
{
- const Index i = itA.row() * Br + itB.row(),
- j = itA.col() * Bc + itB.col();
+ Index i = itA.row() * Br + itB.row(),
+ j = itA.col() * Bc + itB.col();
dst.insert(i,j) = itA.value() * itB.value();
}
}
@@ -154,14 +203,14 @@ struct traits<KroneckerProduct<_Lhs,_Rhs> >
{
typedef typename remove_all<_Lhs>::type Lhs;
typedef typename remove_all<_Rhs>::type Rhs;
- typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
+ typedef typename ScalarBinaryOpTraits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
+ typedef typename promote_index_type<typename Lhs::StorageIndex, typename Rhs::StorageIndex>::type StorageIndex;
enum {
Rows = size_at_compile_time<traits<Lhs>::RowsAtCompileTime, traits<Rhs>::RowsAtCompileTime>::ret,
Cols = size_at_compile_time<traits<Lhs>::ColsAtCompileTime, traits<Rhs>::ColsAtCompileTime>::ret,
MaxRows = size_at_compile_time<traits<Lhs>::MaxRowsAtCompileTime, traits<Rhs>::MaxRowsAtCompileTime>::ret,
- MaxCols = size_at_compile_time<traits<Lhs>::MaxColsAtCompileTime, traits<Rhs>::MaxColsAtCompileTime>::ret,
- CoeffReadCost = Lhs::CoeffReadCost + Rhs::CoeffReadCost + NumTraits<Scalar>::MulCost
+ MaxCols = size_at_compile_time<traits<Lhs>::MaxColsAtCompileTime, traits<Rhs>::MaxColsAtCompileTime>::ret
};
typedef Matrix<Scalar,Rows,Cols> ReturnType;
@@ -173,9 +222,9 @@ struct traits<KroneckerProductSparse<_Lhs,_Rhs> >
typedef MatrixXpr XprKind;
typedef typename remove_all<_Lhs>::type Lhs;
typedef typename remove_all<_Rhs>::type Rhs;
- typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
- typedef typename promote_storage_type<typename traits<Lhs>::StorageKind, typename traits<Rhs>::StorageKind>::ret StorageKind;
- typedef typename promote_index_type<typename Lhs::Index, typename Rhs::Index>::type Index;
+ typedef typename ScalarBinaryOpTraits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
+ typedef typename cwise_promote_storage_type<typename traits<Lhs>::StorageKind, typename traits<Rhs>::StorageKind, scalar_product_op<typename Lhs::Scalar, typename Rhs::Scalar> >::ret StorageKind;
+ typedef typename promote_index_type<typename Lhs::StorageIndex, typename Rhs::StorageIndex>::type StorageIndex;
enum {
LhsFlags = Lhs::Flags,
@@ -190,9 +239,11 @@ struct traits<KroneckerProductSparse<_Lhs,_Rhs> >
RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit),
Flags = ((LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
- | EvalBeforeNestingBit | EvalBeforeAssigningBit,
- CoeffReadCost = Dynamic
+ | EvalBeforeNestingBit,
+ CoeffReadCost = HugeCost
};
+
+ typedef SparseMatrix<Scalar, 0, StorageIndex> ReturnType;
};
} // end namespace internal
@@ -228,6 +279,16 @@ KroneckerProduct<A,B> kroneckerProduct(const MatrixBase<A>& a, const MatrixBase<
* Computes Kronecker tensor product of two matrices, at least one of
* which is sparse
*
+ * \warning If you want to replace a matrix by its Kronecker product
+ * with some matrix, do \b NOT do this:
+ * \code
+ * A = kroneckerProduct(A,B); // bug!!! caused by aliasing effect
+ * \endcode
+ * instead, use eval() to work around this:
+ * \code
+ * A = kroneckerProduct(A,B).eval();
+ * \endcode
+ *
* \param a Dense/sparse matrix a
* \param b Dense/sparse matrix b
* \return Kronecker tensor product of a and b, stored in a sparse
diff --git a/unsupported/Eigen/src/LevenbergMarquardt/CMakeLists.txt b/unsupported/Eigen/src/LevenbergMarquardt/CMakeLists.txt
deleted file mode 100644
index d9690854d..000000000
--- a/unsupported/Eigen/src/LevenbergMarquardt/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_LevenbergMarquardt_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_LevenbergMarquardt_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/LevenbergMarquardt COMPONENT Devel
- )
diff --git a/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h b/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h
index 32d3ad518..b75bea25f 100644
--- a/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h
+++ b/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h
@@ -23,7 +23,6 @@ void covar(
Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) )
{
using std::abs;
- typedef DenseIndex Index;
/* Local variables */
Index i, j, k, l, ii, jj;
bool sing;
diff --git a/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h b/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h
index 9532042d9..9a4836547 100644
--- a/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h
+++ b/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h
@@ -30,7 +30,7 @@ namespace internal {
using std::abs;
typedef typename QRSolver::MatrixType MatrixType;
typedef typename QRSolver::Scalar Scalar;
- typedef typename QRSolver::Index Index;
+// typedef typename QRSolver::StorageIndex StorageIndex;
/* Local variables */
Index j;
diff --git a/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h b/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h
index f5290dee4..ae9d793b1 100644
--- a/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h
+++ b/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h
@@ -19,18 +19,17 @@ namespace Eigen {
namespace internal {
-template <typename Scalar,int Rows, int Cols, typename Index>
+template <typename Scalar,int Rows, int Cols, typename PermIndex>
void lmqrsolv(
Matrix<Scalar,Rows,Cols> &s,
- const PermutationMatrix<Dynamic,Dynamic,Index> &iPerm,
+ const PermutationMatrix<Dynamic,Dynamic,PermIndex> &iPerm,
const Matrix<Scalar,Dynamic,1> &diag,
const Matrix<Scalar,Dynamic,1> &qtb,
Matrix<Scalar,Dynamic,1> &x,
Matrix<Scalar,Dynamic,1> &sdiag)
{
-
/* Local variables */
- Index i, j, k, l;
+ Index i, j, k;
Scalar temp;
Index n = s.cols();
Matrix<Scalar,Dynamic,1> wa(n);
@@ -52,7 +51,7 @@ void lmqrsolv(
/* prepare the row of d to be eliminated, locating the */
/* diagonal element using p from the qr factorization. */
- l = iPerm.indices()(j);
+ const PermIndex l = iPerm.indices()(j);
if (diag[l] == 0.)
break;
sdiag.tail(n-j).setZero();
diff --git a/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h b/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h
index 51dd1d3c4..995427978 100644
--- a/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h
+++ b/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h
@@ -115,8 +115,7 @@ class LevenbergMarquardt : internal::no_assignment_operator
typedef typename FunctorType::JacobianType JacobianType;
typedef typename JacobianType::Scalar Scalar;
typedef typename JacobianType::RealScalar RealScalar;
- typedef typename JacobianType::Index Index;
- typedef typename QRSolver::Index PermIndex;
+ typedef typename QRSolver::StorageIndex PermIndex;
typedef Matrix<Scalar,Dynamic,1> FVectorType;
typedef PermutationMatrix<Dynamic,Dynamic> PermutationType;
public:
@@ -144,11 +143,13 @@ class LevenbergMarquardt : internal::no_assignment_operator
/** Sets the default parameters */
void resetParameters()
- {
+ {
+ using std::sqrt;
+
m_factor = 100.;
m_maxfev = 400;
- m_ftol = std::sqrt(NumTraits<RealScalar>::epsilon());
- m_xtol = std::sqrt(NumTraits<RealScalar>::epsilon());
+ m_ftol = sqrt(NumTraits<RealScalar>::epsilon());
+ m_xtol = sqrt(NumTraits<RealScalar>::epsilon());
m_gtol = 0. ;
m_epsfcn = 0. ;
}
@@ -174,6 +175,24 @@ class LevenbergMarquardt : internal::no_assignment_operator
/** Use an external Scaling. If set to true, pass a nonzero diagonal to diag() */
void setExternalScaling(bool value) {m_useExternalScaling = value; }
+ /** \returns the tolerance for the norm of the solution vector */
+ RealScalar xtol() const {return m_xtol; }
+
+ /** \returns the tolerance for the norm of the vector function */
+ RealScalar ftol() const {return m_ftol; }
+
+ /** \returns the tolerance for the norm of the gradient of the error vector */
+ RealScalar gtol() const {return m_gtol; }
+
+ /** \returns the step bound for the diagonal shift */
+ RealScalar factor() const {return m_factor; }
+
+ /** \returns the error precision */
+ RealScalar epsilon() const {return m_epsfcn; }
+
+ /** \returns the maximum number of function evaluation */
+ Index maxfev() const {return m_maxfev; }
+
/** \returns a reference to the diagonal of the jacobian */
FVectorType& diag() {return m_diag; }
@@ -285,7 +304,7 @@ LevenbergMarquardt<FunctorType>::minimizeInit(FVectorType &x)
// m_fjac.reserve(VectorXi::Constant(n,5)); // FIXME Find a better alternative
if (!m_useExternalScaling)
m_diag.resize(n);
- eigen_assert( (!m_useExternalScaling || m_diag.size()==n) || "When m_useExternalScaling is set, the caller must provide a valid 'm_diag'");
+ eigen_assert( (!m_useExternalScaling || m_diag.size()==n) && "When m_useExternalScaling is set, the caller must provide a valid 'm_diag'");
m_qtf.resize(n);
/* Function Body */
diff --git a/unsupported/Eigen/src/MatrixFunctions/CMakeLists.txt b/unsupported/Eigen/src/MatrixFunctions/CMakeLists.txt
deleted file mode 100644
index cdde64d2c..000000000
--- a/unsupported/Eigen/src/MatrixFunctions/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_MatrixFunctions_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_MatrixFunctions_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/MatrixFunctions COMPONENT Devel
- )
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h b/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
index 6825a7882..bb6d9e1fe 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
@@ -1,8 +1,8 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2009, 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
-// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
+// Copyright (C) 2009, 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
+// Copyright (C) 2011, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -14,388 +14,374 @@
#include "StemFunction.h"
namespace Eigen {
+namespace internal {
-/** \ingroup MatrixFunctions_Module
- * \brief Class for computing the matrix exponential.
- * \tparam MatrixType type of the argument of the exponential,
- * expected to be an instantiation of the Matrix class template.
- */
-template <typename MatrixType>
-class MatrixExponential {
-
- public:
+/** \brief Scaling operator.
+ *
+ * This struct is used by CwiseUnaryOp to scale a matrix by \f$ 2^{-s} \f$.
+ */
+template <typename RealScalar>
+struct MatrixExponentialScalingOp
+{
+ /** \brief Constructor.
+ *
+ * \param[in] squarings The integer \f$ s \f$ in this document.
+ */
+ MatrixExponentialScalingOp(int squarings) : m_squarings(squarings) { }
+
+
+ /** \brief Scale a matrix coefficient.
+ *
+ * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
+ */
+ inline const RealScalar operator() (const RealScalar& x) const
+ {
+ using std::ldexp;
+ return ldexp(x, -m_squarings);
+ }
- /** \brief Constructor.
- *
- * The class stores a reference to \p M, so it should not be
- * changed (or destroyed) before compute() is called.
- *
- * \param[in] M matrix whose exponential is to be computed.
- */
- MatrixExponential(const MatrixType &M);
+ typedef std::complex<RealScalar> ComplexScalar;
- /** \brief Computes the matrix exponential.
- *
- * \param[out] result the matrix exponential of \p M in the constructor.
- */
- template <typename ResultType>
- void compute(ResultType &result);
+ /** \brief Scale a matrix coefficient.
+ *
+ * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
+ */
+ inline const ComplexScalar operator() (const ComplexScalar& x) const
+ {
+ using std::ldexp;
+ return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings));
+ }
private:
-
- // Prevent copying
- MatrixExponential(const MatrixExponential&);
- MatrixExponential& operator=(const MatrixExponential&);
-
- /** \brief Compute the (3,3)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- *
- * \param[in] A Argument of matrix exponential
- */
- void pade3(const MatrixType &A);
-
- /** \brief Compute the (5,5)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- *
- * \param[in] A Argument of matrix exponential
- */
- void pade5(const MatrixType &A);
-
- /** \brief Compute the (7,7)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- *
- * \param[in] A Argument of matrix exponential
- */
- void pade7(const MatrixType &A);
-
- /** \brief Compute the (9,9)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- *
- * \param[in] A Argument of matrix exponential
- */
- void pade9(const MatrixType &A);
-
- /** \brief Compute the (13,13)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- *
- * \param[in] A Argument of matrix exponential
- */
- void pade13(const MatrixType &A);
-
- /** \brief Compute the (17,17)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- *
- * This function activates only if your long double is double-double or quadruple.
- *
- * \param[in] A Argument of matrix exponential
- */
- void pade17(const MatrixType &A);
-
- /** \brief Compute Pad&eacute; approximant to the exponential.
- *
- * Computes \c m_U, \c m_V and \c m_squarings such that
- * \f$ (V+U)(V-U)^{-1} \f$ is a Pad&eacute; of
- * \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$. The
- * degree of the Pad&eacute; approximant and the value of
- * squarings are chosen such that the approximation error is no
- * more than the round-off error.
- *
- * The argument of this function should correspond with the (real
- * part of) the entries of \c m_M. It is used to select the
- * correct implementation using overloading.
- */
- void computeUV(double);
-
- /** \brief Compute Pad&eacute; approximant to the exponential.
- *
- * \sa computeUV(double);
- */
- void computeUV(float);
-
- /** \brief Compute Pad&eacute; approximant to the exponential.
- *
- * \sa computeUV(double);
- */
- void computeUV(long double);
-
- typedef typename internal::traits<MatrixType>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename std::complex<RealScalar> ComplexScalar;
-
- /** \brief Reference to matrix whose exponential is to be computed. */
- typename internal::nested<MatrixType>::type m_M;
-
- /** \brief Odd-degree terms in numerator of Pad&eacute; approximant. */
- MatrixType m_U;
-
- /** \brief Even-degree terms in numerator of Pad&eacute; approximant. */
- MatrixType m_V;
-
- /** \brief Used for temporary storage. */
- MatrixType m_tmp1;
-
- /** \brief Used for temporary storage. */
- MatrixType m_tmp2;
-
- /** \brief Identity matrix of the same size as \c m_M. */
- MatrixType m_Id;
-
- /** \brief Number of squarings required in the last step. */
int m_squarings;
-
- /** \brief L1 norm of m_M. */
- RealScalar m_l1norm;
};
-template <typename MatrixType>
-MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M) :
- m_M(M),
- m_U(M.rows(),M.cols()),
- m_V(M.rows(),M.cols()),
- m_tmp1(M.rows(),M.cols()),
- m_tmp2(M.rows(),M.cols()),
- m_Id(MatrixType::Identity(M.rows(), M.cols())),
- m_squarings(0),
- m_l1norm(M.cwiseAbs().colwise().sum().maxCoeff())
-{
- /* empty body */
-}
-
-template <typename MatrixType>
-template <typename ResultType>
-void MatrixExponential<MatrixType>::compute(ResultType &result)
+/** \brief Compute the (3,3)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ */
+template <typename MatA, typename MatU, typename MatV>
+void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V)
{
-#if LDBL_MANT_DIG > 112 // rarely happens
- if(sizeof(RealScalar) > 14) {
- result = m_M.matrixFunction(StdStemFunctions<ComplexScalar>::exp);
- return;
- }
-#endif
- computeUV(RealScalar());
- m_tmp1 = m_U + m_V; // numerator of Pade approximant
- m_tmp2 = -m_U + m_V; // denominator of Pade approximant
- result = m_tmp2.partialPivLu().solve(m_tmp1);
- for (int i=0; i<m_squarings; i++)
- result *= result; // undo scaling by repeated squaring
+ typedef typename MatA::PlainObject MatrixType;
+ typedef typename NumTraits<typename traits<MatA>::Scalar>::Real RealScalar;
+ const RealScalar b[] = {120.L, 60.L, 12.L, 1.L};
+ const MatrixType A2 = A * A;
+ const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
+ U.noalias() = A * tmp;
+ V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
}
-template <typename MatrixType>
-EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A)
+/** \brief Compute the (5,5)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ */
+template <typename MatA, typename MatU, typename MatV>
+void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V)
{
- const RealScalar b[] = {120., 60., 12., 1.};
- m_tmp1.noalias() = A * A;
- m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id;
- m_U.noalias() = A * m_tmp2;
- m_V = b[2]*m_tmp1 + b[0]*m_Id;
+ typedef typename MatA::PlainObject MatrixType;
+ typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
+ const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L};
+ const MatrixType A2 = A * A;
+ const MatrixType A4 = A2 * A2;
+ const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
+ U.noalias() = A * tmp;
+ V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
}
-template <typename MatrixType>
-EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A)
+/** \brief Compute the (7,7)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ */
+template <typename MatA, typename MatU, typename MatV>
+void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V)
{
- const RealScalar b[] = {30240., 15120., 3360., 420., 30., 1.};
- MatrixType A2 = A * A;
- m_tmp1.noalias() = A2 * A2;
- m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id;
- m_U.noalias() = A * m_tmp2;
- m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id;
-}
+ typedef typename MatA::PlainObject MatrixType;
+ typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
+ const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L};
+ const MatrixType A2 = A * A;
+ const MatrixType A4 = A2 * A2;
+ const MatrixType A6 = A4 * A2;
+ const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2
+ + b[1] * MatrixType::Identity(A.rows(), A.cols());
+ U.noalias() = A * tmp;
+ V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
-template <typename MatrixType>
-EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A)
-{
- const RealScalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
- MatrixType A2 = A * A;
- MatrixType A4 = A2 * A2;
- m_tmp1.noalias() = A4 * A2;
- m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
- m_U.noalias() = A * m_tmp2;
- m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
}
-template <typename MatrixType>
-EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A)
+/** \brief Compute the (9,9)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ */
+template <typename MatA, typename MatU, typename MatV>
+void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V)
{
- const RealScalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
- 2162160., 110880., 3960., 90., 1.};
- MatrixType A2 = A * A;
- MatrixType A4 = A2 * A2;
- MatrixType A6 = A4 * A2;
- m_tmp1.noalias() = A6 * A2;
- m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
- m_U.noalias() = A * m_tmp2;
- m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
+ typedef typename MatA::PlainObject MatrixType;
+ typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
+ const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L,
+ 2162160.L, 110880.L, 3960.L, 90.L, 1.L};
+ const MatrixType A2 = A * A;
+ const MatrixType A4 = A2 * A2;
+ const MatrixType A6 = A4 * A2;
+ const MatrixType A8 = A6 * A2;
+ const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
+ + b[1] * MatrixType::Identity(A.rows(), A.cols());
+ U.noalias() = A * tmp;
+ V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
}
-template <typename MatrixType>
-EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A)
+/** \brief Compute the (13,13)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ */
+template <typename MatA, typename MatU, typename MatV>
+void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V)
{
- const RealScalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
- 1187353796428800., 129060195264000., 10559470521600., 670442572800.,
- 33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
- MatrixType A2 = A * A;
- MatrixType A4 = A2 * A2;
- m_tmp1.noalias() = A4 * A2;
- m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2; // used for temporary storage
- m_tmp2.noalias() = m_tmp1 * m_V;
- m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
- m_U.noalias() = A * m_tmp2;
- m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2;
- m_V.noalias() = m_tmp1 * m_tmp2;
- m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
+ typedef typename MatA::PlainObject MatrixType;
+ typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
+ const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L,
+ 1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L,
+ 33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L};
+ const MatrixType A2 = A * A;
+ const MatrixType A4 = A2 * A2;
+ const MatrixType A6 = A4 * A2;
+ V = b[13] * A6 + b[11] * A4 + b[9] * A2; // used for temporary storage
+ MatrixType tmp = A6 * V;
+ tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
+ U.noalias() = A * tmp;
+ tmp = b[12] * A6 + b[10] * A4 + b[8] * A2;
+ V.noalias() = A6 * tmp;
+ V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
}
+/** \brief Compute the (17,17)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ *
+ * This function activates only if your long double is double-double or quadruple.
+ */
#if LDBL_MANT_DIG > 64
-template <typename MatrixType>
-EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade17(const MatrixType &A)
+template <typename MatA, typename MatU, typename MatV>
+void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V)
{
+ typedef typename MatA::PlainObject MatrixType;
+ typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
- 100610229646136770560000.L, 15720348382208870400000.L,
- 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
- 595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
- 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
- 46512.L, 306.L, 1.L};
- MatrixType A2 = A * A;
- MatrixType A4 = A2 * A2;
- MatrixType A6 = A4 * A2;
- m_tmp1.noalias() = A4 * A4;
- m_V = b[17]*m_tmp1 + b[15]*A6 + b[13]*A4 + b[11]*A2; // used for temporary storage
- m_tmp2.noalias() = m_tmp1 * m_V;
- m_tmp2 += b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
- m_U.noalias() = A * m_tmp2;
- m_tmp2 = b[16]*m_tmp1 + b[14]*A6 + b[12]*A4 + b[10]*A2;
- m_V.noalias() = m_tmp1 * m_tmp2;
- m_V += b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
+ 100610229646136770560000.L, 15720348382208870400000.L,
+ 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
+ 595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
+ 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
+ 46512.L, 306.L, 1.L};
+ const MatrixType A2 = A * A;
+ const MatrixType A4 = A2 * A2;
+ const MatrixType A6 = A4 * A2;
+ const MatrixType A8 = A4 * A4;
+ V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2; // used for temporary storage
+ MatrixType tmp = A8 * V;
+ tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
+ + b[1] * MatrixType::Identity(A.rows(), A.cols());
+ U.noalias() = A * tmp;
+ tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2;
+ V.noalias() = tmp * A8;
+ V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2
+ + b[0] * MatrixType::Identity(A.rows(), A.cols());
}
#endif
+template <typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real>
+struct matrix_exp_computeUV
+{
+ /** \brief Compute Pad&eacute; approximant to the exponential.
+ *
+ * Computes \c U, \c V and \c squarings such that \f$ (V+U)(V-U)^{-1} \f$ is a Pad&eacute;
+ * approximant of \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$, where \f$ M \f$
+ * denotes the matrix \c arg. The degree of the Pad&eacute; approximant and the value of squarings
+ * are chosen such that the approximation error is no more than the round-off error.
+ */
+ static void run(const MatrixType& arg, MatrixType& U, MatrixType& V, int& squarings);
+};
+
template <typename MatrixType>
-void MatrixExponential<MatrixType>::computeUV(float)
+struct matrix_exp_computeUV<MatrixType, float>
{
- using std::frexp;
- using std::pow;
- if (m_l1norm < 4.258730016922831e-001) {
- pade3(m_M);
- } else if (m_l1norm < 1.880152677804762e+000) {
- pade5(m_M);
- } else {
- const float maxnorm = 3.925724783138660f;
- frexp(m_l1norm / maxnorm, &m_squarings);
- if (m_squarings < 0) m_squarings = 0;
- MatrixType A = m_M / pow(Scalar(2), m_squarings);
- pade7(A);
+ template <typename ArgType>
+ static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
+ {
+ using std::frexp;
+ using std::pow;
+ const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
+ squarings = 0;
+ if (l1norm < 4.258730016922831e-001f) {
+ matrix_exp_pade3(arg, U, V);
+ } else if (l1norm < 1.880152677804762e+000f) {
+ matrix_exp_pade5(arg, U, V);
+ } else {
+ const float maxnorm = 3.925724783138660f;
+ frexp(l1norm / maxnorm, &squarings);
+ if (squarings < 0) squarings = 0;
+ MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<float>(squarings));
+ matrix_exp_pade7(A, U, V);
+ }
}
-}
+};
template <typename MatrixType>
-void MatrixExponential<MatrixType>::computeUV(double)
+struct matrix_exp_computeUV<MatrixType, double>
{
- using std::frexp;
- using std::pow;
- if (m_l1norm < 1.495585217958292e-002) {
- pade3(m_M);
- } else if (m_l1norm < 2.539398330063230e-001) {
- pade5(m_M);
- } else if (m_l1norm < 9.504178996162932e-001) {
- pade7(m_M);
- } else if (m_l1norm < 2.097847961257068e+000) {
- pade9(m_M);
- } else {
- const double maxnorm = 5.371920351148152;
- frexp(m_l1norm / maxnorm, &m_squarings);
- if (m_squarings < 0) m_squarings = 0;
- MatrixType A = m_M / pow(Scalar(2), m_squarings);
- pade13(A);
+ template <typename ArgType>
+ static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
+ {
+ using std::frexp;
+ using std::pow;
+ const double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
+ squarings = 0;
+ if (l1norm < 1.495585217958292e-002) {
+ matrix_exp_pade3(arg, U, V);
+ } else if (l1norm < 2.539398330063230e-001) {
+ matrix_exp_pade5(arg, U, V);
+ } else if (l1norm < 9.504178996162932e-001) {
+ matrix_exp_pade7(arg, U, V);
+ } else if (l1norm < 2.097847961257068e+000) {
+ matrix_exp_pade9(arg, U, V);
+ } else {
+ const double maxnorm = 5.371920351148152;
+ frexp(l1norm / maxnorm, &squarings);
+ if (squarings < 0) squarings = 0;
+ MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<double>(squarings));
+ matrix_exp_pade13(A, U, V);
+ }
}
-}
-
+};
+
template <typename MatrixType>
-void MatrixExponential<MatrixType>::computeUV(long double)
+struct matrix_exp_computeUV<MatrixType, long double>
{
- using std::frexp;
- using std::pow;
+ template <typename ArgType>
+ static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
+ {
#if LDBL_MANT_DIG == 53 // double precision
- computeUV(double());
-#elif LDBL_MANT_DIG <= 64 // extended precision
- if (m_l1norm < 4.1968497232266989671e-003L) {
- pade3(m_M);
- } else if (m_l1norm < 1.1848116734693823091e-001L) {
- pade5(m_M);
- } else if (m_l1norm < 5.5170388480686700274e-001L) {
- pade7(m_M);
- } else if (m_l1norm < 1.3759868875587845383e+000L) {
- pade9(m_M);
- } else {
- const long double maxnorm = 4.0246098906697353063L;
- frexp(m_l1norm / maxnorm, &m_squarings);
- if (m_squarings < 0) m_squarings = 0;
- MatrixType A = m_M / pow(Scalar(2), m_squarings);
- pade13(A);
- }
+ matrix_exp_computeUV<MatrixType, double>::run(arg, U, V, squarings);
+
+#else
+
+ using std::frexp;
+ using std::pow;
+ const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
+ squarings = 0;
+
+#if LDBL_MANT_DIG <= 64 // extended precision
+
+ if (l1norm < 4.1968497232266989671e-003L) {
+ matrix_exp_pade3(arg, U, V);
+ } else if (l1norm < 1.1848116734693823091e-001L) {
+ matrix_exp_pade5(arg, U, V);
+ } else if (l1norm < 5.5170388480686700274e-001L) {
+ matrix_exp_pade7(arg, U, V);
+ } else if (l1norm < 1.3759868875587845383e+000L) {
+ matrix_exp_pade9(arg, U, V);
+ } else {
+ const long double maxnorm = 4.0246098906697353063L;
+ frexp(l1norm / maxnorm, &squarings);
+ if (squarings < 0) squarings = 0;
+ MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
+ matrix_exp_pade13(A, U, V);
+ }
+
#elif LDBL_MANT_DIG <= 106 // double-double
- if (m_l1norm < 3.2787892205607026992947488108213e-005L) {
- pade3(m_M);
- } else if (m_l1norm < 6.4467025060072760084130906076332e-003L) {
- pade5(m_M);
- } else if (m_l1norm < 6.8988028496595374751374122881143e-002L) {
- pade7(m_M);
- } else if (m_l1norm < 2.7339737518502231741495857201670e-001L) {
- pade9(m_M);
- } else if (m_l1norm < 1.3203382096514474905666448850278e+000L) {
- pade13(m_M);
- } else {
- const long double maxnorm = 3.2579440895405400856599663723517L;
- frexp(m_l1norm / maxnorm, &m_squarings);
- if (m_squarings < 0) m_squarings = 0;
- MatrixType A = m_M / pow(Scalar(2), m_squarings);
- pade17(A);
- }
+
+ if (l1norm < 3.2787892205607026992947488108213e-005L) {
+ matrix_exp_pade3(arg, U, V);
+ } else if (l1norm < 6.4467025060072760084130906076332e-003L) {
+ matrix_exp_pade5(arg, U, V);
+ } else if (l1norm < 6.8988028496595374751374122881143e-002L) {
+ matrix_exp_pade7(arg, U, V);
+ } else if (l1norm < 2.7339737518502231741495857201670e-001L) {
+ matrix_exp_pade9(arg, U, V);
+ } else if (l1norm < 1.3203382096514474905666448850278e+000L) {
+ matrix_exp_pade13(arg, U, V);
+ } else {
+ const long double maxnorm = 3.2579440895405400856599663723517L;
+ frexp(l1norm / maxnorm, &squarings);
+ if (squarings < 0) squarings = 0;
+ MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
+ matrix_exp_pade17(A, U, V);
+ }
+
#elif LDBL_MANT_DIG <= 112 // quadruple precison
- if (m_l1norm < 1.639394610288918690547467954466970e-005L) {
- pade3(m_M);
- } else if (m_l1norm < 4.253237712165275566025884344433009e-003L) {
- pade5(m_M);
- } else if (m_l1norm < 5.125804063165764409885122032933142e-002L) {
- pade7(m_M);
- } else if (m_l1norm < 2.170000765161155195453205651889853e-001L) {
- pade9(m_M);
- } else if (m_l1norm < 1.125358383453143065081397882891878e+000L) {
- pade13(m_M);
- } else {
- const long double maxnorm = 2.884233277829519311757165057717815L;
- frexp(m_l1norm / maxnorm, &m_squarings);
- if (m_squarings < 0) m_squarings = 0;
- MatrixType A = m_M / pow(Scalar(2), m_squarings);
- pade17(A);
- }
+
+ if (l1norm < 1.639394610288918690547467954466970e-005L) {
+ matrix_exp_pade3(arg, U, V);
+ } else if (l1norm < 4.253237712165275566025884344433009e-003L) {
+ matrix_exp_pade5(arg, U, V);
+ } else if (l1norm < 5.125804063165764409885122032933142e-002L) {
+ matrix_exp_pade7(arg, U, V);
+ } else if (l1norm < 2.170000765161155195453205651889853e-001L) {
+ matrix_exp_pade9(arg, U, V);
+ } else if (l1norm < 1.125358383453143065081397882891878e+000L) {
+ matrix_exp_pade13(arg, U, V);
+ } else {
+ frexp(l1norm / maxnorm, &squarings);
+ if (squarings < 0) squarings = 0;
+ MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
+ matrix_exp_pade17(A, U, V);
+ }
+
#else
- // this case should be handled in compute()
- eigen_assert(false && "Bug in MatrixExponential");
+
+ // this case should be handled in compute()
+ eigen_assert(false && "Bug in MatrixExponential");
+
+#endif
#endif // LDBL_MANT_DIG
+ }
+};
+
+
+/* Computes the matrix exponential
+ *
+ * \param arg argument of matrix exponential (should be plain object)
+ * \param result variable in which result will be stored
+ */
+template <typename ArgType, typename ResultType>
+void matrix_exp_compute(const ArgType& arg, ResultType &result)
+{
+ typedef typename ArgType::PlainObject MatrixType;
+#if LDBL_MANT_DIG > 112 // rarely happens
+ typedef typename traits<MatrixType>::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef typename std::complex<RealScalar> ComplexScalar;
+ if (sizeof(RealScalar) > 14) {
+ result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>);
+ return;
+ }
+#endif
+ MatrixType U, V;
+ int squarings;
+ matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V)
+ MatrixType numer = U + V;
+ MatrixType denom = -U + V;
+ result = denom.partialPivLu().solve(numer);
+ for (int i=0; i<squarings; i++)
+ result *= result; // undo scaling by repeated squaring
}
+} // end namespace Eigen::internal
+
/** \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix exponential of some matrix (expression).
*
* \tparam Derived Type of the argument to the matrix exponential.
*
- * This class holds the argument to the matrix exponential until it
- * is assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * MatrixBase::exp() and most of the time this is the only way it is
- * used.
+ * This class holds the argument to the matrix exponential until it is assigned or evaluated for
+ * some other reason (so the argument should not be changed in the meantime). It is the return type
+ * of MatrixBase::exp() and most of the time this is the only way it is used.
*/
template<typename Derived> struct MatrixExponentialReturnValue
: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
@@ -404,31 +390,26 @@ template<typename Derived> struct MatrixExponentialReturnValue
public:
/** \brief Constructor.
*
- * \param[in] src %Matrix (expression) forming the argument of the
- * matrix exponential.
+ * \param src %Matrix (expression) forming the argument of the matrix exponential.
*/
MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
/** \brief Compute the matrix exponential.
*
- * \param[out] result the matrix exponential of \p src in the
- * constructor.
+ * \param result the matrix exponential of \p src in the constructor.
*/
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
- const typename Derived::PlainObject srcEvaluated = m_src.eval();
- MatrixExponential<typename Derived::PlainObject> me(srcEvaluated);
- me.compute(result);
+ const typename internal::nested_eval<Derived, 10>::type tmp(m_src);
+ internal::matrix_exp_compute(tmp, result);
}
Index rows() const { return m_src.rows(); }
Index cols() const { return m_src.cols(); }
protected:
- const Derived& m_src;
- private:
- MatrixExponentialReturnValue& operator=(const MatrixExponentialReturnValue&);
+ const typename internal::ref_selector<Derived>::type m_src;
};
namespace internal {
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h b/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
index 7d426640c..db2449d02 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
+// Copyright (C) 2009-2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -11,398 +11,245 @@
#define EIGEN_MATRIX_FUNCTION
#include "StemFunction.h"
-#include "MatrixFunctionAtomic.h"
namespace Eigen {
+namespace internal {
+
+/** \brief Maximum distance allowed between eigenvalues to be considered "close". */
+static const float matrix_function_separation = 0.1f;
+
/** \ingroup MatrixFunctions_Module
- * \brief Class for computing matrix functions.
- * \tparam MatrixType type of the argument of the matrix function,
- * expected to be an instantiation of the Matrix class template.
- * \tparam AtomicType type for computing matrix function of atomic blocks.
- * \tparam IsComplex used internally to select correct specialization.
+ * \class MatrixFunctionAtomic
+ * \brief Helper class for computing matrix functions of atomic matrices.
*
- * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the
- * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the
- * computation of the matrix function on every block corresponding to these clusters to an object of type
- * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class
- * \p AtomicType should have a \p compute() member function for computing the matrix function of a block.
- *
- * \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic
+ * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
*/
-template <typename MatrixType,
- typename AtomicType,
- int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
-class MatrixFunction
-{
+template <typename MatrixType>
+class MatrixFunctionAtomic
+{
public:
- /** \brief Constructor.
- *
- * \param[in] A argument of matrix function, should be a square matrix.
- * \param[in] atomic class for computing matrix function of atomic blocks.
- *
- * The class stores references to \p A and \p atomic, so they should not be
- * changed (or destroyed) before compute() is called.
- */
- MatrixFunction(const MatrixType& A, AtomicType& atomic);
-
- /** \brief Compute the matrix function.
- *
- * \param[out] result the function \p f applied to \p A, as
- * specified in the constructor.
- *
- * See MatrixBase::matrixFunction() for details on how this computation
- * is implemented.
- */
- template <typename ResultType>
- void compute(ResultType &result);
-};
-
-
-/** \internal \ingroup MatrixFunctions_Module
- * \brief Partial specialization of MatrixFunction for real matrices
- */
-template <typename MatrixType, typename AtomicType>
-class MatrixFunction<MatrixType, AtomicType, 0>
-{
- private:
-
- typedef internal::traits<MatrixType> Traits;
- typedef typename Traits::Scalar Scalar;
- static const int Rows = Traits::RowsAtCompileTime;
- static const int Cols = Traits::ColsAtCompileTime;
- static const int Options = MatrixType::Options;
- static const int MaxRows = Traits::MaxRowsAtCompileTime;
- static const int MaxCols = Traits::MaxColsAtCompileTime;
-
- typedef std::complex<Scalar> ComplexScalar;
- typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix;
-
- public:
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename stem_function<Scalar>::type StemFunction;
- /** \brief Constructor.
- *
- * \param[in] A argument of matrix function, should be a square matrix.
- * \param[in] atomic class for computing matrix function of atomic blocks.
+ /** \brief Constructor
+ * \param[in] f matrix function to compute.
*/
- MatrixFunction(const MatrixType& A, AtomicType& atomic) : m_A(A), m_atomic(atomic) { }
+ MatrixFunctionAtomic(StemFunction f) : m_f(f) { }
- /** \brief Compute the matrix function.
- *
- * \param[out] result the function \p f applied to \p A, as
- * specified in the constructor.
- *
- * This function converts the real matrix \c A to a complex matrix,
- * uses MatrixFunction<MatrixType,1> and then converts the result back to
- * a real matrix.
+ /** \brief Compute matrix function of atomic matrix
+ * \param[in] A argument of matrix function, should be upper triangular and atomic
+ * \returns f(A), the matrix function evaluated at the given matrix
*/
- template <typename ResultType>
- void compute(ResultType& result)
- {
- ComplexMatrix CA = m_A.template cast<ComplexScalar>();
- ComplexMatrix Cresult;
- MatrixFunction<ComplexMatrix, AtomicType> mf(CA, m_atomic);
- mf.compute(Cresult);
- result = Cresult.real();
- }
-
- private:
- typename internal::nested<MatrixType>::type m_A; /**< \brief Reference to argument of matrix function. */
- AtomicType& m_atomic; /**< \brief Class for computing matrix function of atomic blocks. */
-
- MatrixFunction& operator=(const MatrixFunction&);
-};
-
-
-/** \internal \ingroup MatrixFunctions_Module
- * \brief Partial specialization of MatrixFunction for complex matrices
- */
-template <typename MatrixType, typename AtomicType>
-class MatrixFunction<MatrixType, AtomicType, 1>
-{
- private:
-
- typedef internal::traits<MatrixType> Traits;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
- static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
- static const int Options = MatrixType::Options;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar, Traits::RowsAtCompileTime, 1> VectorType;
- typedef Matrix<Index, Traits::RowsAtCompileTime, 1> IntVectorType;
- typedef Matrix<Index, Dynamic, 1> DynamicIntVectorType;
- typedef std::list<Scalar> Cluster;
- typedef std::list<Cluster> ListOfClusters;
- typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
-
- public:
-
- MatrixFunction(const MatrixType& A, AtomicType& atomic);
- template <typename ResultType> void compute(ResultType& result);
+ MatrixType compute(const MatrixType& A);
private:
-
- void computeSchurDecomposition();
- void partitionEigenvalues();
- typename ListOfClusters::iterator findCluster(Scalar key);
- void computeClusterSize();
- void computeBlockStart();
- void constructPermutation();
- void permuteSchur();
- void swapEntriesInSchur(Index index);
- void computeBlockAtomic();
- Block<MatrixType> block(MatrixType& A, Index i, Index j);
- void computeOffDiagonal();
- DynMatrixType solveTriangularSylvester(const DynMatrixType& A, const DynMatrixType& B, const DynMatrixType& C);
-
- typename internal::nested<MatrixType>::type m_A; /**< \brief Reference to argument of matrix function. */
- AtomicType& m_atomic; /**< \brief Class for computing matrix function of atomic blocks. */
- MatrixType m_T; /**< \brief Triangular part of Schur decomposition */
- MatrixType m_U; /**< \brief Unitary part of Schur decomposition */
- MatrixType m_fT; /**< \brief %Matrix function applied to #m_T */
- ListOfClusters m_clusters; /**< \brief Partition of eigenvalues into clusters of ei'vals "close" to each other */
- DynamicIntVectorType m_eivalToCluster; /**< \brief m_eivalToCluster[i] = j means i-th ei'val is in j-th cluster */
- DynamicIntVectorType m_clusterSize; /**< \brief Number of eigenvalues in each clusters */
- DynamicIntVectorType m_blockStart; /**< \brief Row index at which block corresponding to i-th cluster starts */
- IntVectorType m_permutation; /**< \brief Permutation which groups ei'vals in the same cluster together */
-
- /** \brief Maximum distance allowed between eigenvalues to be considered "close".
- *
- * This is morally a \c static \c const \c Scalar, but only
- * integers can be static constant class members in C++. The
- * separation constant is set to 0.1, a value taken from the
- * paper by Davies and Higham. */
- static const RealScalar separation() { return static_cast<RealScalar>(0.1); }
-
- MatrixFunction& operator=(const MatrixFunction&);
+ StemFunction* m_f;
};
-/** \brief Constructor.
- *
- * \param[in] A argument of matrix function, should be a square matrix.
- * \param[in] atomic class for computing matrix function of atomic blocks.
- */
-template <typename MatrixType, typename AtomicType>
-MatrixFunction<MatrixType,AtomicType,1>::MatrixFunction(const MatrixType& A, AtomicType& atomic)
- : m_A(A), m_atomic(atomic)
+template <typename MatrixType>
+typename NumTraits<typename MatrixType::Scalar>::Real matrix_function_compute_mu(const MatrixType& A)
{
- /* empty body */
+ typedef typename plain_col_type<MatrixType>::type VectorType;
+ typename MatrixType::Index rows = A.rows();
+ const MatrixType N = MatrixType::Identity(rows, rows) - A;
+ VectorType e = VectorType::Ones(rows);
+ N.template triangularView<Upper>().solveInPlace(e);
+ return e.cwiseAbs().maxCoeff();
}
-/** \brief Compute the matrix function.
- *
- * \param[out] result the function \p f applied to \p A, as
- * specified in the constructor.
- */
-template <typename MatrixType, typename AtomicType>
-template <typename ResultType>
-void MatrixFunction<MatrixType,AtomicType,1>::compute(ResultType& result)
+template <typename MatrixType>
+MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A)
{
- computeSchurDecomposition();
- partitionEigenvalues();
- computeClusterSize();
- computeBlockStart();
- constructPermutation();
- permuteSchur();
- computeBlockAtomic();
- computeOffDiagonal();
- result = m_U * (m_fT.template triangularView<Upper>() * m_U.adjoint());
+ // TODO: Use that A is upper triangular
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef typename MatrixType::Index Index;
+ Index rows = A.rows();
+ Scalar avgEival = A.trace() / Scalar(RealScalar(rows));
+ MatrixType Ashifted = A - avgEival * MatrixType::Identity(rows, rows);
+ RealScalar mu = matrix_function_compute_mu(Ashifted);
+ MatrixType F = m_f(avgEival, 0) * MatrixType::Identity(rows, rows);
+ MatrixType P = Ashifted;
+ MatrixType Fincr;
+ for (Index s = 1; s < 1.1 * rows + 10; s++) { // upper limit is fairly arbitrary
+ Fincr = m_f(avgEival, static_cast<int>(s)) * P;
+ F += Fincr;
+ P = Scalar(RealScalar(1.0/(s + 1))) * P * Ashifted;
+
+ // test whether Taylor series converged
+ const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff();
+ const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff();
+ if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) {
+ RealScalar delta = 0;
+ RealScalar rfactorial = 1;
+ for (Index r = 0; r < rows; r++) {
+ RealScalar mx = 0;
+ for (Index i = 0; i < rows; i++)
+ mx = (std::max)(mx, std::abs(m_f(Ashifted(i, i) + avgEival, static_cast<int>(s+r))));
+ if (r != 0)
+ rfactorial *= RealScalar(r);
+ delta = (std::max)(delta, mx / rfactorial);
+ }
+ const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff();
+ if (mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm) // series converged
+ break;
+ }
+ }
+ return F;
}
-/** \brief Store the Schur decomposition of #m_A in #m_T and #m_U */
-template <typename MatrixType, typename AtomicType>
-void MatrixFunction<MatrixType,AtomicType,1>::computeSchurDecomposition()
+/** \brief Find cluster in \p clusters containing some value
+ * \param[in] key Value to find
+ * \returns Iterator to cluster containing \p key, or \c clusters.end() if no cluster in \p m_clusters
+ * contains \p key.
+ */
+template <typename Index, typename ListOfClusters>
+typename ListOfClusters::iterator matrix_function_find_cluster(Index key, ListOfClusters& clusters)
{
- const ComplexSchur<MatrixType> schurOfA(m_A);
- m_T = schurOfA.matrixT();
- m_U = schurOfA.matrixU();
+ typename std::list<Index>::iterator j;
+ for (typename ListOfClusters::iterator i = clusters.begin(); i != clusters.end(); ++i) {
+ j = std::find(i->begin(), i->end(), key);
+ if (j != i->end())
+ return i;
+ }
+ return clusters.end();
}
/** \brief Partition eigenvalues in clusters of ei'vals close to each other
*
- * This function computes #m_clusters. This is a partition of the
- * eigenvalues of #m_T in clusters, such that
- * # Any eigenvalue in a certain cluster is at most separation() away
- * from another eigenvalue in the same cluster.
- * # The distance between two eigenvalues in different clusters is
- * more than separation().
- * The implementation follows Algorithm 4.1 in the paper of Davies
- * and Higham.
+ * \param[in] eivals Eigenvalues
+ * \param[out] clusters Resulting partition of eigenvalues
+ *
+ * The partition satisfies the following two properties:
+ * # Any eigenvalue in a certain cluster is at most matrix_function_separation() away from another eigenvalue
+ * in the same cluster.
+ * # The distance between two eigenvalues in different clusters is more than matrix_function_separation().
+ * The implementation follows Algorithm 4.1 in the paper of Davies and Higham.
*/
-template <typename MatrixType, typename AtomicType>
-void MatrixFunction<MatrixType,AtomicType,1>::partitionEigenvalues()
+template <typename EivalsType, typename Cluster>
+void matrix_function_partition_eigenvalues(const EivalsType& eivals, std::list<Cluster>& clusters)
{
- using std::abs;
- const Index rows = m_T.rows();
- VectorType diag = m_T.diagonal(); // contains eigenvalues of A
-
- for (Index i=0; i<rows; ++i) {
- // Find set containing diag(i), adding a new set if necessary
- typename ListOfClusters::iterator qi = findCluster(diag(i));
- if (qi == m_clusters.end()) {
+ typedef typename EivalsType::Index Index;
+ typedef typename EivalsType::RealScalar RealScalar;
+ for (Index i=0; i<eivals.rows(); ++i) {
+ // Find cluster containing i-th ei'val, adding a new cluster if necessary
+ typename std::list<Cluster>::iterator qi = matrix_function_find_cluster(i, clusters);
+ if (qi == clusters.end()) {
Cluster l;
- l.push_back(diag(i));
- m_clusters.push_back(l);
- qi = m_clusters.end();
+ l.push_back(i);
+ clusters.push_back(l);
+ qi = clusters.end();
--qi;
}
// Look for other element to add to the set
- for (Index j=i+1; j<rows; ++j) {
- if (abs(diag(j) - diag(i)) <= separation() && std::find(qi->begin(), qi->end(), diag(j)) == qi->end()) {
- typename ListOfClusters::iterator qj = findCluster(diag(j));
- if (qj == m_clusters.end()) {
- qi->push_back(diag(j));
+ for (Index j=i+1; j<eivals.rows(); ++j) {
+ if (abs(eivals(j) - eivals(i)) <= RealScalar(matrix_function_separation)
+ && std::find(qi->begin(), qi->end(), j) == qi->end()) {
+ typename std::list<Cluster>::iterator qj = matrix_function_find_cluster(j, clusters);
+ if (qj == clusters.end()) {
+ qi->push_back(j);
} else {
qi->insert(qi->end(), qj->begin(), qj->end());
- m_clusters.erase(qj);
+ clusters.erase(qj);
}
}
}
}
}
-/** \brief Find cluster in #m_clusters containing some value
- * \param[in] key Value to find
- * \returns Iterator to cluster containing \c key, or
- * \c m_clusters.end() if no cluster in m_clusters contains \c key.
- */
-template <typename MatrixType, typename AtomicType>
-typename MatrixFunction<MatrixType,AtomicType,1>::ListOfClusters::iterator MatrixFunction<MatrixType,AtomicType,1>::findCluster(Scalar key)
+/** \brief Compute size of each cluster given a partitioning */
+template <typename ListOfClusters, typename Index>
+void matrix_function_compute_cluster_size(const ListOfClusters& clusters, Matrix<Index, Dynamic, 1>& clusterSize)
{
- typename Cluster::iterator j;
- for (typename ListOfClusters::iterator i = m_clusters.begin(); i != m_clusters.end(); ++i) {
- j = std::find(i->begin(), i->end(), key);
- if (j != i->end())
- return i;
+ const Index numClusters = static_cast<Index>(clusters.size());
+ clusterSize.setZero(numClusters);
+ Index clusterIndex = 0;
+ for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
+ clusterSize[clusterIndex] = cluster->size();
+ ++clusterIndex;
}
- return m_clusters.end();
}
-/** \brief Compute #m_clusterSize and #m_eivalToCluster using #m_clusters */
-template <typename MatrixType, typename AtomicType>
-void MatrixFunction<MatrixType,AtomicType,1>::computeClusterSize()
+/** \brief Compute start of each block using clusterSize */
+template <typename VectorType>
+void matrix_function_compute_block_start(const VectorType& clusterSize, VectorType& blockStart)
{
- const Index rows = m_T.rows();
- VectorType diag = m_T.diagonal();
- const Index numClusters = static_cast<Index>(m_clusters.size());
+ blockStart.resize(clusterSize.rows());
+ blockStart(0) = 0;
+ for (typename VectorType::Index i = 1; i < clusterSize.rows(); i++) {
+ blockStart(i) = blockStart(i-1) + clusterSize(i-1);
+ }
+}
- m_clusterSize.setZero(numClusters);
- m_eivalToCluster.resize(rows);
+/** \brief Compute mapping of eigenvalue indices to cluster indices */
+template <typename EivalsType, typename ListOfClusters, typename VectorType>
+void matrix_function_compute_map(const EivalsType& eivals, const ListOfClusters& clusters, VectorType& eivalToCluster)
+{
+ typedef typename EivalsType::Index Index;
+ eivalToCluster.resize(eivals.rows());
Index clusterIndex = 0;
- for (typename ListOfClusters::const_iterator cluster = m_clusters.begin(); cluster != m_clusters.end(); ++cluster) {
- for (Index i = 0; i < diag.rows(); ++i) {
- if (std::find(cluster->begin(), cluster->end(), diag(i)) != cluster->end()) {
- ++m_clusterSize[clusterIndex];
- m_eivalToCluster[i] = clusterIndex;
+ for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
+ for (Index i = 0; i < eivals.rows(); ++i) {
+ if (std::find(cluster->begin(), cluster->end(), i) != cluster->end()) {
+ eivalToCluster[i] = clusterIndex;
}
}
++clusterIndex;
}
}
-/** \brief Compute #m_blockStart using #m_clusterSize */
-template <typename MatrixType, typename AtomicType>
-void MatrixFunction<MatrixType,AtomicType,1>::computeBlockStart()
-{
- m_blockStart.resize(m_clusterSize.rows());
- m_blockStart(0) = 0;
- for (Index i = 1; i < m_clusterSize.rows(); i++) {
- m_blockStart(i) = m_blockStart(i-1) + m_clusterSize(i-1);
- }
-}
-
-/** \brief Compute #m_permutation using #m_eivalToCluster and #m_blockStart */
-template <typename MatrixType, typename AtomicType>
-void MatrixFunction<MatrixType,AtomicType,1>::constructPermutation()
+/** \brief Compute permutation which groups ei'vals in same cluster together */
+template <typename DynVectorType, typename VectorType>
+void matrix_function_compute_permutation(const DynVectorType& blockStart, const DynVectorType& eivalToCluster, VectorType& permutation)
{
- DynamicIntVectorType indexNextEntry = m_blockStart;
- m_permutation.resize(m_T.rows());
- for (Index i = 0; i < m_T.rows(); i++) {
- Index cluster = m_eivalToCluster[i];
- m_permutation[i] = indexNextEntry[cluster];
+ typedef typename VectorType::Index Index;
+ DynVectorType indexNextEntry = blockStart;
+ permutation.resize(eivalToCluster.rows());
+ for (Index i = 0; i < eivalToCluster.rows(); i++) {
+ Index cluster = eivalToCluster[i];
+ permutation[i] = indexNextEntry[cluster];
++indexNextEntry[cluster];
}
}
-/** \brief Permute Schur decomposition in #m_U and #m_T according to #m_permutation */
-template <typename MatrixType, typename AtomicType>
-void MatrixFunction<MatrixType,AtomicType,1>::permuteSchur()
+/** \brief Permute Schur decomposition in U and T according to permutation */
+template <typename VectorType, typename MatrixType>
+void matrix_function_permute_schur(VectorType& permutation, MatrixType& U, MatrixType& T)
{
- IntVectorType p = m_permutation;
- for (Index i = 0; i < p.rows() - 1; i++) {
+ typedef typename VectorType::Index Index;
+ for (Index i = 0; i < permutation.rows() - 1; i++) {
Index j;
- for (j = i; j < p.rows(); j++) {
- if (p(j) == i) break;
+ for (j = i; j < permutation.rows(); j++) {
+ if (permutation(j) == i) break;
}
- eigen_assert(p(j) == i);
+ eigen_assert(permutation(j) == i);
for (Index k = j-1; k >= i; k--) {
- swapEntriesInSchur(k);
- std::swap(p.coeffRef(k), p.coeffRef(k+1));
+ JacobiRotation<typename MatrixType::Scalar> rotation;
+ rotation.makeGivens(T(k, k+1), T(k+1, k+1) - T(k, k));
+ T.applyOnTheLeft(k, k+1, rotation.adjoint());
+ T.applyOnTheRight(k, k+1, rotation);
+ U.applyOnTheRight(k, k+1, rotation);
+ std::swap(permutation.coeffRef(k), permutation.coeffRef(k+1));
}
}
}
-/** \brief Swap rows \a index and \a index+1 in Schur decomposition in #m_U and #m_T */
-template <typename MatrixType, typename AtomicType>
-void MatrixFunction<MatrixType,AtomicType,1>::swapEntriesInSchur(Index index)
-{
- JacobiRotation<Scalar> rotation;
- rotation.makeGivens(m_T(index, index+1), m_T(index+1, index+1) - m_T(index, index));
- m_T.applyOnTheLeft(index, index+1, rotation.adjoint());
- m_T.applyOnTheRight(index, index+1, rotation);
- m_U.applyOnTheRight(index, index+1, rotation);
-}
-
-/** \brief Compute block diagonal part of #m_fT.
- *
- * This routine computes the matrix function applied to the block diagonal part of #m_T, with the blocking
- * given by #m_blockStart. The matrix function of each diagonal block is computed by #m_atomic. The
- * off-diagonal parts of #m_fT are set to zero.
- */
-template <typename MatrixType, typename AtomicType>
-void MatrixFunction<MatrixType,AtomicType,1>::computeBlockAtomic()
-{
- m_fT.resize(m_T.rows(), m_T.cols());
- m_fT.setZero();
- for (Index i = 0; i < m_clusterSize.rows(); ++i) {
- block(m_fT, i, i) = m_atomic.compute(block(m_T, i, i));
- }
-}
-
-/** \brief Return block of matrix according to blocking given by #m_blockStart */
-template <typename MatrixType, typename AtomicType>
-Block<MatrixType> MatrixFunction<MatrixType,AtomicType,1>::block(MatrixType& A, Index i, Index j)
-{
- return A.block(m_blockStart(i), m_blockStart(j), m_clusterSize(i), m_clusterSize(j));
-}
-
-/** \brief Compute part of #m_fT above block diagonal.
+/** \brief Compute block diagonal part of matrix function.
*
- * This routine assumes that the block diagonal part of #m_fT (which
- * equals the matrix function applied to #m_T) has already been computed and computes
- * the part above the block diagonal. The part below the diagonal is
- * zero, because #m_T is upper triangular.
+ * This routine computes the matrix function applied to the block diagonal part of \p T (which should be
+ * upper triangular), with the blocking given by \p blockStart and \p clusterSize. The matrix function of
+ * each diagonal block is computed by \p atomic. The off-diagonal parts of \p fT are set to zero.
*/
-template <typename MatrixType, typename AtomicType>
-void MatrixFunction<MatrixType,AtomicType,1>::computeOffDiagonal()
+template <typename MatrixType, typename AtomicType, typename VectorType>
+void matrix_function_compute_block_atomic(const MatrixType& T, AtomicType& atomic, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
{
- for (Index diagIndex = 1; diagIndex < m_clusterSize.rows(); diagIndex++) {
- for (Index blockIndex = 0; blockIndex < m_clusterSize.rows() - diagIndex; blockIndex++) {
- // compute (blockIndex, blockIndex+diagIndex) block
- DynMatrixType A = block(m_T, blockIndex, blockIndex);
- DynMatrixType B = -block(m_T, blockIndex+diagIndex, blockIndex+diagIndex);
- DynMatrixType C = block(m_fT, blockIndex, blockIndex) * block(m_T, blockIndex, blockIndex+diagIndex);
- C -= block(m_T, blockIndex, blockIndex+diagIndex) * block(m_fT, blockIndex+diagIndex, blockIndex+diagIndex);
- for (Index k = blockIndex + 1; k < blockIndex + diagIndex; k++) {
- C += block(m_fT, blockIndex, k) * block(m_T, k, blockIndex+diagIndex);
- C -= block(m_T, blockIndex, k) * block(m_fT, k, blockIndex+diagIndex);
- }
- block(m_fT, blockIndex, blockIndex+diagIndex) = solveTriangularSylvester(A, B, C);
- }
+ fT.setZero(T.rows(), T.cols());
+ for (typename VectorType::Index i = 0; i < clusterSize.rows(); ++i) {
+ fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
+ = atomic.compute(T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)));
}
}
@@ -414,8 +261,8 @@ void MatrixFunction<MatrixType,AtomicType,1>::computeOffDiagonal()
*
* \returns the solution X.
*
- * If A is m-by-m and B is n-by-n, then both C and X are m-by-n.
- * The (i,j)-th component of the Sylvester equation is
+ * If A is m-by-m and B is n-by-n, then both C and X are m-by-n. The (i,j)-th component of the Sylvester
+ * equation is
* \f[
* \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}.
* \f]
@@ -424,16 +271,12 @@ void MatrixFunction<MatrixType,AtomicType,1>::computeOffDiagonal()
* X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij}
* - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr).
* \f]
- * It is assumed that A and B are such that the numerator is never
- * zero (otherwise the Sylvester equation does not have a unique
- * solution). In that case, these equations can be evaluated in the
- * order \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$.
+ * It is assumed that A and B are such that the numerator is never zero (otherwise the Sylvester equation
+ * does not have a unique solution). In that case, these equations can be evaluated in the order
+ * \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$.
*/
-template <typename MatrixType, typename AtomicType>
-typename MatrixFunction<MatrixType,AtomicType,1>::DynMatrixType MatrixFunction<MatrixType,AtomicType,1>::solveTriangularSylvester(
- const DynMatrixType& A,
- const DynMatrixType& B,
- const DynMatrixType& C)
+template <typename MatrixType>
+MatrixType matrix_function_solve_triangular_sylvester(const MatrixType& A, const MatrixType& B, const MatrixType& C)
{
eigen_assert(A.rows() == A.cols());
eigen_assert(A.isUpperTriangular());
@@ -442,9 +285,12 @@ typename MatrixFunction<MatrixType,AtomicType,1>::DynMatrixType MatrixFunction<M
eigen_assert(C.rows() == A.rows());
eigen_assert(C.cols() == B.rows());
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+
Index m = A.rows();
Index n = B.rows();
- DynMatrixType X(m, n);
+ MatrixType X(m, n);
for (Index i = m - 1; i >= 0; --i) {
for (Index j = 0; j < n; ++j) {
@@ -473,66 +319,210 @@ typename MatrixFunction<MatrixType,AtomicType,1>::DynMatrixType MatrixFunction<M
return X;
}
+/** \brief Compute part of matrix function above block diagonal.
+ *
+ * This routine completes the computation of \p fT, denoting a matrix function applied to the triangular
+ * matrix \p T. It assumes that the block diagonal part of \p fT has already been computed. The part below
+ * the diagonal is zero, because \p T is upper triangular.
+ */
+template <typename MatrixType, typename VectorType>
+void matrix_function_compute_above_diagonal(const MatrixType& T, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
+{
+ typedef internal::traits<MatrixType> Traits;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Index Index;
+ static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
+ static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
+ static const int Options = MatrixType::Options;
+ typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
+
+ for (Index k = 1; k < clusterSize.rows(); k++) {
+ for (Index i = 0; i < clusterSize.rows() - k; i++) {
+ // compute (i, i+k) block
+ DynMatrixType A = T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i));
+ DynMatrixType B = -T.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
+ DynMatrixType C = fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
+ * T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k));
+ C -= T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
+ * fT.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
+ for (Index m = i + 1; m < i + k; m++) {
+ C += fT.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
+ * T.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
+ C -= T.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
+ * fT.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
+ }
+ fT.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
+ = matrix_function_solve_triangular_sylvester(A, B, C);
+ }
+ }
+}
+
+/** \ingroup MatrixFunctions_Module
+ * \brief Class for computing matrix functions.
+ * \tparam MatrixType type of the argument of the matrix function,
+ * expected to be an instantiation of the Matrix class template.
+ * \tparam AtomicType type for computing matrix function of atomic blocks.
+ * \tparam IsComplex used internally to select correct specialization.
+ *
+ * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the
+ * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the
+ * computation of the matrix function on every block corresponding to these clusters to an object of type
+ * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class
+ * \p AtomicType should have a \p compute() member function for computing the matrix function of a block.
+ *
+ * \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic
+ */
+template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
+struct matrix_function_compute
+{
+ /** \brief Compute the matrix function.
+ *
+ * \param[in] A argument of matrix function, should be a square matrix.
+ * \param[in] atomic class for computing matrix function of atomic blocks.
+ * \param[out] result the function \p f applied to \p A, as
+ * specified in the constructor.
+ *
+ * See MatrixBase::matrixFunction() for details on how this computation
+ * is implemented.
+ */
+ template <typename AtomicType, typename ResultType>
+ static void run(const MatrixType& A, AtomicType& atomic, ResultType &result);
+};
+
+/** \internal \ingroup MatrixFunctions_Module
+ * \brief Partial specialization of MatrixFunction for real matrices
+ *
+ * This converts the real matrix to a complex matrix, compute the matrix function of that matrix, and then
+ * converts the result back to a real matrix.
+ */
+template <typename MatrixType>
+struct matrix_function_compute<MatrixType, 0>
+{
+ template <typename AtomicType, typename ResultType>
+ static void run(const MatrixType& A, AtomicType& atomic, ResultType &result)
+ {
+ typedef internal::traits<MatrixType> Traits;
+ typedef typename Traits::Scalar Scalar;
+ static const int Rows = Traits::RowsAtCompileTime, Cols = Traits::ColsAtCompileTime;
+ static const int MaxRows = Traits::MaxRowsAtCompileTime, MaxCols = Traits::MaxColsAtCompileTime;
+
+ typedef std::complex<Scalar> ComplexScalar;
+ typedef Matrix<ComplexScalar, Rows, Cols, 0, MaxRows, MaxCols> ComplexMatrix;
+
+ ComplexMatrix CA = A.template cast<ComplexScalar>();
+ ComplexMatrix Cresult;
+ matrix_function_compute<ComplexMatrix>::run(CA, atomic, Cresult);
+ result = Cresult.real();
+ }
+};
+
+/** \internal \ingroup MatrixFunctions_Module
+ * \brief Partial specialization of MatrixFunction for complex matrices
+ */
+template <typename MatrixType>
+struct matrix_function_compute<MatrixType, 1>
+{
+ template <typename AtomicType, typename ResultType>
+ static void run(const MatrixType& A, AtomicType& atomic, ResultType &result)
+ {
+ typedef internal::traits<MatrixType> Traits;
+ typedef typename MatrixType::Index Index;
+
+ // compute Schur decomposition of A
+ const ComplexSchur<MatrixType> schurOfA(A);
+ MatrixType T = schurOfA.matrixT();
+ MatrixType U = schurOfA.matrixU();
+
+ // partition eigenvalues into clusters of ei'vals "close" to each other
+ std::list<std::list<Index> > clusters;
+ matrix_function_partition_eigenvalues(T.diagonal(), clusters);
+
+ // compute size of each cluster
+ Matrix<Index, Dynamic, 1> clusterSize;
+ matrix_function_compute_cluster_size(clusters, clusterSize);
+
+ // blockStart[i] is row index at which block corresponding to i-th cluster starts
+ Matrix<Index, Dynamic, 1> blockStart;
+ matrix_function_compute_block_start(clusterSize, blockStart);
+
+ // compute map so that eivalToCluster[i] = j means that i-th ei'val is in j-th cluster
+ Matrix<Index, Dynamic, 1> eivalToCluster;
+ matrix_function_compute_map(T.diagonal(), clusters, eivalToCluster);
+
+ // compute permutation which groups ei'vals in same cluster together
+ Matrix<Index, Traits::RowsAtCompileTime, 1> permutation;
+ matrix_function_compute_permutation(blockStart, eivalToCluster, permutation);
+
+ // permute Schur decomposition
+ matrix_function_permute_schur(permutation, U, T);
+
+ // compute result
+ MatrixType fT; // matrix function applied to T
+ matrix_function_compute_block_atomic(T, atomic, blockStart, clusterSize, fT);
+ matrix_function_compute_above_diagonal(T, blockStart, clusterSize, fT);
+ result = U * (fT.template triangularView<Upper>() * U.adjoint());
+ }
+};
+
+} // end of namespace internal
+
/** \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix function of some matrix (expression).
*
* \tparam Derived Type of the argument to the matrix function.
*
- * This class holds the argument to the matrix function until it is
- * assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * matrixBase::matrixFunction() and related functions and most of the
- * time this is the only way it is used.
+ * This class holds the argument to the matrix function until it is assigned or evaluated for some other
+ * reason (so the argument should not be changed in the meantime). It is the return type of
+ * matrixBase::matrixFunction() and related functions and most of the time this is the only way it is used.
*/
template<typename Derived> class MatrixFunctionReturnValue
: public ReturnByValue<MatrixFunctionReturnValue<Derived> >
{
public:
-
typedef typename Derived::Scalar Scalar;
typedef typename Derived::Index Index;
typedef typename internal::stem_function<Scalar>::type StemFunction;
- /** \brief Constructor.
+ protected:
+ typedef typename internal::ref_selector<Derived>::type DerivedNested;
+
+ public:
+
+ /** \brief Constructor.
*
- * \param[in] A %Matrix (expression) forming the argument of the
- * matrix function.
+ * \param[in] A %Matrix (expression) forming the argument of the matrix function.
* \param[in] f Stem function for matrix function under consideration.
*/
MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { }
/** \brief Compute the matrix function.
*
- * \param[out] result \p f applied to \p A, where \p f and \p A
- * are as in the constructor.
+ * \param[out] result \p f applied to \p A, where \p f and \p A are as in the constructor.
*/
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
- typedef typename Derived::PlainObject PlainObject;
- typedef internal::traits<PlainObject> Traits;
+ typedef typename internal::nested_eval<Derived, 10>::type NestedEvalType;
+ typedef typename internal::remove_all<NestedEvalType>::type NestedEvalTypeClean;
+ typedef internal::traits<NestedEvalTypeClean> Traits;
static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
- static const int Options = PlainObject::Options;
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
- typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
- typedef MatrixFunctionAtomic<DynMatrixType> AtomicType;
+ typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
+
+ typedef internal::MatrixFunctionAtomic<DynMatrixType> AtomicType;
AtomicType atomic(m_f);
- const PlainObject Aevaluated = m_A.eval();
- MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic);
- mf.compute(result);
+ internal::matrix_function_compute<NestedEvalTypeClean>::run(m_A, atomic, result);
}
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
private:
- typename internal::nested<Derived>::type m_A;
+ const DerivedNested m_A;
StemFunction *m_f;
-
- MatrixFunctionReturnValue& operator=(const MatrixFunctionReturnValue&);
};
namespace internal {
@@ -559,7 +549,7 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
{
eigen_assert(rows() == cols());
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
- return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sin);
+ return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sin<ComplexScalar>);
}
template <typename Derived>
@@ -567,7 +557,7 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
{
eigen_assert(rows() == cols());
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
- return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cos);
+ return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cos<ComplexScalar>);
}
template <typename Derived>
@@ -575,7 +565,7 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
{
eigen_assert(rows() == cols());
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
- return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sinh);
+ return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sinh<ComplexScalar>);
}
template <typename Derived>
@@ -583,7 +573,7 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
{
eigen_assert(rows() == cols());
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
- return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cosh);
+ return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cosh<ComplexScalar>);
}
} // end namespace Eigen
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixFunctionAtomic.h b/unsupported/Eigen/src/MatrixFunctions/MatrixFunctionAtomic.h
deleted file mode 100644
index efe332c48..000000000
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixFunctionAtomic.h
+++ /dev/null
@@ -1,131 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_FUNCTION_ATOMIC
-#define EIGEN_MATRIX_FUNCTION_ATOMIC
-
-namespace Eigen {
-
-/** \ingroup MatrixFunctions_Module
- * \class MatrixFunctionAtomic
- * \brief Helper class for computing matrix functions of atomic matrices.
- *
- * \internal
- * Here, an atomic matrix is a triangular matrix whose diagonal
- * entries are close to each other.
- */
-template <typename MatrixType>
-class MatrixFunctionAtomic
-{
- public:
-
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename internal::stem_function<Scalar>::type StemFunction;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
-
- /** \brief Constructor
- * \param[in] f matrix function to compute.
- */
- MatrixFunctionAtomic(StemFunction f) : m_f(f) { }
-
- /** \brief Compute matrix function of atomic matrix
- * \param[in] A argument of matrix function, should be upper triangular and atomic
- * \returns f(A), the matrix function evaluated at the given matrix
- */
- MatrixType compute(const MatrixType& A);
-
- private:
-
- // Prevent copying
- MatrixFunctionAtomic(const MatrixFunctionAtomic&);
- MatrixFunctionAtomic& operator=(const MatrixFunctionAtomic&);
-
- void computeMu();
- bool taylorConverged(Index s, const MatrixType& F, const MatrixType& Fincr, const MatrixType& P);
-
- /** \brief Pointer to scalar function */
- StemFunction* m_f;
-
- /** \brief Size of matrix function */
- Index m_Arows;
-
- /** \brief Mean of eigenvalues */
- Scalar m_avgEival;
-
- /** \brief Argument shifted by mean of eigenvalues */
- MatrixType m_Ashifted;
-
- /** \brief Constant used to determine whether Taylor series has converged */
- RealScalar m_mu;
-};
-
-template <typename MatrixType>
-MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A)
-{
- // TODO: Use that A is upper triangular
- m_Arows = A.rows();
- m_avgEival = A.trace() / Scalar(RealScalar(m_Arows));
- m_Ashifted = A - m_avgEival * MatrixType::Identity(m_Arows, m_Arows);
- computeMu();
- MatrixType F = m_f(m_avgEival, 0) * MatrixType::Identity(m_Arows, m_Arows);
- MatrixType P = m_Ashifted;
- MatrixType Fincr;
- for (Index s = 1; s < 1.1 * m_Arows + 10; s++) { // upper limit is fairly arbitrary
- Fincr = m_f(m_avgEival, static_cast<int>(s)) * P;
- F += Fincr;
- P = Scalar(RealScalar(1.0/(s + 1))) * P * m_Ashifted;
- if (taylorConverged(s, F, Fincr, P)) {
- return F;
- }
- }
- eigen_assert("Taylor series does not converge" && 0);
- return F;
-}
-
-/** \brief Compute \c m_mu. */
-template <typename MatrixType>
-void MatrixFunctionAtomic<MatrixType>::computeMu()
-{
- const MatrixType N = MatrixType::Identity(m_Arows, m_Arows) - m_Ashifted;
- VectorType e = VectorType::Ones(m_Arows);
- N.template triangularView<Upper>().solveInPlace(e);
- m_mu = e.cwiseAbs().maxCoeff();
-}
-
-/** \brief Determine whether Taylor series has converged */
-template <typename MatrixType>
-bool MatrixFunctionAtomic<MatrixType>::taylorConverged(Index s, const MatrixType& F,
- const MatrixType& Fincr, const MatrixType& P)
-{
- const Index n = F.rows();
- const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff();
- const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff();
- if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) {
- RealScalar delta = 0;
- RealScalar rfactorial = 1;
- for (Index r = 0; r < n; r++) {
- RealScalar mx = 0;
- for (Index i = 0; i < n; i++)
- mx = (std::max)(mx, std::abs(m_f(m_Ashifted(i, i) + m_avgEival, static_cast<int>(s+r))));
- if (r != 0)
- rfactorial *= RealScalar(r);
- delta = (std::max)(delta, mx / rfactorial);
- }
- const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff();
- if (m_mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm)
- return true;
- }
- return false;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATRIX_FUNCTION_ATOMIC
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h b/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
index c744fc05f..1acfbed9e 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
+// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
@@ -11,91 +11,33 @@
#ifndef EIGEN_MATRIX_LOGARITHM
#define EIGEN_MATRIX_LOGARITHM
-#ifndef M_PI
-#define M_PI 3.141592653589793238462643383279503L
-#endif
-
namespace Eigen {
-/** \ingroup MatrixFunctions_Module
- * \class MatrixLogarithmAtomic
- * \brief Helper class for computing matrix logarithm of atomic matrices.
- *
- * \internal
- * Here, an atomic matrix is a triangular matrix whose diagonal
- * entries are close to each other.
- *
- * \sa class MatrixFunctionAtomic, MatrixBase::log()
- */
-template <typename MatrixType>
-class MatrixLogarithmAtomic
-{
-public:
-
- typedef typename MatrixType::Scalar Scalar;
- // typedef typename MatrixType::Index Index;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- // typedef typename internal::stem_function<Scalar>::type StemFunction;
- // typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
-
- /** \brief Constructor. */
- MatrixLogarithmAtomic() { }
-
- /** \brief Compute matrix logarithm of atomic matrix
- * \param[in] A argument of matrix logarithm, should be upper triangular and atomic
- * \returns The logarithm of \p A.
- */
- MatrixType compute(const MatrixType& A);
-
-private:
+namespace internal {
- void compute2x2(const MatrixType& A, MatrixType& result);
- void computeBig(const MatrixType& A, MatrixType& result);
- int getPadeDegree(float normTminusI);
- int getPadeDegree(double normTminusI);
- int getPadeDegree(long double normTminusI);
- void computePade(MatrixType& result, const MatrixType& T, int degree);
- void computePade3(MatrixType& result, const MatrixType& T);
- void computePade4(MatrixType& result, const MatrixType& T);
- void computePade5(MatrixType& result, const MatrixType& T);
- void computePade6(MatrixType& result, const MatrixType& T);
- void computePade7(MatrixType& result, const MatrixType& T);
- void computePade8(MatrixType& result, const MatrixType& T);
- void computePade9(MatrixType& result, const MatrixType& T);
- void computePade10(MatrixType& result, const MatrixType& T);
- void computePade11(MatrixType& result, const MatrixType& T);
-
- static const int minPadeDegree = 3;
- static const int maxPadeDegree = std::numeric_limits<RealScalar>::digits<= 24? 5: // single precision
- std::numeric_limits<RealScalar>::digits<= 53? 7: // double precision
- std::numeric_limits<RealScalar>::digits<= 64? 8: // extended precision
- std::numeric_limits<RealScalar>::digits<=106? 10: // double-double
- 11; // quadruple precision
-
- // Prevent copying
- MatrixLogarithmAtomic(const MatrixLogarithmAtomic&);
- MatrixLogarithmAtomic& operator=(const MatrixLogarithmAtomic&);
+template <typename Scalar>
+struct matrix_log_min_pade_degree
+{
+ static const int value = 3;
};
-/** \brief Compute logarithm of triangular matrix with clustered eigenvalues. */
-template <typename MatrixType>
-MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
+template <typename Scalar>
+struct matrix_log_max_pade_degree
{
- using std::log;
- MatrixType result(A.rows(), A.rows());
- if (A.rows() == 1)
- result(0,0) = log(A(0,0));
- else if (A.rows() == 2)
- compute2x2(A, result);
- else
- computeBig(A, result);
- return result;
-}
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ static const int value = std::numeric_limits<RealScalar>::digits<= 24? 5: // single precision
+ std::numeric_limits<RealScalar>::digits<= 53? 7: // double precision
+ std::numeric_limits<RealScalar>::digits<= 64? 8: // extended precision
+ std::numeric_limits<RealScalar>::digits<=106? 10: // double-double
+ 11; // quadruple precision
+};
/** \brief Compute logarithm of 2x2 triangular matrix. */
template <typename MatrixType>
-void MatrixLogarithmAtomic<MatrixType>::compute2x2(const MatrixType& A, MatrixType& result)
+void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result)
{
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
using std::abs;
using std::ceil;
using std::imag;
@@ -108,59 +50,31 @@ void MatrixLogarithmAtomic<MatrixType>::compute2x2(const MatrixType& A, MatrixTy
result(1,0) = Scalar(0);
result(1,1) = logA11;
- if (A(0,0) == A(1,1)) {
+ Scalar y = A(1,1) - A(0,0);
+ if (y==Scalar(0))
+ {
result(0,1) = A(0,1) / A(0,0);
- } else if ((abs(A(0,0)) < 0.5*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1)))) {
- result(0,1) = A(0,1) * (logA11 - logA00) / (A(1,1) - A(0,0));
- } else {
- // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
- int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - M_PI) / (2*M_PI)));
- Scalar y = A(1,1) - A(0,0), x = A(1,1) + A(0,0);
- result(0,1) = A(0,1) * (Scalar(2) * numext::atanh2(y,x) + Scalar(0,2*M_PI*unwindingNumber)) / y;
}
-}
-
-/** \brief Compute logarithm of triangular matrices with size > 2.
- * \details This uses a inverse scale-and-square algorithm. */
-template <typename MatrixType>
-void MatrixLogarithmAtomic<MatrixType>::computeBig(const MatrixType& A, MatrixType& result)
-{
- using std::pow;
- int numberOfSquareRoots = 0;
- int numberOfExtraSquareRoots = 0;
- int degree;
- MatrixType T = A, sqrtT;
- const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1: // single precision
- maxPadeDegree<= 7? 2.6429608311114350e-1: // double precision
- maxPadeDegree<= 8? 2.32777776523703892094e-1L: // extended precision
- maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L: // double-double
- 1.1880960220216759245467951592883642e-1L; // quadruple precision
-
- while (true) {
- RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
- if (normTminusI < maxNormForPade) {
- degree = getPadeDegree(normTminusI);
- int degree2 = getPadeDegree(normTminusI / RealScalar(2));
- if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
- break;
- ++numberOfExtraSquareRoots;
- }
- MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
- T = sqrtT.template triangularView<Upper>();
- ++numberOfSquareRoots;
+ else if ((abs(A(0,0)) < RealScalar(0.5)*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1))))
+ {
+ result(0,1) = A(0,1) * (logA11 - logA00) / y;
+ }
+ else
+ {
+ // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
+ int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI)));
+ result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,2*EIGEN_PI*unwindingNumber)) / y;
}
-
- computePade(result, T, degree);
- result *= pow(RealScalar(2), numberOfSquareRoots);
}
/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
-template <typename MatrixType>
-int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(float normTminusI)
+inline int matrix_log_get_pade_degree(float normTminusI)
{
const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
5.3149729967117310e-1 };
- int degree = 3;
+ const int minPadeDegree = matrix_log_min_pade_degree<float>::value;
+ const int maxPadeDegree = matrix_log_max_pade_degree<float>::value;
+ int degree = minPadeDegree;
for (; degree <= maxPadeDegree; ++degree)
if (normTminusI <= maxNormForPade[degree - minPadeDegree])
break;
@@ -168,12 +82,13 @@ int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(float normTminusI)
}
/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
-template <typename MatrixType>
-int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(double normTminusI)
+inline int matrix_log_get_pade_degree(double normTminusI)
{
const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
- int degree = 3;
+ const int minPadeDegree = matrix_log_min_pade_degree<double>::value;
+ const int maxPadeDegree = matrix_log_max_pade_degree<double>::value;
+ int degree = minPadeDegree;
for (; degree <= maxPadeDegree; ++degree)
if (normTminusI <= maxNormForPade[degree - minPadeDegree])
break;
@@ -181,8 +96,7 @@ int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(double normTminusI)
}
/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
-template <typename MatrixType>
-int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(long double normTminusI)
+inline int matrix_log_get_pade_degree(long double normTminusI)
{
#if LDBL_MANT_DIG == 53 // double precision
const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L,
@@ -204,7 +118,9 @@ int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(long double normTminusI)
3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
#endif
- int degree = 3;
+ const int minPadeDegree = matrix_log_min_pade_degree<long double>::value;
+ const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value;
+ int degree = minPadeDegree;
for (; degree <= maxPadeDegree; ++degree)
if (normTminusI <= maxNormForPade[degree - minPadeDegree])
break;
@@ -213,197 +129,168 @@ int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(long double normTminusI)
/* \brief Compute Pade approximation to matrix logarithm */
template <typename MatrixType>
-void MatrixLogarithmAtomic<MatrixType>::computePade(MatrixType& result, const MatrixType& T, int degree)
+void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree)
{
- switch (degree) {
- case 3: computePade3(result, T); break;
- case 4: computePade4(result, T); break;
- case 5: computePade5(result, T); break;
- case 6: computePade6(result, T); break;
- case 7: computePade7(result, T); break;
- case 8: computePade8(result, T); break;
- case 9: computePade9(result, T); break;
- case 10: computePade10(result, T); break;
- case 11: computePade11(result, T); break;
- default: assert(false); // should never happen
- }
-}
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+ const int minPadeDegree = 3;
+ const int maxPadeDegree = 11;
+ assert(degree >= minPadeDegree && degree <= maxPadeDegree);
+
+ const RealScalar nodes[][maxPadeDegree] = {
+ { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L, // degree 3
+ 0.8872983346207416885179265399782400L },
+ { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L, // degree 4
+ 0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L },
+ { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L, // degree 5
+ 0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
+ 0.9530899229693319963988134391496965L },
+ { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L, // degree 6
+ 0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
+ 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L },
+ { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L, // degree 7
+ 0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
+ 0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
+ 0.9745539561713792622630948420239256L },
+ { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L, // degree 8
+ 0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
+ 0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
+ 0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L },
+ { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L, // degree 9
+ 0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
+ 0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
+ 0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
+ 0.9840801197538130449177881014518364L },
+ { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L, // degree 10
+ 0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
+ 0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
+ 0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
+ 0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L },
+ { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L, // degree 11
+ 0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
+ 0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
+ 0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
+ 0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
+ 0.9891143290730284964019690005614287L } };
+
+ const RealScalar weights[][maxPadeDegree] = {
+ { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L, // degree 3
+ 0.2777777777777777777777777777777778L },
+ { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L, // degree 4
+ 0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L },
+ { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L, // degree 5
+ 0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
+ 0.1184634425280945437571320203599587L },
+ { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L, // degree 6
+ 0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
+ 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L },
+ { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L, // degree 7
+ 0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
+ 0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
+ 0.0647424830844348466353057163395410L },
+ { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L, // degree 8
+ 0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
+ 0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
+ 0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L },
+ { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L, // degree 9
+ 0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
+ 0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
+ 0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
+ 0.0406371941807872059859460790552618L },
+ { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L, // degree 10
+ 0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
+ 0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
+ 0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
+ 0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L },
+ { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L, // degree 11
+ 0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
+ 0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
+ 0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
+ 0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
+ 0.0278342835580868332413768602212743L } };
-template <typename MatrixType>
-void MatrixLogarithmAtomic<MatrixType>::computePade3(MatrixType& result, const MatrixType& T)
-{
- const int degree = 3;
- const RealScalar nodes[] = { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,
- 0.8872983346207416885179265399782400L };
- const RealScalar weights[] = { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,
- 0.2777777777777777777777777777777778L };
- eigen_assert(degree <= maxPadeDegree);
MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
result.setZero(T.rows(), T.rows());
- for (int k = 0; k < degree; ++k)
- result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
- .template triangularView<Upper>().solve(TminusI);
-}
+ for (int k = 0; k < degree; ++k) {
+ RealScalar weight = weights[degree-minPadeDegree][k];
+ RealScalar node = nodes[degree-minPadeDegree][k];
+ result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI)
+ .template triangularView<Upper>().solve(TminusI);
+ }
+}
+/** \brief Compute logarithm of triangular matrices with size > 2.
+ * \details This uses a inverse scale-and-square algorithm. */
template <typename MatrixType>
-void MatrixLogarithmAtomic<MatrixType>::computePade4(MatrixType& result, const MatrixType& T)
+void matrix_log_compute_big(const MatrixType& A, MatrixType& result)
{
- const int degree = 4;
- const RealScalar nodes[] = { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,
- 0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L };
- const RealScalar weights[] = { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,
- 0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L };
- eigen_assert(degree <= maxPadeDegree);
- MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
- result.setZero(T.rows(), T.rows());
- for (int k = 0; k < degree; ++k)
- result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
- .template triangularView<Upper>().solve(TminusI);
-}
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ using std::pow;
-template <typename MatrixType>
-void MatrixLogarithmAtomic<MatrixType>::computePade5(MatrixType& result, const MatrixType& T)
-{
- const int degree = 5;
- const RealScalar nodes[] = { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,
- 0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
- 0.9530899229693319963988134391496965L };
- const RealScalar weights[] = { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,
- 0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
- 0.1184634425280945437571320203599587L };
- eigen_assert(degree <= maxPadeDegree);
- MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
- result.setZero(T.rows(), T.rows());
- for (int k = 0; k < degree; ++k)
- result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
- .template triangularView<Upper>().solve(TminusI);
-}
+ int numberOfSquareRoots = 0;
+ int numberOfExtraSquareRoots = 0;
+ int degree;
+ MatrixType T = A, sqrtT;
-template <typename MatrixType>
-void MatrixLogarithmAtomic<MatrixType>::computePade6(MatrixType& result, const MatrixType& T)
-{
- const int degree = 6;
- const RealScalar nodes[] = { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,
- 0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
- 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L };
- const RealScalar weights[] = { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,
- 0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
- 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L };
- eigen_assert(degree <= maxPadeDegree);
- MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
- result.setZero(T.rows(), T.rows());
- for (int k = 0; k < degree; ++k)
- result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
- .template triangularView<Upper>().solve(TminusI);
-}
+ int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value;
+ const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1L: // single precision
+ maxPadeDegree<= 7? 2.6429608311114350e-1L: // double precision
+ maxPadeDegree<= 8? 2.32777776523703892094e-1L: // extended precision
+ maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L: // double-double
+ 1.1880960220216759245467951592883642e-1L; // quadruple precision
-template <typename MatrixType>
-void MatrixLogarithmAtomic<MatrixType>::computePade7(MatrixType& result, const MatrixType& T)
-{
- const int degree = 7;
- const RealScalar nodes[] = { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,
- 0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
- 0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
- 0.9745539561713792622630948420239256L };
- const RealScalar weights[] = { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,
- 0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
- 0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
- 0.0647424830844348466353057163395410L };
- eigen_assert(degree <= maxPadeDegree);
- MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
- result.setZero(T.rows(), T.rows());
- for (int k = 0; k < degree; ++k)
- result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
- .template triangularView<Upper>().solve(TminusI);
-}
+ while (true) {
+ RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
+ if (normTminusI < maxNormForPade) {
+ degree = matrix_log_get_pade_degree(normTminusI);
+ int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2));
+ if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
+ break;
+ ++numberOfExtraSquareRoots;
+ }
+ matrix_sqrt_triangular(T, sqrtT);
+ T = sqrtT.template triangularView<Upper>();
+ ++numberOfSquareRoots;
+ }
-template <typename MatrixType>
-void MatrixLogarithmAtomic<MatrixType>::computePade8(MatrixType& result, const MatrixType& T)
-{
- const int degree = 8;
- const RealScalar nodes[] = { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,
- 0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
- 0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
- 0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L };
- const RealScalar weights[] = { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,
- 0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
- 0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
- 0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L };
- eigen_assert(degree <= maxPadeDegree);
- MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
- result.setZero(T.rows(), T.rows());
- for (int k = 0; k < degree; ++k)
- result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
- .template triangularView<Upper>().solve(TminusI);
+ matrix_log_compute_pade(result, T, degree);
+ result *= pow(RealScalar(2), numberOfSquareRoots);
}
+/** \ingroup MatrixFunctions_Module
+ * \class MatrixLogarithmAtomic
+ * \brief Helper class for computing matrix logarithm of atomic matrices.
+ *
+ * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
+ *
+ * \sa class MatrixFunctionAtomic, MatrixBase::log()
+ */
template <typename MatrixType>
-void MatrixLogarithmAtomic<MatrixType>::computePade9(MatrixType& result, const MatrixType& T)
+class MatrixLogarithmAtomic
{
- const int degree = 9;
- const RealScalar nodes[] = { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,
- 0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
- 0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
- 0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
- 0.9840801197538130449177881014518364L };
- const RealScalar weights[] = { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,
- 0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
- 0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
- 0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
- 0.0406371941807872059859460790552618L };
- eigen_assert(degree <= maxPadeDegree);
- MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
- result.setZero(T.rows(), T.rows());
- for (int k = 0; k < degree; ++k)
- result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
- .template triangularView<Upper>().solve(TminusI);
-}
+public:
+ /** \brief Compute matrix logarithm of atomic matrix
+ * \param[in] A argument of matrix logarithm, should be upper triangular and atomic
+ * \returns The logarithm of \p A.
+ */
+ MatrixType compute(const MatrixType& A);
+};
template <typename MatrixType>
-void MatrixLogarithmAtomic<MatrixType>::computePade10(MatrixType& result, const MatrixType& T)
+MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
{
- const int degree = 10;
- const RealScalar nodes[] = { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,
- 0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
- 0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
- 0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
- 0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L };
- const RealScalar weights[] = { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,
- 0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
- 0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
- 0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
- 0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L };
- eigen_assert(degree <= maxPadeDegree);
- MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
- result.setZero(T.rows(), T.rows());
- for (int k = 0; k < degree; ++k)
- result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
- .template triangularView<Upper>().solve(TminusI);
+ using std::log;
+ MatrixType result(A.rows(), A.rows());
+ if (A.rows() == 1)
+ result(0,0) = log(A(0,0));
+ else if (A.rows() == 2)
+ matrix_log_compute_2x2(A, result);
+ else
+ matrix_log_compute_big(A, result);
+ return result;
}
-template <typename MatrixType>
-void MatrixLogarithmAtomic<MatrixType>::computePade11(MatrixType& result, const MatrixType& T)
-{
- const int degree = 11;
- const RealScalar nodes[] = { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,
- 0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
- 0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
- 0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
- 0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
- 0.9891143290730284964019690005614287L };
- const RealScalar weights[] = { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,
- 0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
- 0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
- 0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
- 0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
- 0.0278342835580868332413768602212743L };
- eigen_assert(degree <= maxPadeDegree);
- MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
- result.setZero(T.rows(), T.rows());
- for (int k = 0; k < degree; ++k)
- result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
- .template triangularView<Upper>().solve(TminusI);
-}
+} // end of namespace internal
/** \ingroup MatrixFunctions_Module
*
@@ -421,15 +308,19 @@ template<typename Derived> class MatrixLogarithmReturnValue
: public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
{
public:
-
typedef typename Derived::Scalar Scalar;
typedef typename Derived::Index Index;
+protected:
+ typedef typename internal::ref_selector<Derived>::type DerivedNested;
+
+public:
+
/** \brief Constructor.
*
* \param[in] A %Matrix (expression) forming the argument of the matrix logarithm.
*/
- MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
+ explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
/** \brief Compute the matrix logarithm.
*
@@ -438,28 +329,24 @@ public:
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
- typedef typename Derived::PlainObject PlainObject;
- typedef internal::traits<PlainObject> Traits;
+ typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
+ typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
+ typedef internal::traits<DerivedEvalTypeClean> Traits;
static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
- static const int Options = PlainObject::Options;
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
- typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
- typedef MatrixLogarithmAtomic<DynMatrixType> AtomicType;
+ typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
+ typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType;
AtomicType atomic;
- const PlainObject Aevaluated = m_A.eval();
- MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic);
- mf.compute(result);
+ internal::matrix_function_compute<DerivedEvalTypeClean>::run(m_A, atomic, result);
}
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
private:
- typename internal::nested<Derived>::type m_A;
-
- MatrixLogarithmReturnValue& operator=(const MatrixLogarithmReturnValue&);
+ const DerivedNested m_A;
};
namespace internal {
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h b/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
index 78a307e96..ebc433d89 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
@@ -14,16 +14,48 @@ namespace Eigen {
template<typename MatrixType> class MatrixPower;
+/**
+ * \ingroup MatrixFunctions_Module
+ *
+ * \brief Proxy for the matrix power of some matrix.
+ *
+ * \tparam MatrixType type of the base, a matrix.
+ *
+ * This class holds the arguments to the matrix power until it is
+ * assigned or evaluated for some other reason (so the argument
+ * should not be changed in the meantime). It is the return type of
+ * MatrixPower::operator() and related functions and most of the
+ * time this is the only way it is used.
+ */
+/* TODO This class is only used by MatrixPower, so it should be nested
+ * into MatrixPower, like MatrixPower::ReturnValue. However, my
+ * compiler complained about unused template parameter in the
+ * following declaration in namespace internal.
+ *
+ * template<typename MatrixType>
+ * struct traits<MatrixPower<MatrixType>::ReturnValue>;
+ */
template<typename MatrixType>
-class MatrixPowerRetval : public ReturnByValue< MatrixPowerRetval<MatrixType> >
+class MatrixPowerParenthesesReturnValue : public ReturnByValue< MatrixPowerParenthesesReturnValue<MatrixType> >
{
public:
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
- MatrixPowerRetval(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
+ /**
+ * \brief Constructor.
+ *
+ * \param[in] pow %MatrixPower storing the base.
+ * \param[in] p scalar, the exponent of the matrix power.
+ */
+ MatrixPowerParenthesesReturnValue(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
{ }
+ /**
+ * \brief Compute the matrix power.
+ *
+ * \param[out] result
+ */
template<typename ResultType>
inline void evalTo(ResultType& res) const
{ m_pow.compute(res, m_p); }
@@ -34,11 +66,25 @@ class MatrixPowerRetval : public ReturnByValue< MatrixPowerRetval<MatrixType> >
private:
MatrixPower<MatrixType>& m_pow;
const RealScalar m_p;
- MatrixPowerRetval& operator=(const MatrixPowerRetval&);
};
+/**
+ * \ingroup MatrixFunctions_Module
+ *
+ * \brief Class for computing matrix powers.
+ *
+ * \tparam MatrixType type of the base, expected to be an instantiation
+ * of the Matrix class template.
+ *
+ * This class is capable of computing triangular real/complex matrices
+ * raised to a power in the interval \f$ (-1, 1) \f$.
+ *
+ * \note Currently this class is only used by MatrixPower. One may
+ * insist that this be nested into MatrixPower. This class is here to
+ * faciliate future development of triangular matrix functions.
+ */
template<typename MatrixType>
-class MatrixPowerAtomic
+class MatrixPowerAtomic : internal::noncopyable
{
private:
enum {
@@ -49,14 +95,14 @@ class MatrixPowerAtomic
typedef typename MatrixType::RealScalar RealScalar;
typedef std::complex<RealScalar> ComplexScalar;
typedef typename MatrixType::Index Index;
- typedef Array<Scalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> ArrayType;
+ typedef Block<MatrixType,Dynamic,Dynamic> ResultType;
const MatrixType& m_A;
RealScalar m_p;
- void computePade(int degree, const MatrixType& IminusT, MatrixType& res) const;
- void compute2x2(MatrixType& res, RealScalar p) const;
- void computeBig(MatrixType& res) const;
+ void computePade(int degree, const MatrixType& IminusT, ResultType& res) const;
+ void compute2x2(ResultType& res, RealScalar p) const;
+ void computeBig(ResultType& res) const;
static int getPadeDegree(float normIminusT);
static int getPadeDegree(double normIminusT);
static int getPadeDegree(long double normIminusT);
@@ -64,24 +110,45 @@ class MatrixPowerAtomic
static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);
public:
+ /**
+ * \brief Constructor.
+ *
+ * \param[in] T the base of the matrix power.
+ * \param[in] p the exponent of the matrix power, should be in
+ * \f$ (-1, 1) \f$.
+ *
+ * The class stores a reference to T, so it should not be changed
+ * (or destroyed) before evaluation. Only the upper triangular
+ * part of T is read.
+ */
MatrixPowerAtomic(const MatrixType& T, RealScalar p);
- void compute(MatrixType& res) const;
+
+ /**
+ * \brief Compute the matrix power.
+ *
+ * \param[out] res \f$ A^p \f$ where A and p are specified in the
+ * constructor.
+ */
+ void compute(ResultType& res) const;
};
template<typename MatrixType>
MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) :
m_A(T), m_p(p)
-{ eigen_assert(T.rows() == T.cols()); }
+{
+ eigen_assert(T.rows() == T.cols());
+ eigen_assert(p > -1 && p < 1);
+}
template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::compute(MatrixType& res) const
+void MatrixPowerAtomic<MatrixType>::compute(ResultType& res) const
{
- res.resizeLike(m_A);
+ using std::pow;
switch (m_A.rows()) {
case 0:
break;
case 1:
- res(0,0) = std::pow(m_A(0,0), m_p);
+ res(0,0) = pow(m_A(0,0), m_p);
break;
case 2:
compute2x2(res, m_p);
@@ -92,24 +159,24 @@ void MatrixPowerAtomic<MatrixType>::compute(MatrixType& res) const
}
template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res) const
+void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, ResultType& res) const
{
- int i = degree<<1;
- res = (m_p-degree) / ((i-1)<<1) * IminusT;
+ int i = 2*degree;
+ res = (m_p-degree) / (2*i-2) * IminusT;
+
for (--i; i; --i) {
res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
- .solve((i==1 ? -m_p : i&1 ? (-m_p-(i>>1))/(i<<1) : (m_p-(i>>1))/((i-1)<<1)) * IminusT).eval();
+ .solve((i==1 ? -m_p : i&1 ? (-m_p-i/2)/(2*i) : (m_p-i/2)/(2*i-2)) * IminusT).eval();
}
res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
}
// This function assumes that res has the correct size (see bug 614)
template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const
+void MatrixPowerAtomic<MatrixType>::compute2x2(ResultType& res, RealScalar p) const
{
using std::abs;
using std::pow;
-
res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
for (Index i=1; i < m_A.cols(); ++i) {
@@ -125,32 +192,20 @@ void MatrixPowerAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) co
}
template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::computeBig(MatrixType& res) const
+void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const
{
+ using std::ldexp;
const int digits = std::numeric_limits<RealScalar>::digits;
- const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f: // sigle precision
- digits <= 53? 2.789358995219730e-1: // double precision
- digits <= 64? 2.4471944416607995472e-1L: // extended precision
- digits <= 106? 1.1016843812851143391275867258512e-1L: // double-double
- 9.134603732914548552537150753385375e-2L; // quadruple precision
+ const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1L // single precision
+ : digits <= 53? 2.789358995219730e-1L // double precision
+ : digits <= 64? 2.4471944416607995472e-1L // extended precision
+ : digits <= 106? 1.1016843812851143391275867258512e-1L // double-double
+ : 9.134603732914548552537150753385375e-2L; // quadruple precision
MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
RealScalar normIminusT;
int degree, degree2, numberOfSquareRoots = 0;
bool hasExtraSquareRoot = false;
- /* FIXME
- * For singular T, norm(I - T) >= 1 but maxNormForPade < 1, leads to infinite
- * loop. We should move 0 eigenvalues to bottom right corner. We need not
- * worry about tiny values (e.g. 1e-300) because they will reach 1 if
- * repetitively sqrt'ed.
- *
- * If the 0 eigenvalues are semisimple, they can form a 0 matrix at the
- * bottom right corner.
- *
- * [ T A ]^p [ T^p (T^-1 T^p A) ]
- * [ ] = [ ]
- * [ 0 0 ] [ 0 0 ]
- */
for (Index i=0; i < m_A.cols(); ++i)
eigen_assert(m_A(i,i) != RealScalar(0));
@@ -164,14 +219,14 @@ void MatrixPowerAtomic<MatrixType>::computeBig(MatrixType& res) const
break;
hasExtraSquareRoot = true;
}
- MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
+ matrix_sqrt_triangular(T, sqrtT);
T = sqrtT.template triangularView<Upper>();
++numberOfSquareRoots;
}
computePade(degree, IminusT, res);
for (; numberOfSquareRoots; --numberOfSquareRoots) {
- compute2x2(res, std::ldexp(m_p, -numberOfSquareRoots));
+ compute2x2(res, ldexp(m_p, -numberOfSquareRoots));
res = res.template triangularView<Upper>() * res;
}
compute2x2(res, m_p);
@@ -209,7 +264,7 @@ inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT)
1.999045567181744e-1L, 2.789358995219730e-1L };
#elif LDBL_MANT_DIG <= 64
const int maxPadeDegree = 8;
- const double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
+ const long double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
#elif LDBL_MANT_DIG <= 106
const int maxPadeDegree = 10;
@@ -236,19 +291,28 @@ template<typename MatrixType>
inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p)
{
- ComplexScalar logCurr = std::log(curr);
- ComplexScalar logPrev = std::log(prev);
- int unwindingNumber = std::ceil((numext::imag(logCurr - logPrev) - M_PI) / (2*M_PI));
- ComplexScalar w = numext::atanh2(curr - prev, curr + prev) + ComplexScalar(0, M_PI*unwindingNumber);
- return RealScalar(2) * std::exp(RealScalar(0.5) * p * (logCurr + logPrev)) * std::sinh(p * w) / (curr - prev);
+ using std::ceil;
+ using std::exp;
+ using std::log;
+ using std::sinh;
+
+ ComplexScalar logCurr = log(curr);
+ ComplexScalar logPrev = log(prev);
+ int unwindingNumber = ceil((numext::imag(logCurr - logPrev) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI));
+ ComplexScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2) + ComplexScalar(0, EIGEN_PI*unwindingNumber);
+ return RealScalar(2) * exp(RealScalar(0.5) * p * (logCurr + logPrev)) * sinh(p * w) / (curr - prev);
}
template<typename MatrixType>
inline typename MatrixPowerAtomic<MatrixType>::RealScalar
MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p)
{
- RealScalar w = numext::atanh2(curr - prev, curr + prev);
- return 2 * std::exp(p * (std::log(curr) + std::log(prev)) / 2) * std::sinh(p * w) / (curr - prev);
+ using std::exp;
+ using std::log;
+ using std::sinh;
+
+ RealScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2);
+ return 2 * exp(p * (log(curr) + log(prev)) / 2) * sinh(p * w) / (curr - prev);
}
/**
@@ -271,15 +335,9 @@ MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev
* Output: \verbinclude MatrixPower_optimal.out
*/
template<typename MatrixType>
-class MatrixPower
+class MatrixPower : internal::noncopyable
{
private:
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
@@ -293,7 +351,11 @@ class MatrixPower
* The class stores a reference to A, so it should not be changed
* (or destroyed) before evaluation.
*/
- explicit MatrixPower(const MatrixType& A) : m_A(A), m_conditionNumber(0)
+ explicit MatrixPower(const MatrixType& A) :
+ m_A(A),
+ m_conditionNumber(0),
+ m_rank(A.cols()),
+ m_nulls(0)
{ eigen_assert(A.rows() == A.cols()); }
/**
@@ -303,8 +365,8 @@ class MatrixPower
* \return The expression \f$ A^p \f$, where A is specified in the
* constructor.
*/
- const MatrixPowerRetval<MatrixType> operator()(RealScalar p)
- { return MatrixPowerRetval<MatrixType>(*this, p); }
+ const MatrixPowerParenthesesReturnValue<MatrixType> operator()(RealScalar p)
+ { return MatrixPowerParenthesesReturnValue<MatrixType>(*this, p); }
/**
* \brief Compute the matrix power.
@@ -321,21 +383,54 @@ class MatrixPower
private:
typedef std::complex<RealScalar> ComplexScalar;
- typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, MatrixType::Options,
- MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrix;
+ typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0,
+ MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> ComplexMatrix;
+ /** \brief Reference to the base of matrix power. */
typename MatrixType::Nested m_A;
+
+ /** \brief Temporary storage. */
MatrixType m_tmp;
- ComplexMatrix m_T, m_U, m_fT;
+
+ /** \brief Store the result of Schur decomposition. */
+ ComplexMatrix m_T, m_U;
+
+ /** \brief Store fractional power of m_T. */
+ ComplexMatrix m_fT;
+
+ /**
+ * \brief Condition number of m_A.
+ *
+ * It is initialized as 0 to avoid performing unnecessary Schur
+ * decomposition, which is the bottleneck.
+ */
RealScalar m_conditionNumber;
- RealScalar modfAndInit(RealScalar, RealScalar*);
+ /** \brief Rank of m_A. */
+ Index m_rank;
+
+ /** \brief Rank deficiency of m_A. */
+ Index m_nulls;
+
+ /**
+ * \brief Split p into integral part and fractional part.
+ *
+ * \param[in] p The exponent.
+ * \param[out] p The fractional part ranging in \f$ (-1, 1) \f$.
+ * \param[out] intpart The integral part.
+ *
+ * Only if the fractional part is nonzero, it calls initialize().
+ */
+ void split(RealScalar& p, RealScalar& intpart);
+
+ /** \brief Perform Schur decomposition for fractional power. */
+ void initialize();
template<typename ResultType>
- void computeIntPower(ResultType&, RealScalar);
+ void computeIntPower(ResultType& res, RealScalar p);
template<typename ResultType>
- void computeFracPower(ResultType&, RealScalar);
+ void computeFracPower(ResultType& res, RealScalar p);
template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
static void revertSchur(
@@ -354,59 +449,102 @@ template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
{
+ using std::pow;
switch (cols()) {
case 0:
break;
case 1:
- res(0,0) = std::pow(m_A.coeff(0,0), p);
+ res(0,0) = pow(m_A.coeff(0,0), p);
break;
default:
- RealScalar intpart, x = modfAndInit(p, &intpart);
+ RealScalar intpart;
+ split(p, intpart);
+
+ res = MatrixType::Identity(rows(), cols());
computeIntPower(res, intpart);
- computeFracPower(res, x);
+ if (p) computeFracPower(res, p);
}
}
template<typename MatrixType>
-typename MatrixPower<MatrixType>::RealScalar
-MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
+void MatrixPower<MatrixType>::split(RealScalar& p, RealScalar& intpart)
{
- typedef Array<RealScalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> RealArray;
+ using std::floor;
+ using std::pow;
- *intpart = std::floor(x);
- RealScalar res = x - *intpart;
+ intpart = floor(p);
+ p -= intpart;
- if (!m_conditionNumber && res) {
- const ComplexSchur<MatrixType> schurOfA(m_A);
- m_T = schurOfA.matrixT();
- m_U = schurOfA.matrixU();
-
- const RealArray absTdiag = m_T.diagonal().array().abs();
- m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff();
+ // Perform Schur decomposition if it is not yet performed and the power is
+ // not an integer.
+ if (!m_conditionNumber && p)
+ initialize();
+
+ // Choose the more stable of intpart = floor(p) and intpart = ceil(p).
+ if (p > RealScalar(0.5) && p > (1-p) * pow(m_conditionNumber, p)) {
+ --p;
+ ++intpart;
+ }
+}
+
+template<typename MatrixType>
+void MatrixPower<MatrixType>::initialize()
+{
+ const ComplexSchur<MatrixType> schurOfA(m_A);
+ JacobiRotation<ComplexScalar> rot;
+ ComplexScalar eigenvalue;
+
+ m_fT.resizeLike(m_A);
+ m_T = schurOfA.matrixT();
+ m_U = schurOfA.matrixU();
+ m_conditionNumber = m_T.diagonal().array().abs().maxCoeff() / m_T.diagonal().array().abs().minCoeff();
+
+ // Move zero eigenvalues to the bottom right corner.
+ for (Index i = cols()-1; i>=0; --i) {
+ if (m_rank <= 2)
+ return;
+ if (m_T.coeff(i,i) == RealScalar(0)) {
+ for (Index j=i+1; j < m_rank; ++j) {
+ eigenvalue = m_T.coeff(j,j);
+ rot.makeGivens(m_T.coeff(j-1,j), eigenvalue);
+ m_T.applyOnTheRight(j-1, j, rot);
+ m_T.applyOnTheLeft(j-1, j, rot.adjoint());
+ m_T.coeffRef(j-1,j-1) = eigenvalue;
+ m_T.coeffRef(j,j) = RealScalar(0);
+ m_U.applyOnTheRight(j-1, j, rot);
+ }
+ --m_rank;
+ }
}
- if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber, res)) {
- --res;
- ++*intpart;
+ m_nulls = rows() - m_rank;
+ if (m_nulls) {
+ eigen_assert(m_T.bottomRightCorner(m_nulls, m_nulls).isZero()
+ && "Base of matrix power should be invertible or with a semisimple zero eigenvalue.");
+ m_fT.bottomRows(m_nulls).fill(RealScalar(0));
}
- return res;
}
template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
{
- RealScalar pp = std::abs(p);
+ using std::abs;
+ using std::fmod;
+ RealScalar pp = abs(p);
- if (p<0) m_tmp = m_A.inverse();
- else m_tmp = m_A;
+ if (p<0)
+ m_tmp = m_A.inverse();
+ else
+ m_tmp = m_A;
- res = MatrixType::Identity(rows(), cols());
- while (pp >= 1) {
- if (std::fmod(pp, 2) >= 1)
+ while (true) {
+ if (fmod(pp, 2) >= 1)
res = m_tmp * res;
- m_tmp *= m_tmp;
pp /= 2;
+ if (pp < 1)
+ break;
+ m_tmp *= m_tmp;
}
}
@@ -414,12 +552,17 @@ template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
{
- if (p) {
- eigen_assert(m_conditionNumber);
- MatrixPowerAtomic<ComplexMatrix>(m_T, p).compute(m_fT);
- revertSchur(m_tmp, m_fT, m_U);
- res = m_tmp * res;
+ Block<ComplexMatrix,Dynamic,Dynamic> blockTp(m_fT, 0, 0, m_rank, m_rank);
+ eigen_assert(m_conditionNumber);
+ eigen_assert(m_rank + m_nulls == rows());
+
+ MatrixPowerAtomic<ComplexMatrix>(m_T.topLeftCorner(m_rank, m_rank), p).compute(blockTp);
+ if (m_nulls) {
+ m_fT.topRightCorner(m_rank, m_nulls) = m_T.topLeftCorner(m_rank, m_rank).template triangularView<Upper>()
+ .solve(blockTp * m_T.topRightCorner(m_rank, m_nulls));
}
+ revertSchur(m_tmp, m_fT, m_U);
+ res = m_tmp * res;
}
template<typename MatrixType>
@@ -463,7 +606,7 @@ class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Deri
* \brief Constructor.
*
* \param[in] A %Matrix (expression), the base of the matrix power.
- * \param[in] p scalar, the exponent of the matrix power.
+ * \param[in] p real scalar, the exponent of the matrix power.
*/
MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p)
{ }
@@ -484,25 +627,83 @@ class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Deri
private:
const Derived& m_A;
const RealScalar m_p;
- MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
+};
+
+/**
+ * \ingroup MatrixFunctions_Module
+ *
+ * \brief Proxy for the matrix power of some matrix (expression).
+ *
+ * \tparam Derived type of the base, a matrix (expression).
+ *
+ * This class holds the arguments to the matrix power until it is
+ * assigned or evaluated for some other reason (so the argument
+ * should not be changed in the meantime). It is the return type of
+ * MatrixBase::pow() and related functions and most of the
+ * time this is the only way it is used.
+ */
+template<typename Derived>
+class MatrixComplexPowerReturnValue : public ReturnByValue< MatrixComplexPowerReturnValue<Derived> >
+{
+ public:
+ typedef typename Derived::PlainObject PlainObject;
+ typedef typename std::complex<typename Derived::RealScalar> ComplexScalar;
+ typedef typename Derived::Index Index;
+
+ /**
+ * \brief Constructor.
+ *
+ * \param[in] A %Matrix (expression), the base of the matrix power.
+ * \param[in] p complex scalar, the exponent of the matrix power.
+ */
+ MatrixComplexPowerReturnValue(const Derived& A, const ComplexScalar& p) : m_A(A), m_p(p)
+ { }
+
+ /**
+ * \brief Compute the matrix power.
+ *
+ * Because \p p is complex, \f$ A^p \f$ is simply evaluated as \f$
+ * \exp(p \log(A)) \f$.
+ *
+ * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the
+ * constructor.
+ */
+ template<typename ResultType>
+ inline void evalTo(ResultType& res) const
+ { res = (m_p * m_A.log()).exp(); }
+
+ Index rows() const { return m_A.rows(); }
+ Index cols() const { return m_A.cols(); }
+
+ private:
+ const Derived& m_A;
+ const ComplexScalar m_p;
};
namespace internal {
template<typename MatrixPowerType>
-struct traits< MatrixPowerRetval<MatrixPowerType> >
+struct traits< MatrixPowerParenthesesReturnValue<MatrixPowerType> >
{ typedef typename MatrixPowerType::PlainObject ReturnType; };
template<typename Derived>
struct traits< MatrixPowerReturnValue<Derived> >
{ typedef typename Derived::PlainObject ReturnType; };
+template<typename Derived>
+struct traits< MatrixComplexPowerReturnValue<Derived> >
+{ typedef typename Derived::PlainObject ReturnType; };
+
}
template<typename Derived>
const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const
{ return MatrixPowerReturnValue<Derived>(derived(), p); }
+template<typename Derived>
+const MatrixComplexPowerReturnValue<Derived> MatrixBase<Derived>::pow(const std::complex<RealScalar>& p) const
+{ return MatrixComplexPowerReturnValue<Derived>(derived(), p); }
+
} // namespace Eigen
#endif // EIGEN_MATRIX_POWER
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h b/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
index b48ea9d46..afd88ec4d 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
+// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -12,133 +12,16 @@
namespace Eigen {
-/** \ingroup MatrixFunctions_Module
- * \brief Class for computing matrix square roots of upper quasi-triangular matrices.
- * \tparam MatrixType type of the argument of the matrix square root,
- * expected to be an instantiation of the Matrix class template.
- *
- * This class computes the square root of the upper quasi-triangular
- * matrix stored in the upper Hessenberg part of the matrix passed to
- * the constructor.
- *
- * \sa MatrixSquareRoot, MatrixSquareRootTriangular
- */
-template <typename MatrixType>
-class MatrixSquareRootQuasiTriangular
-{
- public:
-
- /** \brief Constructor.
- *
- * \param[in] A upper quasi-triangular matrix whose square root
- * is to be computed.
- *
- * The class stores a reference to \p A, so it should not be
- * changed (or destroyed) before compute() is called.
- */
- MatrixSquareRootQuasiTriangular(const MatrixType& A)
- : m_A(A)
- {
- eigen_assert(A.rows() == A.cols());
- }
-
- /** \brief Compute the matrix square root
- *
- * \param[out] result square root of \p A, as specified in the constructor.
- *
- * Only the upper Hessenberg part of \p result is updated, the
- * rest is not touched. See MatrixBase::sqrt() for details on
- * how this computation is implemented.
- */
- template <typename ResultType> void compute(ResultType &result);
-
- private:
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
-
- void computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
- void computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
- void compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i);
- void compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
- typename MatrixType::Index i, typename MatrixType::Index j);
- void compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
- typename MatrixType::Index i, typename MatrixType::Index j);
- void compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
- typename MatrixType::Index i, typename MatrixType::Index j);
- void compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
- typename MatrixType::Index i, typename MatrixType::Index j);
-
- template <typename SmallMatrixType>
- static void solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
- const SmallMatrixType& B, const SmallMatrixType& C);
-
- const MatrixType& m_A;
-};
-
-template <typename MatrixType>
-template <typename ResultType>
-void MatrixSquareRootQuasiTriangular<MatrixType>::compute(ResultType &result)
-{
- result.resize(m_A.rows(), m_A.cols());
- computeDiagonalPartOfSqrt(result, m_A);
- computeOffDiagonalPartOfSqrt(result, m_A);
-}
-
-// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
-// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
-template <typename MatrixType>
-void MatrixSquareRootQuasiTriangular<MatrixType>::computeDiagonalPartOfSqrt(MatrixType& sqrtT,
- const MatrixType& T)
-{
- using std::sqrt;
- const Index size = m_A.rows();
- for (Index i = 0; i < size; i++) {
- if (i == size - 1 || T.coeff(i+1, i) == 0) {
- eigen_assert(T(i,i) >= 0);
- sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
- }
- else {
- compute2x2diagonalBlock(sqrtT, T, i);
- ++i;
- }
- }
-}
-
-// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
-// post: sqrtT is the square root of T.
-template <typename MatrixType>
-void MatrixSquareRootQuasiTriangular<MatrixType>::computeOffDiagonalPartOfSqrt(MatrixType& sqrtT,
- const MatrixType& T)
-{
- const Index size = m_A.rows();
- for (Index j = 1; j < size; j++) {
- if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block
- continue;
- for (Index i = j-1; i >= 0; i--) {
- if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block
- continue;
- bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
- bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
- if (iBlockIs2x2 && jBlockIs2x2)
- compute2x2offDiagonalBlock(sqrtT, T, i, j);
- else if (iBlockIs2x2 && !jBlockIs2x2)
- compute2x1offDiagonalBlock(sqrtT, T, i, j);
- else if (!iBlockIs2x2 && jBlockIs2x2)
- compute1x2offDiagonalBlock(sqrtT, T, i, j);
- else if (!iBlockIs2x2 && !jBlockIs2x2)
- compute1x1offDiagonalBlock(sqrtT, T, i, j);
- }
- }
-}
+namespace internal {
// pre: T.block(i,i,2,2) has complex conjugate eigenvalues
// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
-template <typename MatrixType>
-void MatrixSquareRootQuasiTriangular<MatrixType>
- ::compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i)
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, typename MatrixType::Index i, ResultType& sqrtT)
{
// TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
// in EigenSolver. If we expose it, we could call it directly from here.
+ typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
EigenSolver<Matrix<Scalar,2,2> > es(block);
sqrtT.template block<2,2>(i,i)
@@ -148,21 +31,19 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
// pre: block structure of T is such that (i,j) is a 1x1 block,
// all blocks of sqrtT to left of and below (i,j) are correct
// post: sqrtT(i,j) has the correct value
-template <typename MatrixType>
-void MatrixSquareRootQuasiTriangular<MatrixType>
- ::compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
- typename MatrixType::Index i, typename MatrixType::Index j)
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
{
+ typedef typename traits<MatrixType>::Scalar Scalar;
Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
}
// similar to compute1x1offDiagonalBlock()
-template <typename MatrixType>
-void MatrixSquareRootQuasiTriangular<MatrixType>
- ::compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
- typename MatrixType::Index i, typename MatrixType::Index j)
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
{
+ typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
if (j-i > 1)
rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
@@ -172,11 +53,10 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
}
// similar to compute1x1offDiagonalBlock()
-template <typename MatrixType>
-void MatrixSquareRootQuasiTriangular<MatrixType>
- ::compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
- typename MatrixType::Index i, typename MatrixType::Index j)
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
{
+ typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
if (j-i > 2)
rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
@@ -185,32 +65,11 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs);
}
-// similar to compute1x1offDiagonalBlock()
-template <typename MatrixType>
-void MatrixSquareRootQuasiTriangular<MatrixType>
- ::compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
- typename MatrixType::Index i, typename MatrixType::Index j)
-{
- Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
- Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
- Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
- if (j-i > 2)
- C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
- Matrix<Scalar,2,2> X;
- solveAuxiliaryEquation(X, A, B, C);
- sqrtT.template block<2,2>(i,j) = X;
-}
-
// solves the equation A X + X B = C where all matrices are 2-by-2
template <typename MatrixType>
-template <typename SmallMatrixType>
-void MatrixSquareRootQuasiTriangular<MatrixType>
- ::solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
- const SmallMatrixType& B, const SmallMatrixType& C)
+void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X, const MatrixType& A, const MatrixType& B, const MatrixType& C)
{
- EIGEN_STATIC_ASSERT((internal::is_same<SmallMatrixType, Matrix<Scalar,2,2> >::value),
- EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT);
-
+ typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
@@ -224,13 +83,13 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
coeffMatrix.coeffRef(2,3) = B.coeff(1,0);
coeffMatrix.coeffRef(3,1) = A.coeff(1,0);
coeffMatrix.coeffRef(3,2) = B.coeff(0,1);
-
+
Matrix<Scalar,4,1> rhs;
rhs.coeffRef(0) = C.coeff(0,0);
rhs.coeffRef(1) = C.coeff(0,1);
rhs.coeffRef(2) = C.coeff(1,0);
rhs.coeffRef(3) = C.coeff(1,1);
-
+
Matrix<Scalar,4,1> result;
result = coeffMatrix.fullPivLu().solve(rhs);
@@ -240,165 +99,208 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
X.coeffRef(1,1) = result.coeff(3);
}
+// similar to compute1x1offDiagonalBlock()
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
+{
+ typedef typename traits<MatrixType>::Scalar Scalar;
+ Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
+ Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
+ Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
+ if (j-i > 2)
+ C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
+ Matrix<Scalar,2,2> X;
+ matrix_sqrt_quasi_triangular_solve_auxiliary_equation(X, A, B, C);
+ sqrtT.template block<2,2>(i,j) = X;
+}
+
+// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
+// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT)
+{
+ using std::sqrt;
+ typedef typename MatrixType::Index Index;
+ const Index size = T.rows();
+ for (Index i = 0; i < size; i++) {
+ if (i == size - 1 || T.coeff(i+1, i) == 0) {
+ eigen_assert(T(i,i) >= 0);
+ sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
+ }
+ else {
+ matrix_sqrt_quasi_triangular_2x2_diagonal_block(T, i, sqrtT);
+ ++i;
+ }
+ }
+}
+
+// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
+// post: sqrtT is the square root of T.
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT)
+{
+ typedef typename MatrixType::Index Index;
+ const Index size = T.rows();
+ for (Index j = 1; j < size; j++) {
+ if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block
+ continue;
+ for (Index i = j-1; i >= 0; i--) {
+ if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block
+ continue;
+ bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
+ bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
+ if (iBlockIs2x2 && jBlockIs2x2)
+ matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(T, i, j, sqrtT);
+ else if (iBlockIs2x2 && !jBlockIs2x2)
+ matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(T, i, j, sqrtT);
+ else if (!iBlockIs2x2 && jBlockIs2x2)
+ matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(T, i, j, sqrtT);
+ else if (!iBlockIs2x2 && !jBlockIs2x2)
+ matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(T, i, j, sqrtT);
+ }
+ }
+}
+
+} // end of namespace internal
/** \ingroup MatrixFunctions_Module
- * \brief Class for computing matrix square roots of upper triangular matrices.
- * \tparam MatrixType type of the argument of the matrix square root,
+ * \brief Compute matrix square root of quasi-triangular matrix.
+ *
+ * \tparam MatrixType type of \p arg, the argument of matrix square root,
* expected to be an instantiation of the Matrix class template.
+ * \tparam ResultType type of \p result, where result is to be stored.
+ * \param[in] arg argument of matrix square root.
+ * \param[out] result matrix square root of upper Hessenberg part of \p arg.
*
- * This class computes the square root of the upper triangular matrix
- * stored in the upper triangular part (including the diagonal) of
- * the matrix passed to the constructor.
+ * This function computes the square root of the upper quasi-triangular matrix stored in the upper
+ * Hessenberg part of \p arg. Only the upper Hessenberg part of \p result is updated, the rest is
+ * not touched. See MatrixBase::sqrt() for details on how this computation is implemented.
*
* \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
*/
-template <typename MatrixType>
-class MatrixSquareRootTriangular
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_quasi_triangular(const MatrixType &arg, ResultType &result)
{
- public:
- MatrixSquareRootTriangular(const MatrixType& A)
- : m_A(A)
- {
- eigen_assert(A.rows() == A.cols());
- }
-
- /** \brief Compute the matrix square root
- *
- * \param[out] result square root of \p A, as specified in the constructor.
- *
- * Only the upper triangular part (including the diagonal) of
- * \p result is updated, the rest is not touched. See
- * MatrixBase::sqrt() for details on how this computation is
- * implemented.
- */
- template <typename ResultType> void compute(ResultType &result);
+ eigen_assert(arg.rows() == arg.cols());
+ result.resize(arg.rows(), arg.cols());
+ internal::matrix_sqrt_quasi_triangular_diagonal(arg, result);
+ internal::matrix_sqrt_quasi_triangular_off_diagonal(arg, result);
+}
- private:
- const MatrixType& m_A;
-};
-template <typename MatrixType>
-template <typename ResultType>
-void MatrixSquareRootTriangular<MatrixType>::compute(ResultType &result)
+/** \ingroup MatrixFunctions_Module
+ * \brief Compute matrix square root of triangular matrix.
+ *
+ * \tparam MatrixType type of \p arg, the argument of matrix square root,
+ * expected to be an instantiation of the Matrix class template.
+ * \tparam ResultType type of \p result, where result is to be stored.
+ * \param[in] arg argument of matrix square root.
+ * \param[out] result matrix square root of upper triangular part of \p arg.
+ *
+ * Only the upper triangular part (including the diagonal) of \p result is updated, the rest is not
+ * touched. See MatrixBase::sqrt() for details on how this computation is implemented.
+ *
+ * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
+ */
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
{
using std::sqrt;
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
- // Compute square root of m_A and store it in upper triangular part of result
+ eigen_assert(arg.rows() == arg.cols());
+
+ // Compute square root of arg and store it in upper triangular part of result
// This uses that the square root of triangular matrices can be computed directly.
- result.resize(m_A.rows(), m_A.cols());
- typedef typename MatrixType::Index Index;
- for (Index i = 0; i < m_A.rows(); i++) {
- result.coeffRef(i,i) = sqrt(m_A.coeff(i,i));
+ result.resize(arg.rows(), arg.cols());
+ for (Index i = 0; i < arg.rows(); i++) {
+ result.coeffRef(i,i) = sqrt(arg.coeff(i,i));
}
- for (Index j = 1; j < m_A.cols(); j++) {
+ for (Index j = 1; j < arg.cols(); j++) {
for (Index i = j-1; i >= 0; i--) {
- typedef typename MatrixType::Scalar Scalar;
// if i = j-1, then segment has length 0 so tmp = 0
Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
// denominator may be zero if original matrix is singular
- result.coeffRef(i,j) = (m_A.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
+ result.coeffRef(i,j) = (arg.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
}
}
}
+namespace internal {
+
/** \ingroup MatrixFunctions_Module
- * \brief Class for computing matrix square roots of general matrices.
+ * \brief Helper struct for computing matrix square roots of general matrices.
* \tparam MatrixType type of the argument of the matrix square root,
* expected to be an instantiation of the Matrix class template.
*
* \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
*/
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
-class MatrixSquareRoot
+struct matrix_sqrt_compute
{
- public:
-
- /** \brief Constructor.
- *
- * \param[in] A matrix whose square root is to be computed.
- *
- * The class stores a reference to \p A, so it should not be
- * changed (or destroyed) before compute() is called.
- */
- MatrixSquareRoot(const MatrixType& A);
-
- /** \brief Compute the matrix square root
- *
- * \param[out] result square root of \p A, as specified in the constructor.
- *
- * See MatrixBase::sqrt() for details on how this computation is
- * implemented.
- */
- template <typename ResultType> void compute(ResultType &result);
+ /** \brief Compute the matrix square root
+ *
+ * \param[in] arg matrix whose square root is to be computed.
+ * \param[out] result square root of \p arg.
+ *
+ * See MatrixBase::sqrt() for details on how this computation is implemented.
+ */
+ template <typename ResultType> static void run(const MatrixType &arg, ResultType &result);
};
// ********** Partial specialization for real matrices **********
template <typename MatrixType>
-class MatrixSquareRoot<MatrixType, 0>
+struct matrix_sqrt_compute<MatrixType, 0>
{
- public:
-
- MatrixSquareRoot(const MatrixType& A)
- : m_A(A)
- {
- eigen_assert(A.rows() == A.cols());
- }
-
- template <typename ResultType> void compute(ResultType &result)
- {
- // Compute Schur decomposition of m_A
- const RealSchur<MatrixType> schurOfA(m_A);
- const MatrixType& T = schurOfA.matrixT();
- const MatrixType& U = schurOfA.matrixU();
-
- // Compute square root of T
- MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.cols());
- MatrixSquareRootQuasiTriangular<MatrixType>(T).compute(sqrtT);
+ template <typename ResultType>
+ static void run(const MatrixType &arg, ResultType &result)
+ {
+ eigen_assert(arg.rows() == arg.cols());
+
+ // Compute Schur decomposition of arg
+ const RealSchur<MatrixType> schurOfA(arg);
+ const MatrixType& T = schurOfA.matrixT();
+ const MatrixType& U = schurOfA.matrixU();
- // Compute square root of m_A
- result = U * sqrtT * U.adjoint();
- }
+ // Compute square root of T
+ MatrixType sqrtT = MatrixType::Zero(arg.rows(), arg.cols());
+ matrix_sqrt_quasi_triangular(T, sqrtT);
- private:
- const MatrixType& m_A;
+ // Compute square root of arg
+ result = U * sqrtT * U.adjoint();
+ }
};
// ********** Partial specialization for complex matrices **********
template <typename MatrixType>
-class MatrixSquareRoot<MatrixType, 1>
+struct matrix_sqrt_compute<MatrixType, 1>
{
- public:
-
- MatrixSquareRoot(const MatrixType& A)
- : m_A(A)
- {
- eigen_assert(A.rows() == A.cols());
- }
-
- template <typename ResultType> void compute(ResultType &result)
- {
- // Compute Schur decomposition of m_A
- const ComplexSchur<MatrixType> schurOfA(m_A);
- const MatrixType& T = schurOfA.matrixT();
- const MatrixType& U = schurOfA.matrixU();
+ template <typename ResultType>
+ static void run(const MatrixType &arg, ResultType &result)
+ {
+ eigen_assert(arg.rows() == arg.cols());
+
+ // Compute Schur decomposition of arg
+ const ComplexSchur<MatrixType> schurOfA(arg);
+ const MatrixType& T = schurOfA.matrixT();
+ const MatrixType& U = schurOfA.matrixU();
- // Compute square root of T
- MatrixType sqrtT;
- MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
+ // Compute square root of T
+ MatrixType sqrtT;
+ matrix_sqrt_triangular(T, sqrtT);
- // Compute square root of m_A
- result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
- }
-
- private:
- const MatrixType& m_A;
+ // Compute square root of arg
+ result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
+ }
};
+} // end namespace internal
/** \ingroup MatrixFunctions_Module
*
@@ -415,14 +317,17 @@ class MatrixSquareRoot<MatrixType, 1>
template<typename Derived> class MatrixSquareRootReturnValue
: public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
{
+ protected:
typedef typename Derived::Index Index;
+ typedef typename internal::ref_selector<Derived>::type DerivedNested;
+
public:
/** \brief Constructor.
*
* \param[in] src %Matrix (expression) forming the argument of the
* matrix square root.
*/
- MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }
+ explicit MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }
/** \brief Compute the matrix square root.
*
@@ -432,18 +337,17 @@ template<typename Derived> class MatrixSquareRootReturnValue
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
- const typename Derived::PlainObject srcEvaluated = m_src.eval();
- MatrixSquareRoot<typename Derived::PlainObject> me(srcEvaluated);
- me.compute(result);
+ typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
+ typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
+ DerivedEvalType tmp(m_src);
+ internal::matrix_sqrt_compute<DerivedEvalTypeClean>::run(tmp, result);
}
Index rows() const { return m_src.rows(); }
Index cols() const { return m_src.cols(); }
protected:
- const Derived& m_src;
- private:
- MatrixSquareRootReturnValue& operator=(const MatrixSquareRootReturnValue&);
+ const DerivedNested m_src;
};
namespace internal {
diff --git a/unsupported/Eigen/src/MatrixFunctions/StemFunction.h b/unsupported/Eigen/src/MatrixFunctions/StemFunction.h
index 724e55c1d..7604df903 100644
--- a/unsupported/Eigen/src/MatrixFunctions/StemFunction.h
+++ b/unsupported/Eigen/src/MatrixFunctions/StemFunction.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+// Copyright (C) 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -12,93 +12,105 @@
namespace Eigen {
-/** \ingroup MatrixFunctions_Module
- * \brief Stem functions corresponding to standard mathematical functions.
- */
+namespace internal {
+
+/** \brief The exponential function (and its derivatives). */
template <typename Scalar>
-class StdStemFunctions
+Scalar stem_function_exp(Scalar x, int)
{
- public:
+ using std::exp;
+ return exp(x);
+}
- /** \brief The exponential function (and its derivatives). */
- static Scalar exp(Scalar x, int)
- {
- return std::exp(x);
- }
+/** \brief Cosine (and its derivatives). */
+template <typename Scalar>
+Scalar stem_function_cos(Scalar x, int n)
+{
+ using std::cos;
+ using std::sin;
+ Scalar res;
- /** \brief Cosine (and its derivatives). */
- static Scalar cos(Scalar x, int n)
- {
- Scalar res;
- switch (n % 4) {
- case 0:
- res = std::cos(x);
- break;
- case 1:
- res = -std::sin(x);
- break;
- case 2:
- res = -std::cos(x);
- break;
- case 3:
- res = std::sin(x);
- break;
- }
- return res;
- }
+ switch (n % 4) {
+ case 0:
+ res = std::cos(x);
+ break;
+ case 1:
+ res = -std::sin(x);
+ break;
+ case 2:
+ res = -std::cos(x);
+ break;
+ case 3:
+ res = std::sin(x);
+ break;
+ }
+ return res;
+}
+
+/** \brief Sine (and its derivatives). */
+template <typename Scalar>
+Scalar stem_function_sin(Scalar x, int n)
+{
+ using std::cos;
+ using std::sin;
+ Scalar res;
- /** \brief Sine (and its derivatives). */
- static Scalar sin(Scalar x, int n)
- {
- Scalar res;
- switch (n % 4) {
- case 0:
- res = std::sin(x);
- break;
- case 1:
- res = std::cos(x);
- break;
- case 2:
- res = -std::sin(x);
- break;
- case 3:
- res = -std::cos(x);
- break;
- }
- return res;
- }
+ switch (n % 4) {
+ case 0:
+ res = std::sin(x);
+ break;
+ case 1:
+ res = std::cos(x);
+ break;
+ case 2:
+ res = -std::sin(x);
+ break;
+ case 3:
+ res = -std::cos(x);
+ break;
+ }
+ return res;
+}
- /** \brief Hyperbolic cosine (and its derivatives). */
- static Scalar cosh(Scalar x, int n)
- {
- Scalar res;
- switch (n % 2) {
- case 0:
- res = std::cosh(x);
- break;
- case 1:
- res = std::sinh(x);
- break;
- }
- return res;
- }
+/** \brief Hyperbolic cosine (and its derivatives). */
+template <typename Scalar>
+Scalar stem_function_cosh(Scalar x, int n)
+{
+ using std::cosh;
+ using std::sinh;
+ Scalar res;
+
+ switch (n % 2) {
+ case 0:
+ res = std::cosh(x);
+ break;
+ case 1:
+ res = std::sinh(x);
+ break;
+ }
+ return res;
+}
- /** \brief Hyperbolic sine (and its derivatives). */
- static Scalar sinh(Scalar x, int n)
- {
- Scalar res;
- switch (n % 2) {
- case 0:
- res = std::sinh(x);
- break;
- case 1:
- res = std::cosh(x);
- break;
- }
- return res;
- }
+/** \brief Hyperbolic sine (and its derivatives). */
+template <typename Scalar>
+Scalar stem_function_sinh(Scalar x, int n)
+{
+ using std::cosh;
+ using std::sinh;
+ Scalar res;
+
+ switch (n % 2) {
+ case 0:
+ res = std::sinh(x);
+ break;
+ case 1:
+ res = std::cosh(x);
+ break;
+ }
+ return res;
+}
-}; // end of class StdStemFunctions
+} // end namespace internal
} // end namespace Eigen
diff --git a/unsupported/Eigen/src/MoreVectorization/CMakeLists.txt b/unsupported/Eigen/src/MoreVectorization/CMakeLists.txt
deleted file mode 100644
index 1b887cc8e..000000000
--- a/unsupported/Eigen/src/MoreVectorization/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_MoreVectorization_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_MoreVectorization_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/MoreVectorization COMPONENT Devel
- )
diff --git a/unsupported/Eigen/src/NonLinearOptimization/CMakeLists.txt b/unsupported/Eigen/src/NonLinearOptimization/CMakeLists.txt
deleted file mode 100644
index 9322ddadf..000000000
--- a/unsupported/Eigen/src/NonLinearOptimization/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_NonLinearOptimization_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_NonLinearOptimization_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/NonLinearOptimization COMPONENT Devel
- )
diff --git a/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h b/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h
index b8ba6ddcb..8fe3ed86b 100644
--- a/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h
+++ b/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h
@@ -150,7 +150,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveInit(FVectorType &x)
fjac.resize(n, n);
if (!useExternalScaling)
diag.resize(n);
- eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
+ eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");
/* Function Body */
nfev = 0;
@@ -390,7 +390,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(FVectorType &
fvec.resize(n);
if (!useExternalScaling)
diag.resize(n);
- eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
+ eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");
/* Function Body */
nfev = 0;
diff --git a/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h b/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
index bfeb26fc9..fe3b79ca7 100644
--- a/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
+++ b/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
@@ -45,18 +45,24 @@ namespace LevenbergMarquardtSpace {
template<typename FunctorType, typename Scalar=double>
class LevenbergMarquardt
{
+ static Scalar sqrt_epsilon()
+ {
+ using std::sqrt;
+ return sqrt(NumTraits<Scalar>::epsilon());
+ }
+
public:
LevenbergMarquardt(FunctorType &_functor)
: functor(_functor) { nfev = njev = iter = 0; fnorm = gnorm = 0.; useExternalScaling=false; }
typedef DenseIndex Index;
-
+
struct Parameters {
Parameters()
: factor(Scalar(100.))
, maxfev(400)
- , ftol(std::sqrt(NumTraits<Scalar>::epsilon()))
- , xtol(std::sqrt(NumTraits<Scalar>::epsilon()))
+ , ftol(sqrt_epsilon())
+ , xtol(sqrt_epsilon())
, gtol(Scalar(0.))
, epsfcn(Scalar(0.)) {}
Scalar factor;
@@ -72,7 +78,7 @@ public:
LevenbergMarquardtSpace::Status lmder1(
FVectorType &x,
- const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
+ const Scalar tol = sqrt_epsilon()
);
LevenbergMarquardtSpace::Status minimize(FVectorType &x);
@@ -83,12 +89,12 @@ public:
FunctorType &functor,
FVectorType &x,
Index *nfev,
- const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
+ const Scalar tol = sqrt_epsilon()
);
LevenbergMarquardtSpace::Status lmstr1(
FVectorType &x,
- const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
+ const Scalar tol = sqrt_epsilon()
);
LevenbergMarquardtSpace::Status minimizeOptimumStorage(FVectorType &x);
@@ -109,6 +115,7 @@ public:
Scalar lm_param(void) { return par; }
private:
+
FunctorType &functor;
Index n;
Index m;
@@ -172,7 +179,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeInit(FVectorType &x)
fjac.resize(m, n);
if (!useExternalScaling)
diag.resize(n);
- eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
+ eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");
qtf.resize(n);
/* Function Body */
@@ -208,7 +215,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(FVectorType &x)
{
using std::abs;
using std::sqrt;
-
+
eigen_assert(x.size()==n); // check the caller is not cheating us
/* calculate the jacobian matrix. */
@@ -391,7 +398,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageInit(FVectorType
fjac.resize(n, n);
if (!useExternalScaling)
diag.resize(n);
- eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
+ eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");
qtf.resize(n);
/* Function Body */
diff --git a/unsupported/Eigen/src/NumericalDiff/CMakeLists.txt b/unsupported/Eigen/src/NumericalDiff/CMakeLists.txt
deleted file mode 100644
index 1199aca2f..000000000
--- a/unsupported/Eigen/src/NumericalDiff/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_NumericalDiff_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_NumericalDiff_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/NumericalDiff COMPONENT Devel
- )
diff --git a/unsupported/Eigen/src/Polynomials/CMakeLists.txt b/unsupported/Eigen/src/Polynomials/CMakeLists.txt
deleted file mode 100644
index 51f13f3cb..000000000
--- a/unsupported/Eigen/src/Polynomials/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Polynomials_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Polynomials_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/Polynomials COMPONENT Devel
- )
diff --git a/unsupported/Eigen/src/Polynomials/PolynomialSolver.h b/unsupported/Eigen/src/Polynomials/PolynomialSolver.h
index cd5c04bbf..03198ec8e 100644
--- a/unsupported/Eigen/src/Polynomials/PolynomialSolver.h
+++ b/unsupported/Eigen/src/Polynomials/PolynomialSolver.h
@@ -41,7 +41,7 @@ class PolynomialSolverBase
protected:
template< typename OtherPolynomial >
inline void setPolynomial( const OtherPolynomial& poly ){
- m_roots.resize(poly.size()); }
+ m_roots.resize(poly.size()-1); }
public:
template< typename OtherPolynomial >
@@ -316,7 +316,7 @@ class PolynomialSolverBase
* - real roots with greatest, smallest absolute real value.
* - greatest, smallest real roots.
*
- * WARNING: this polynomial solver is experimental, part of the unsuported Eigen modules.
+ * WARNING: this polynomial solver is experimental, part of the unsupported Eigen modules.
*
*
* Currently a QR algorithm is used to compute the eigenvalues of the companion matrix of
@@ -345,10 +345,19 @@ class PolynomialSolver : public PolynomialSolverBase<_Scalar,_Deg>
void compute( const OtherPolynomial& poly )
{
eigen_assert( Scalar(0) != poly[poly.size()-1] );
- internal::companion<Scalar,_Deg> companion( poly );
- companion.balance();
- m_eigenSolver.compute( companion.denseMatrix() );
- m_roots = m_eigenSolver.eigenvalues();
+ eigen_assert( poly.size() > 1 );
+ if(poly.size() > 2 )
+ {
+ internal::companion<Scalar,_Deg> companion( poly );
+ companion.balance();
+ m_eigenSolver.compute( companion.denseMatrix() );
+ m_roots = m_eigenSolver.eigenvalues();
+ }
+ else if(poly.size () == 2)
+ {
+ m_roots.resize(1);
+ m_roots[0] = -poly[0]/poly[1];
+ }
}
public:
@@ -376,10 +385,18 @@ class PolynomialSolver<_Scalar,1> : public PolynomialSolverBase<_Scalar,1>
template< typename OtherPolynomial >
void compute( const OtherPolynomial& poly )
{
- eigen_assert( Scalar(0) != poly[poly.size()-1] );
- m_roots[0] = -poly[0]/poly[poly.size()-1];
+ eigen_assert( poly.size() == 2 );
+ eigen_assert( Scalar(0) != poly[1] );
+ m_roots[0] = -poly[0]/poly[1];
}
+ public:
+ template< typename OtherPolynomial >
+ inline PolynomialSolver( const OtherPolynomial& poly ){
+ compute( poly ); }
+
+ inline PolynomialSolver(){}
+
protected:
using PS_Base::m_roots;
};
diff --git a/unsupported/Eigen/src/Polynomials/PolynomialUtils.h b/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
index 2bb8bc84a..40ba65b7e 100644
--- a/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
+++ b/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
@@ -56,7 +56,7 @@ T poly_eval( const Polynomials& poly, const T& x )
for( DenseIndex i=1; i<poly.size(); ++i ){
val = val*inv_x + poly[i]; }
- return std::pow(x,(T)(poly.size()-1)) * val;
+ return numext::pow(x,(T)(poly.size()-1)) * val;
}
}
diff --git a/unsupported/Eigen/src/SVD/BDCSVD.h b/unsupported/Eigen/src/SVD/BDCSVD.h
deleted file mode 100644
index 11d4882e4..000000000
--- a/unsupported/Eigen/src/SVD/BDCSVD.h
+++ /dev/null
@@ -1,748 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
-// research report written by Ming Gu and Stanley C.Eisenstat
-// The code variable names correspond to the names they used in their
-// report
-//
-// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
-// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
-// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
-// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
-//
-// Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BDCSVD_H
-#define EIGEN_BDCSVD_H
-
-#define EPSILON 0.0000000000000001
-
-#define ALGOSWAP 32
-
-namespace Eigen {
-/** \ingroup SVD_Module
- *
- *
- * \class BDCSVD
- *
- * \brief class Bidiagonal Divide and Conquer SVD
- *
- * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
- * We plan to have a very similar interface to JacobiSVD on this class.
- * It should be used to speed up the calcul of SVD for big matrices.
- */
-template<typename _MatrixType>
-class BDCSVD : public SVDBase<_MatrixType>
-{
- typedef SVDBase<_MatrixType> Base;
-
-public:
- using Base::rows;
- using Base::cols;
-
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime),
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime),
- MatrixOptions = MatrixType::Options
- };
-
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
- MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
- MatrixUType;
- typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
- MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
- MatrixVType;
- typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
- typedef typename internal::plain_row_type<MatrixType>::type RowType;
- typedef typename internal::plain_col_type<MatrixType>::type ColType;
- typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
- typedef Matrix<RealScalar, Dynamic, Dynamic> MatrixXr;
- typedef Matrix<RealScalar, Dynamic, 1> VectorType;
-
- /** \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via BDCSVD::compute(const MatrixType&).
- */
- BDCSVD()
- : SVDBase<_MatrixType>::SVDBase(),
- algoswap(ALGOSWAP)
- {}
-
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem size.
- * \sa BDCSVD()
- */
- BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
- : SVDBase<_MatrixType>::SVDBase(),
- algoswap(ALGOSWAP)
- {
- allocate(rows, cols, computationOptions);
- }
-
- /** \brief Constructor performing the decomposition of given matrix.
- *
- * \param matrix the matrix to decompose
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
- * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
- * #ComputeFullV, #ComputeThinV.
- *
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
- * available with the (non - default) FullPivHouseholderQR preconditioner.
- */
- BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
- : SVDBase<_MatrixType>::SVDBase(),
- algoswap(ALGOSWAP)
- {
- compute(matrix, computationOptions);
- }
-
- ~BDCSVD()
- {
- }
- /** \brief Method performing the decomposition of given matrix using custom options.
- *
- * \param matrix the matrix to decompose
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
- * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
- * #ComputeFullV, #ComputeThinV.
- *
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
- * available with the (non - default) FullPivHouseholderQR preconditioner.
- */
- SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions);
-
- /** \brief Method performing the decomposition of given matrix using current options.
- *
- * \param matrix the matrix to decompose
- *
- * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
- */
- SVDBase<MatrixType>& compute(const MatrixType& matrix)
- {
- return compute(matrix, this->m_computationOptions);
- }
-
- void setSwitchSize(int s)
- {
- eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 4");
- algoswap = s;
- }
-
-
- /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
- *
- * \param b the right - hand - side of the equation to solve.
- *
- * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
- *
- * \note SVD solving is implicitly least - squares. Thus, this method serves both purposes of exact solving and least - squares solving.
- * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
- */
- template<typename Rhs>
- inline const internal::solve_retval<BDCSVD, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(this->m_isInitialized && "BDCSVD is not initialized.");
- eigen_assert(SVDBase<_MatrixType>::computeU() && SVDBase<_MatrixType>::computeV() &&
- "BDCSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
- return internal::solve_retval<BDCSVD, Rhs>(*this, b.derived());
- }
-
-
- const MatrixUType& matrixU() const
- {
- eigen_assert(this->m_isInitialized && "SVD is not initialized.");
- if (isTranspose){
- eigen_assert(this->computeV() && "This SVD decomposition didn't compute U. Did you ask for it?");
- return this->m_matrixV;
- }
- else
- {
- eigen_assert(this->computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
- return this->m_matrixU;
- }
-
- }
-
-
- const MatrixVType& matrixV() const
- {
- eigen_assert(this->m_isInitialized && "SVD is not initialized.");
- if (isTranspose){
- eigen_assert(this->computeU() && "This SVD decomposition didn't compute V. Did you ask for it?");
- return this->m_matrixU;
- }
- else
- {
- eigen_assert(this->computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
- return this->m_matrixV;
- }
- }
-
-private:
- void allocate(Index rows, Index cols, unsigned int computationOptions);
- void divide (Index firstCol, Index lastCol, Index firstRowW,
- Index firstColW, Index shift);
- void deflation43(Index firstCol, Index shift, Index i, Index size);
- void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
- void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
- void copyUV(MatrixXr naiveU, MatrixXr naiveV, MatrixX householderU, MatrixX houseHolderV);
-
-protected:
- MatrixXr m_naiveU, m_naiveV;
- MatrixXr m_computed;
- Index nRec;
- int algoswap;
- bool isTranspose, compU, compV;
-
-}; //end class BDCSVD
-
-
-// Methode to allocate ans initialize matrix and attributs
-template<typename MatrixType>
-void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
-{
- isTranspose = (cols > rows);
- if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return;
- m_computed = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize );
- if (isTranspose){
- compU = this->computeU();
- compV = this->computeV();
- }
- else
- {
- compV = this->computeU();
- compU = this->computeV();
- }
- if (compU) m_naiveU = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize + 1 );
- else m_naiveU = MatrixXr::Zero(2, this->m_diagSize + 1 );
-
- if (compV) m_naiveV = MatrixXr::Zero(this->m_diagSize, this->m_diagSize);
-
-
- //should be changed for a cleaner implementation
- if (isTranspose){
- bool aux;
- if (this->computeU()||this->computeV()){
- aux = this->m_computeFullU;
- this->m_computeFullU = this->m_computeFullV;
- this->m_computeFullV = aux;
- aux = this->m_computeThinU;
- this->m_computeThinU = this->m_computeThinV;
- this->m_computeThinV = aux;
- }
- }
-}// end allocate
-
-// Methode which compute the BDCSVD for the int
-template<>
-SVDBase<Matrix<int, Dynamic, Dynamic> >&
-BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(const MatrixType& matrix, unsigned int computationOptions) {
- allocate(matrix.rows(), matrix.cols(), computationOptions);
- this->m_nonzeroSingularValues = 0;
- m_computed = Matrix<int, Dynamic, Dynamic>::Zero(rows(), cols());
- for (int i=0; i<this->m_diagSize; i++) {
- this->m_singularValues.coeffRef(i) = 0;
- }
- if (this->m_computeFullU) this->m_matrixU = Matrix<int, Dynamic, Dynamic>::Zero(rows(), rows());
- if (this->m_computeFullV) this->m_matrixV = Matrix<int, Dynamic, Dynamic>::Zero(cols(), cols());
- this->m_isInitialized = true;
- return *this;
-}
-
-
-// Methode which compute the BDCSVD
-template<typename MatrixType>
-SVDBase<MatrixType>&
-BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
-{
- allocate(matrix.rows(), matrix.cols(), computationOptions);
- using std::abs;
-
- //**** step 1 Bidiagonalization isTranspose = (matrix.cols()>matrix.rows()) ;
- MatrixType copy;
- if (isTranspose) copy = matrix.adjoint();
- else copy = matrix;
-
- internal::UpperBidiagonalization<MatrixX > bid(copy);
-
- //**** step 2 Divide
- // this is ugly and has to be redone (care of complex cast)
- MatrixXr temp;
- temp = bid.bidiagonal().toDenseMatrix().transpose();
- m_computed.setZero();
- for (int i=0; i<this->m_diagSize - 1; i++) {
- m_computed(i, i) = temp(i, i);
- m_computed(i + 1, i) = temp(i + 1, i);
- }
- m_computed(this->m_diagSize - 1, this->m_diagSize - 1) = temp(this->m_diagSize - 1, this->m_diagSize - 1);
- divide(0, this->m_diagSize - 1, 0, 0, 0);
-
- //**** step 3 copy
- for (int i=0; i<this->m_diagSize; i++) {
- RealScalar a = abs(m_computed.coeff(i, i));
- this->m_singularValues.coeffRef(i) = a;
- if (a == 0){
- this->m_nonzeroSingularValues = i;
- break;
- }
- else if (i == this->m_diagSize - 1)
- {
- this->m_nonzeroSingularValues = i + 1;
- break;
- }
- }
- copyUV(m_naiveV, m_naiveU, bid.householderU(), bid.householderV());
- this->m_isInitialized = true;
- return *this;
-}// end compute
-
-
-template<typename MatrixType>
-void BDCSVD<MatrixType>::copyUV(MatrixXr naiveU, MatrixXr naiveV, MatrixX householderU, MatrixX householderV){
- if (this->computeU()){
- MatrixX temp = MatrixX::Zero(naiveU.rows(), naiveU.cols());
- temp.real() = naiveU;
- if (this->m_computeThinU){
- this->m_matrixU = MatrixX::Identity(householderU.cols(), this->m_nonzeroSingularValues );
- this->m_matrixU.block(0, 0, this->m_diagSize, this->m_nonzeroSingularValues) =
- temp.block(0, 0, this->m_diagSize, this->m_nonzeroSingularValues);
- this->m_matrixU = householderU * this->m_matrixU ;
- }
- else
- {
- this->m_matrixU = MatrixX::Identity(householderU.cols(), householderU.cols());
- this->m_matrixU.block(0, 0, this->m_diagSize, this->m_diagSize) = temp.block(0, 0, this->m_diagSize, this->m_diagSize);
- this->m_matrixU = householderU * this->m_matrixU ;
- }
- }
- if (this->computeV()){
- MatrixX temp = MatrixX::Zero(naiveV.rows(), naiveV.cols());
- temp.real() = naiveV;
- if (this->m_computeThinV){
- this->m_matrixV = MatrixX::Identity(householderV.cols(),this->m_nonzeroSingularValues );
- this->m_matrixV.block(0, 0, this->m_nonzeroSingularValues, this->m_nonzeroSingularValues) =
- temp.block(0, 0, this->m_nonzeroSingularValues, this->m_nonzeroSingularValues);
- this->m_matrixV = householderV * this->m_matrixV ;
- }
- else
- {
- this->m_matrixV = MatrixX::Identity(householderV.cols(), householderV.cols());
- this->m_matrixV.block(0, 0, this->m_diagSize, this->m_diagSize) = temp.block(0, 0, this->m_diagSize, this->m_diagSize);
- this->m_matrixV = householderV * this->m_matrixV;
- }
- }
-}
-
-// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
-// place of the submatrix we are currently working on.
-
-//@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
-//@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU;
-// lastCol + 1 - firstCol is the size of the submatrix.
-//@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
-//@param firstRowW : Same as firstRowW with the column.
-//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
-// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
-template<typename MatrixType>
-void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
- Index firstColW, Index shift)
-{
- // requires nbRows = nbCols + 1;
- using std::pow;
- using std::sqrt;
- using std::abs;
- const Index n = lastCol - firstCol + 1;
- const Index k = n/2;
- RealScalar alphaK;
- RealScalar betaK;
- RealScalar r0;
- RealScalar lambda, phi, c0, s0;
- MatrixXr l, f;
- // We use the other algorithm which is more efficient for small
- // matrices.
- if (n < algoswap){
- JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n),
- ComputeFullU | (ComputeFullV * compV)) ;
- if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() << b.matrixU();
- else
- {
- m_naiveU.row(0).segment(firstCol, n + 1).real() << b.matrixU().row(0);
- m_naiveU.row(1).segment(firstCol, n + 1).real() << b.matrixU().row(n);
- }
- if (compV) m_naiveV.block(firstRowW, firstColW, n, n).real() << b.matrixV();
- m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
- for (int i=0; i<n; i++)
- {
- m_computed(firstCol + shift + i, firstCol + shift +i) = b.singularValues().coeffRef(i);
- }
- return;
- }
- // We use the divide and conquer algorithm
- alphaK = m_computed(firstCol + k, firstCol + k);
- betaK = m_computed(firstCol + k + 1, firstCol + k);
- // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
- // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the
- // right submatrix before the left one.
- divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
- divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
- if (compU)
- {
- lambda = m_naiveU(firstCol + k, firstCol + k);
- phi = m_naiveU(firstCol + k + 1, lastCol + 1);
- }
- else
- {
- lambda = m_naiveU(1, firstCol + k);
- phi = m_naiveU(0, lastCol + 1);
- }
- r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda))
- + abs(betaK * phi) * abs(betaK * phi));
- if (compU)
- {
- l = m_naiveU.row(firstCol + k).segment(firstCol, k);
- f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
- }
- else
- {
- l = m_naiveU.row(1).segment(firstCol, k);
- f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
- }
- if (compV) m_naiveV(firstRowW+k, firstColW) = 1;
- if (r0 == 0)
- {
- c0 = 1;
- s0 = 0;
- }
- else
- {
- c0 = alphaK * lambda / r0;
- s0 = betaK * phi / r0;
- }
- if (compU)
- {
- MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
- // we shiftW Q1 to the right
- for (Index i = firstCol + k - 1; i >= firstCol; i--)
- {
- m_naiveU.col(i + 1).segment(firstCol, k + 1) << m_naiveU.col(i).segment(firstCol, k + 1);
- }
- // we shift q1 at the left with a factor c0
- m_naiveU.col(firstCol).segment( firstCol, k + 1) << (q1 * c0);
- // last column = q1 * - s0
- m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) << (q1 * ( - s0));
- // first column = q2 * s0
- m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) <<
- m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *s0;
- // q2 *= c0
- m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
- }
- else
- {
- RealScalar q1 = (m_naiveU(0, firstCol + k));
- // we shift Q1 to the right
- for (Index i = firstCol + k - 1; i >= firstCol; i--)
- {
- m_naiveU(0, i + 1) = m_naiveU(0, i);
- }
- // we shift q1 at the left with a factor c0
- m_naiveU(0, firstCol) = (q1 * c0);
- // last column = q1 * - s0
- m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
- // first column = q2 * s0
- m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0;
- // q2 *= c0
- m_naiveU(1, lastCol + 1) *= c0;
- m_naiveU.row(1).segment(firstCol + 1, k).setZero();
- m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
- }
- m_computed(firstCol + shift, firstCol + shift) = r0;
- m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) << alphaK * l.transpose().real();
- m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) << betaK * f.transpose().real();
-
-
- // the line below do the deflation of the matrix for the third part of the algorithm
- // Here the deflation is commented because the third part of the algorithm is not implemented
- // the third part of the algorithm is a fast SVD on the matrix m_computed which works thanks to the deflation
-
- deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
-
- // Third part of the algorithm, since the real third part of the algorithm is not implemeted we use a JacobiSVD
- JacobiSVD<MatrixXr> res= JacobiSVD<MatrixXr>(m_computed.block(firstCol + shift, firstCol +shift, n + 1, n),
- ComputeFullU | (ComputeFullV * compV)) ;
- if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1) *= res.matrixU();
- else m_naiveU.block(0, firstCol, 2, n + 1) *= res.matrixU();
-
- if (compV) m_naiveV.block(firstRowW, firstColW, n, n) *= res.matrixV();
- m_computed.block(firstCol + shift, firstCol + shift, n, n) << MatrixXr::Zero(n, n);
- for (int i=0; i<n; i++)
- m_computed(firstCol + shift + i, firstCol + shift +i) = res.singularValues().coeffRef(i);
- // end of the third part
-
-
-}// end divide
-
-
-// page 12_13
-// i >= 1, di almost null and zi non null.
-// We use a rotation to zero out zi applied to the left of M
-template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size){
- using std::abs;
- using std::sqrt;
- using std::pow;
- RealScalar c = m_computed(firstCol + shift, firstCol + shift);
- RealScalar s = m_computed(i, firstCol + shift);
- RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
- if (r == 0){
- m_computed(i, i)=0;
- return;
- }
- c/=r;
- s/=r;
- m_computed(firstCol + shift, firstCol + shift) = r;
- m_computed(i, firstCol + shift) = 0;
- m_computed(i, i) = 0;
- if (compU){
- m_naiveU.col(firstCol).segment(firstCol,size) =
- c * m_naiveU.col(firstCol).segment(firstCol, size) -
- s * m_naiveU.col(i).segment(firstCol, size) ;
-
- m_naiveU.col(i).segment(firstCol, size) =
- (c + s*s/c) * m_naiveU.col(i).segment(firstCol, size) +
- (s/c) * m_naiveU.col(firstCol).segment(firstCol,size);
- }
-}// end deflation 43
-
-
-// page 13
-// i,j >= 1, i != j and |di - dj| < epsilon * norm2(M)
-// We apply two rotations to have zj = 0;
-template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size){
- using std::abs;
- using std::sqrt;
- using std::conj;
- using std::pow;
- RealScalar c = m_computed(firstColm, firstColm + j - 1);
- RealScalar s = m_computed(firstColm, firstColm + i - 1);
- RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
- if (r==0){
- m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
- return;
- }
- c/=r;
- s/=r;
- m_computed(firstColm + i, firstColm) = r;
- m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
- m_computed(firstColm + j, firstColm) = 0;
- if (compU){
- m_naiveU.col(firstColu + i).segment(firstColu, size) =
- c * m_naiveU.col(firstColu + i).segment(firstColu, size) -
- s * m_naiveU.col(firstColu + j).segment(firstColu, size) ;
-
- m_naiveU.col(firstColu + j).segment(firstColu, size) =
- (c + s*s/c) * m_naiveU.col(firstColu + j).segment(firstColu, size) +
- (s/c) * m_naiveU.col(firstColu + i).segment(firstColu, size);
- }
- if (compV){
- m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) =
- c * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) +
- s * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) ;
-
- m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) =
- (c + s*s/c) * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) -
- (s/c) * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1);
- }
-}// end deflation 44
-
-
-
-template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift){
- //condition 4.1
- RealScalar EPS = EPSILON * (std::max<RealScalar>(m_computed(firstCol + shift + 1, firstCol + shift + 1), m_computed(firstCol + k, firstCol + k)));
- const Index length = lastCol + 1 - firstCol;
- if (m_computed(firstCol + shift, firstCol + shift) < EPS){
- m_computed(firstCol + shift, firstCol + shift) = EPS;
- }
- //condition 4.2
- for (Index i=firstCol + shift + 1;i<=lastCol + shift;i++){
- if (std::abs(m_computed(i, firstCol + shift)) < EPS){
- m_computed(i, firstCol + shift) = 0;
- }
- }
-
- //condition 4.3
- for (Index i=firstCol + shift + 1;i<=lastCol + shift; i++){
- if (m_computed(i, i) < EPS){
- deflation43(firstCol, shift, i, length);
- }
- }
-
- //condition 4.4
-
- Index i=firstCol + shift + 1, j=firstCol + shift + k + 1;
- //we stock the final place of each line
- Index *permutation = new Index[length];
-
- for (Index p =1; p < length; p++) {
- if (i> firstCol + shift + k){
- permutation[p] = j;
- j++;
- } else if (j> lastCol + shift)
- {
- permutation[p] = i;
- i++;
- }
- else
- {
- if (m_computed(i, i) < m_computed(j, j)){
- permutation[p] = j;
- j++;
- }
- else
- {
- permutation[p] = i;
- i++;
- }
- }
- }
- //we do the permutation
- RealScalar aux;
- //we stock the current index of each col
- //and the column of each index
- Index *realInd = new Index[length];
- Index *realCol = new Index[length];
- for (int pos = 0; pos< length; pos++){
- realCol[pos] = pos + firstCol + shift;
- realInd[pos] = pos;
- }
- const Index Zero = firstCol + shift;
- VectorType temp;
- for (int i = 1; i < length - 1; i++){
- const Index I = i + Zero;
- const Index realI = realInd[i];
- const Index j = permutation[length - i] - Zero;
- const Index J = realCol[j];
-
- //diag displace
- aux = m_computed(I, I);
- m_computed(I, I) = m_computed(J, J);
- m_computed(J, J) = aux;
-
- //firstrow displace
- aux = m_computed(I, Zero);
- m_computed(I, Zero) = m_computed(J, Zero);
- m_computed(J, Zero) = aux;
-
- // change columns
- if (compU) {
- temp = m_naiveU.col(I - shift).segment(firstCol, length + 1);
- m_naiveU.col(I - shift).segment(firstCol, length + 1) <<
- m_naiveU.col(J - shift).segment(firstCol, length + 1);
- m_naiveU.col(J - shift).segment(firstCol, length + 1) << temp;
- }
- else
- {
- temp = m_naiveU.col(I - shift).segment(0, 2);
- m_naiveU.col(I - shift).segment(0, 2) <<
- m_naiveU.col(J - shift).segment(0, 2);
- m_naiveU.col(J - shift).segment(0, 2) << temp;
- }
- if (compV) {
- const Index CWI = I + firstColW - Zero;
- const Index CWJ = J + firstColW - Zero;
- temp = m_naiveV.col(CWI).segment(firstRowW, length);
- m_naiveV.col(CWI).segment(firstRowW, length) << m_naiveV.col(CWJ).segment(firstRowW, length);
- m_naiveV.col(CWJ).segment(firstRowW, length) << temp;
- }
-
- //update real pos
- realCol[realI] = J;
- realCol[j] = I;
- realInd[J - Zero] = realI;
- realInd[I - Zero] = j;
- }
- for (Index i = firstCol + shift + 1; i<lastCol + shift;i++){
- if ((m_computed(i + 1, i + 1) - m_computed(i, i)) < EPS){
- deflation44(firstCol ,
- firstCol + shift,
- firstRowW,
- firstColW,
- i - Zero,
- i + 1 - Zero,
- length);
- }
- }
- delete [] permutation;
- delete [] realInd;
- delete [] realCol;
-
-}//end deflation
-
-
-namespace internal{
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<BDCSVD<_MatrixType>, Rhs>
- : solve_retval_base<BDCSVD<_MatrixType>, Rhs>
-{
- typedef BDCSVD<_MatrixType> BDCSVDType;
- EIGEN_MAKE_SOLVE_HELPERS(BDCSVDType, Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- eigen_assert(rhs().rows() == dec().rows());
- // A = U S V^*
- // So A^{ - 1} = V S^{ - 1} U^*
- Index diagSize = (std::min)(dec().rows(), dec().cols());
- typename BDCSVDType::SingularValuesType invertedSingVals(diagSize);
- Index nonzeroSingVals = dec().nonzeroSingularValues();
- invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
- invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
-
- dst = dec().matrixV().leftCols(diagSize)
- * invertedSingVals.asDiagonal()
- * dec().matrixU().leftCols(diagSize).adjoint()
- * rhs();
- return;
- }
-};
-
-} //end namespace internal
-
- /** \svd_module
- *
- * \return the singular value decomposition of \c *this computed by
- * BDC Algorithm
- *
- * \sa class BDCSVD
- */
-/*
-template<typename Derived>
-BDCSVD<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
-{
- return BDCSVD<PlainObject>(*this, computationOptions);
-}
-*/
-
-} // end namespace Eigen
-
-#endif
diff --git a/unsupported/Eigen/src/SVD/CMakeLists.txt b/unsupported/Eigen/src/SVD/CMakeLists.txt
deleted file mode 100644
index b40baf092..000000000
--- a/unsupported/Eigen/src/SVD/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_SVD_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_SVD_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}unsupported/Eigen/src/SVD COMPONENT Devel
- )
diff --git a/unsupported/Eigen/src/SVD/JacobiSVD.h b/unsupported/Eigen/src/SVD/JacobiSVD.h
deleted file mode 100644
index 02fac409e..000000000
--- a/unsupported/Eigen/src/SVD/JacobiSVD.h
+++ /dev/null
@@ -1,782 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_JACOBISVD_H
-#define EIGEN_JACOBISVD_H
-
-namespace Eigen {
-
-namespace internal {
-// forward declaration (needed by ICC)
-// the empty body is required by MSVC
-template<typename MatrixType, int QRPreconditioner,
- bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
-struct svd_precondition_2x2_block_to_be_real {};
-
-/*** QR preconditioners (R-SVD)
- ***
- *** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
- *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
- *** JacobiSVD which by itself is only able to work on square matrices.
- ***/
-
-enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
-
-template<typename MatrixType, int QRPreconditioner, int Case>
-struct qr_preconditioner_should_do_anything
-{
- enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
- MatrixType::ColsAtCompileTime != Dynamic &&
- MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
- b = MatrixType::RowsAtCompileTime != Dynamic &&
- MatrixType::ColsAtCompileTime != Dynamic &&
- MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
- ret = !( (QRPreconditioner == NoQRPreconditioner) ||
- (Case == PreconditionIfMoreColsThanRows && bool(a)) ||
- (Case == PreconditionIfMoreRowsThanCols && bool(b)) )
- };
-};
-
-template<typename MatrixType, int QRPreconditioner, int Case,
- bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
-> struct qr_preconditioner_impl {};
-
-template<typename MatrixType, int QRPreconditioner, int Case>
-class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
-{
-public:
- typedef typename MatrixType::Index Index;
- void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
- bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
- {
- return false;
- }
-};
-
-/*** preconditioner using FullPivHouseholderQR ***/
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
-{
-public:
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
- enum
- {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
- };
- typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
-
- void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
- {
- if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.rows(), svd.cols());
- }
- if (svd.m_computeFullU) m_workspace.resize(svd.rows());
- }
-
- bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.rows() > matrix.cols())
- {
- m_qr.compute(matrix);
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
- if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
- if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
- return true;
- }
- return false;
- }
-private:
- typedef FullPivHouseholderQR<MatrixType> QRType;
- QRType m_qr;
- WorkspaceType m_workspace;
-};
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
-{
-public:
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
- enum
- {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- Options = MatrixType::Options
- };
- typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
- TransposeTypeWithSameStorageOrder;
-
- void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
- {
- if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.cols(), svd.rows());
- }
- m_adjoint.resize(svd.cols(), svd.rows());
- if (svd.m_computeFullV) m_workspace.resize(svd.cols());
- }
-
- bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.cols() > matrix.rows())
- {
- m_adjoint = matrix.adjoint();
- m_qr.compute(m_adjoint);
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
- if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
- if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
- return true;
- }
- else return false;
- }
-private:
- typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
- QRType m_qr;
- TransposeTypeWithSameStorageOrder m_adjoint;
- typename internal::plain_row_type<MatrixType>::type m_workspace;
-};
-
-/*** preconditioner using ColPivHouseholderQR ***/
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
-{
-public:
- typedef typename MatrixType::Index Index;
-
- void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
- {
- if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.rows(), svd.cols());
- }
- if (svd.m_computeFullU) m_workspace.resize(svd.rows());
- else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
- }
-
- bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.rows() > matrix.cols())
- {
- m_qr.compute(matrix);
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
- if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
- else if(svd.m_computeThinU)
- {
- svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
- m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
- }
- if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
- return true;
- }
- return false;
- }
-
-private:
- typedef ColPivHouseholderQR<MatrixType> QRType;
- QRType m_qr;
- typename internal::plain_col_type<MatrixType>::type m_workspace;
-};
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
-{
-public:
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
- enum
- {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- Options = MatrixType::Options
- };
-
- typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
- TransposeTypeWithSameStorageOrder;
-
- void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
- {
- if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.cols(), svd.rows());
- }
- if (svd.m_computeFullV) m_workspace.resize(svd.cols());
- else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
- m_adjoint.resize(svd.cols(), svd.rows());
- }
-
- bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.cols() > matrix.rows())
- {
- m_adjoint = matrix.adjoint();
- m_qr.compute(m_adjoint);
-
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
- if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
- else if(svd.m_computeThinV)
- {
- svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
- m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
- }
- if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
- return true;
- }
- else return false;
- }
-
-private:
- typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
- QRType m_qr;
- TransposeTypeWithSameStorageOrder m_adjoint;
- typename internal::plain_row_type<MatrixType>::type m_workspace;
-};
-
-/*** preconditioner using HouseholderQR ***/
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
-{
-public:
- typedef typename MatrixType::Index Index;
-
- void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
- {
- if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.rows(), svd.cols());
- }
- if (svd.m_computeFullU) m_workspace.resize(svd.rows());
- else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
- }
-
- bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.rows() > matrix.cols())
- {
- m_qr.compute(matrix);
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
- if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
- else if(svd.m_computeThinU)
- {
- svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
- m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
- }
- if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
- return true;
- }
- return false;
- }
-private:
- typedef HouseholderQR<MatrixType> QRType;
- QRType m_qr;
- typename internal::plain_col_type<MatrixType>::type m_workspace;
-};
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
-{
-public:
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
- enum
- {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- Options = MatrixType::Options
- };
-
- typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
- TransposeTypeWithSameStorageOrder;
-
- void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
- {
- if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.cols(), svd.rows());
- }
- if (svd.m_computeFullV) m_workspace.resize(svd.cols());
- else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
- m_adjoint.resize(svd.cols(), svd.rows());
- }
-
- bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.cols() > matrix.rows())
- {
- m_adjoint = matrix.adjoint();
- m_qr.compute(m_adjoint);
-
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
- if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
- else if(svd.m_computeThinV)
- {
- svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
- m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
- }
- if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
- return true;
- }
- else return false;
- }
-
-private:
- typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
- QRType m_qr;
- TransposeTypeWithSameStorageOrder m_adjoint;
- typename internal::plain_row_type<MatrixType>::type m_workspace;
-};
-
-/*** 2x2 SVD implementation
- ***
- *** JacobiSVD consists in performing a series of 2x2 SVD subproblems
- ***/
-
-template<typename MatrixType, int QRPreconditioner>
-struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
-{
- typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
- typedef typename SVD::Index Index;
- static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
-};
-
-template<typename MatrixType, int QRPreconditioner>
-struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
-{
- typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename SVD::Index Index;
- static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
- {
- using std::sqrt;
- Scalar z;
- JacobiRotation<Scalar> rot;
- RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
- if(n==0)
- {
- z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
- work_matrix.row(p) *= z;
- if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
- z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
- work_matrix.row(q) *= z;
- if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
- }
- else
- {
- rot.c() = conj(work_matrix.coeff(p,p)) / n;
- rot.s() = work_matrix.coeff(q,p) / n;
- work_matrix.applyOnTheLeft(p,q,rot);
- if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
- if(work_matrix.coeff(p,q) != Scalar(0))
- {
- Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
- work_matrix.col(q) *= z;
- if(svd.computeV()) svd.m_matrixV.col(q) *= z;
- }
- if(work_matrix.coeff(q,q) != Scalar(0))
- {
- z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
- work_matrix.row(q) *= z;
- if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
- }
- }
- }
-};
-
-template<typename MatrixType, typename RealScalar, typename Index>
-void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
- JacobiRotation<RealScalar> *j_left,
- JacobiRotation<RealScalar> *j_right)
-{
- using std::sqrt;
- Matrix<RealScalar,2,2> m;
- m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
- numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
- JacobiRotation<RealScalar> rot1;
- RealScalar t = m.coeff(0,0) + m.coeff(1,1);
- RealScalar d = m.coeff(1,0) - m.coeff(0,1);
- if(t == RealScalar(0))
- {
- rot1.c() = RealScalar(0);
- rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
- }
- else
- {
- RealScalar u = d / t;
- rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u));
- rot1.s() = rot1.c() * u;
- }
- m.applyOnTheLeft(0,1,rot1);
- j_right->makeJacobi(m,0,1);
- *j_left = rot1 * j_right->transpose();
-}
-
-} // end namespace internal
-
-/** \ingroup SVD_Module
- *
- *
- * \class JacobiSVD
- *
- * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
- *
- * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
- * \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
- * for the R-SVD step for non-square matrices. See discussion of possible values below.
- *
- * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
- * \f[ A = U S V^* \f]
- * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
- * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
- * and right \em singular \em vectors of \a A respectively.
- *
- * Singular values are always sorted in decreasing order.
- *
- * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
- *
- * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
- * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
- * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
- * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
- *
- * Here's an example demonstrating basic usage:
- * \include JacobiSVD_basic.cpp
- * Output: \verbinclude JacobiSVD_basic.out
- *
- * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
- * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
- * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
- * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
- *
- * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
- * terminate in finite (and reasonable) time.
- *
- * The possible values for QRPreconditioner are:
- * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
- * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
- * Contrary to other QRs, it doesn't allow computing thin unitaries.
- * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
- * This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
- * is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
- * process is more reliable than the optimized bidiagonal SVD iterations.
- * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
- * JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
- * faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
- * if QR preconditioning is needed before applying it anyway.
- *
- * \sa MatrixBase::jacobiSvd()
- */
-template<typename _MatrixType, int QRPreconditioner>
-class JacobiSVD : public SVDBase<_MatrixType>
-{
- public:
-
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
- MatrixOptions = MatrixType::Options
- };
-
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
- MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
- MatrixUType;
- typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
- MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
- MatrixVType;
- typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
- typedef typename internal::plain_row_type<MatrixType>::type RowType;
- typedef typename internal::plain_col_type<MatrixType>::type ColType;
- typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
- MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
- WorkMatrixType;
-
- /** \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via JacobiSVD::compute(const MatrixType&).
- */
- JacobiSVD()
- : SVDBase<_MatrixType>::SVDBase()
- {}
-
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem size.
- * \sa JacobiSVD()
- */
- JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
- : SVDBase<_MatrixType>::SVDBase()
- {
- allocate(rows, cols, computationOptions);
- }
-
- /** \brief Constructor performing the decomposition of given matrix.
- *
- * \param matrix the matrix to decompose
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
- * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
- * #ComputeFullV, #ComputeThinV.
- *
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
- * available with the (non-default) FullPivHouseholderQR preconditioner.
- */
- JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
- : SVDBase<_MatrixType>::SVDBase()
- {
- compute(matrix, computationOptions);
- }
-
- /** \brief Method performing the decomposition of given matrix using custom options.
- *
- * \param matrix the matrix to decompose
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
- * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
- * #ComputeFullV, #ComputeThinV.
- *
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
- * available with the (non-default) FullPivHouseholderQR preconditioner.
- */
- SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions);
-
- /** \brief Method performing the decomposition of given matrix using current options.
- *
- * \param matrix the matrix to decompose
- *
- * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
- */
- SVDBase<MatrixType>& compute(const MatrixType& matrix)
- {
- return compute(matrix, this->m_computationOptions);
- }
-
- /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
- *
- * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
- * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
- */
- template<typename Rhs>
- inline const internal::solve_retval<JacobiSVD, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(this->m_isInitialized && "JacobiSVD is not initialized.");
- eigen_assert(SVDBase<MatrixType>::computeU() && SVDBase<MatrixType>::computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
- return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
- }
-
-
-
- private:
- void allocate(Index rows, Index cols, unsigned int computationOptions);
-
- protected:
- WorkMatrixType m_workMatrix;
-
- template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
- friend struct internal::svd_precondition_2x2_block_to_be_real;
- template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
- friend struct internal::qr_preconditioner_impl;
-
- internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
- internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
-};
-
-template<typename MatrixType, int QRPreconditioner>
-void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
-{
- if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return;
-
- if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
- {
- eigen_assert(!(this->m_computeThinU || this->m_computeThinV) &&
- "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
- "Use the ColPivHouseholderQR preconditioner instead.");
- }
-
- m_workMatrix.resize(this->m_diagSize, this->m_diagSize);
-
- if(this->m_cols>this->m_rows) m_qr_precond_morecols.allocate(*this);
- if(this->m_rows>this->m_cols) m_qr_precond_morerows.allocate(*this);
-}
-
-template<typename MatrixType, int QRPreconditioner>
-SVDBase<MatrixType>&
-JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
-{
- using std::abs;
- allocate(matrix.rows(), matrix.cols(), computationOptions);
-
- // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
- // only worsening the precision of U and V as we accumulate more rotations
- const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
-
- // limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
- const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min();
-
- /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
-
- if(!m_qr_precond_morecols.run(*this, matrix) && !m_qr_precond_morerows.run(*this, matrix))
- {
- m_workMatrix = matrix.block(0,0,this->m_diagSize,this->m_diagSize);
- if(this->m_computeFullU) this->m_matrixU.setIdentity(this->m_rows,this->m_rows);
- if(this->m_computeThinU) this->m_matrixU.setIdentity(this->m_rows,this->m_diagSize);
- if(this->m_computeFullV) this->m_matrixV.setIdentity(this->m_cols,this->m_cols);
- if(this->m_computeThinV) this->m_matrixV.setIdentity(this->m_cols, this->m_diagSize);
- }
-
- /*** step 2. The main Jacobi SVD iteration. ***/
-
- bool finished = false;
- while(!finished)
- {
- finished = true;
-
- // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix
-
- for(Index p = 1; p < this->m_diagSize; ++p)
- {
- for(Index q = 0; q < p; ++q)
- {
- // if this 2x2 sub-matrix is not diagonal already...
- // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
- // keep us iterating forever. Similarly, small denormal numbers are considered zero.
- using std::max;
- RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
- abs(m_workMatrix.coeff(q,q))));
- if((max)(abs(m_workMatrix.coeff(p,q)),abs(m_workMatrix.coeff(q,p))) > threshold)
- {
- finished = false;
-
- // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
- internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
- JacobiRotation<RealScalar> j_left, j_right;
- internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
-
- // accumulate resulting Jacobi rotations
- m_workMatrix.applyOnTheLeft(p,q,j_left);
- if(SVDBase<MatrixType>::computeU()) this->m_matrixU.applyOnTheRight(p,q,j_left.transpose());
-
- m_workMatrix.applyOnTheRight(p,q,j_right);
- if(SVDBase<MatrixType>::computeV()) this->m_matrixV.applyOnTheRight(p,q,j_right);
- }
- }
- }
- }
-
- /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/
-
- for(Index i = 0; i < this->m_diagSize; ++i)
- {
- RealScalar a = abs(m_workMatrix.coeff(i,i));
- this->m_singularValues.coeffRef(i) = a;
- if(SVDBase<MatrixType>::computeU() && (a!=RealScalar(0))) this->m_matrixU.col(i) *= this->m_workMatrix.coeff(i,i)/a;
- }
-
- /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/
-
- this->m_nonzeroSingularValues = this->m_diagSize;
- for(Index i = 0; i < this->m_diagSize; i++)
- {
- Index pos;
- RealScalar maxRemainingSingularValue = this->m_singularValues.tail(this->m_diagSize-i).maxCoeff(&pos);
- if(maxRemainingSingularValue == RealScalar(0))
- {
- this->m_nonzeroSingularValues = i;
- break;
- }
- if(pos)
- {
- pos += i;
- std::swap(this->m_singularValues.coeffRef(i), this->m_singularValues.coeffRef(pos));
- if(SVDBase<MatrixType>::computeU()) this->m_matrixU.col(pos).swap(this->m_matrixU.col(i));
- if(SVDBase<MatrixType>::computeV()) this->m_matrixV.col(pos).swap(this->m_matrixV.col(i));
- }
- }
-
- this->m_isInitialized = true;
- return *this;
-}
-
-namespace internal {
-template<typename _MatrixType, int QRPreconditioner, typename Rhs>
-struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
- : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
-{
- typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
- EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- eigen_assert(rhs().rows() == dec().rows());
-
- // A = U S V^*
- // So A^{-1} = V S^{-1} U^*
-
- Index diagSize = (std::min)(dec().rows(), dec().cols());
- typename JacobiSVDType::SingularValuesType invertedSingVals(diagSize);
-
- Index nonzeroSingVals = dec().nonzeroSingularValues();
- invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
- invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
-
- dst = dec().matrixV().leftCols(diagSize)
- * invertedSingVals.asDiagonal()
- * dec().matrixU().leftCols(diagSize).adjoint()
- * rhs();
- }
-};
-} // end namespace internal
-
-/** \svd_module
- *
- * \return the singular value decomposition of \c *this computed by two-sided
- * Jacobi transformations.
- *
- * \sa class JacobiSVD
- */
-template<typename Derived>
-JacobiSVD<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
-{
- return JacobiSVD<PlainObject>(*this, computationOptions);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_JACOBISVD_H
diff --git a/unsupported/Eigen/src/SVD/SVDBase.h b/unsupported/Eigen/src/SVD/SVDBase.h
deleted file mode 100644
index fd8af3b8c..000000000
--- a/unsupported/Eigen/src/SVD/SVDBase.h
+++ /dev/null
@@ -1,236 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
-// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
-// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
-// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SVD_H
-#define EIGEN_SVD_H
-
-namespace Eigen {
-/** \ingroup SVD_Module
- *
- *
- * \class SVDBase
- *
- * \brief Mother class of SVD classes algorithms
- *
- * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
- * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
- * \f[ A = U S V^* \f]
- * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
- * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
- * and right \em singular \em vectors of \a A respectively.
- *
- * Singular values are always sorted in decreasing order.
- *
- *
- * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
- * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
- * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
- * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
- *
- * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
- * terminate in finite (and reasonable) time.
- * \sa MatrixBase::genericSvd()
- */
-template<typename _MatrixType>
-class SVDBase
-{
-
-public:
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
- MatrixOptions = MatrixType::Options
- };
-
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
- MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
- MatrixUType;
- typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
- MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
- MatrixVType;
- typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
- typedef typename internal::plain_row_type<MatrixType>::type RowType;
- typedef typename internal::plain_col_type<MatrixType>::type ColType;
- typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
- MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
- WorkMatrixType;
-
-
-
-
- /** \brief Method performing the decomposition of given matrix using custom options.
- *
- * \param matrix the matrix to decompose
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
- * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
- * #ComputeFullV, #ComputeThinV.
- *
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
- * available with the (non-default) FullPivHouseholderQR preconditioner.
- */
- SVDBase& compute(const MatrixType& matrix, unsigned int computationOptions);
-
- /** \brief Method performing the decomposition of given matrix using current options.
- *
- * \param matrix the matrix to decompose
- *
- * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
- */
- //virtual SVDBase& compute(const MatrixType& matrix) = 0;
- SVDBase& compute(const MatrixType& matrix);
-
- /** \returns the \a U matrix.
- *
- * For the SVDBase decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
- * the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
- *
- * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
- *
- * This method asserts that you asked for \a U to be computed.
- */
- const MatrixUType& matrixU() const
- {
- eigen_assert(m_isInitialized && "SVD is not initialized.");
- eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
- return m_matrixU;
- }
-
- /** \returns the \a V matrix.
- *
- * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
- * the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV.
- *
- * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
- *
- * This method asserts that you asked for \a V to be computed.
- */
- const MatrixVType& matrixV() const
- {
- eigen_assert(m_isInitialized && "SVD is not initialized.");
- eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
- return m_matrixV;
- }
-
- /** \returns the vector of singular values.
- *
- * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
- * returned vector has size \a m. Singular values are always sorted in decreasing order.
- */
- const SingularValuesType& singularValues() const
- {
- eigen_assert(m_isInitialized && "SVD is not initialized.");
- return m_singularValues;
- }
-
-
-
- /** \returns the number of singular values that are not exactly 0 */
- Index nonzeroSingularValues() const
- {
- eigen_assert(m_isInitialized && "SVD is not initialized.");
- return m_nonzeroSingularValues;
- }
-
-
- /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
- inline bool computeU() const { return m_computeFullU || m_computeThinU; }
- /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
- inline bool computeV() const { return m_computeFullV || m_computeThinV; }
-
-
- inline Index rows() const { return m_rows; }
- inline Index cols() const { return m_cols; }
-
-
-protected:
- // return true if already allocated
- bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
-
- MatrixUType m_matrixU;
- MatrixVType m_matrixV;
- SingularValuesType m_singularValues;
- bool m_isInitialized, m_isAllocated;
- bool m_computeFullU, m_computeThinU;
- bool m_computeFullV, m_computeThinV;
- unsigned int m_computationOptions;
- Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
-
-
- /** \brief Default Constructor.
- *
- * Default constructor of SVDBase
- */
- SVDBase()
- : m_isInitialized(false),
- m_isAllocated(false),
- m_computationOptions(0),
- m_rows(-1), m_cols(-1)
- {}
-
-
-};
-
-
-template<typename MatrixType>
-bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
-{
- eigen_assert(rows >= 0 && cols >= 0);
-
- if (m_isAllocated &&
- rows == m_rows &&
- cols == m_cols &&
- computationOptions == m_computationOptions)
- {
- return true;
- }
-
- m_rows = rows;
- m_cols = cols;
- m_isInitialized = false;
- m_isAllocated = true;
- m_computationOptions = computationOptions;
- m_computeFullU = (computationOptions & ComputeFullU) != 0;
- m_computeThinU = (computationOptions & ComputeThinU) != 0;
- m_computeFullV = (computationOptions & ComputeFullV) != 0;
- m_computeThinV = (computationOptions & ComputeThinV) != 0;
- eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
- eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
- eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
- "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
-
- m_diagSize = (std::min)(m_rows, m_cols);
- m_singularValues.resize(m_diagSize);
- if(RowsAtCompileTime==Dynamic)
- m_matrixU.resize(m_rows, m_computeFullU ? m_rows
- : m_computeThinU ? m_diagSize
- : 0);
- if(ColsAtCompileTime==Dynamic)
- m_matrixV.resize(m_cols, m_computeFullV ? m_cols
- : m_computeThinV ? m_diagSize
- : 0);
-
- return false;
-}
-
-}// end namespace
-
-#endif // EIGEN_SVD_H
diff --git a/unsupported/Eigen/src/SVD/TODOBdcsvd.txt b/unsupported/Eigen/src/SVD/TODOBdcsvd.txt
deleted file mode 100644
index 0bc9a46e6..000000000
--- a/unsupported/Eigen/src/SVD/TODOBdcsvd.txt
+++ /dev/null
@@ -1,29 +0,0 @@
-TO DO LIST
-
-
-
-(optional optimization) - do all the allocations in the allocate part
- - support static matrices
- - return a error at compilation time when using integer matrices (int, long, std::complex<int>, ...)
-
-to finish the algorithm :
- -implement the last part of the algorithm as described on the reference paper.
- You may find more information on that part on this paper
-
- -to replace the call to JacobiSVD at the end of the divide algorithm, just after the call to
- deflation.
-
-(suggested step by step resolution)
- 0) comment the call to Jacobi in the last part of the divide method and everything right after
- until the end of the method. What is commented can be a guideline to steps 3) 4) and 6)
- 1) solve the secular equation (Characteristic equation) on the values that are not null (zi!=0 and di!=0), after the deflation
- wich should be uncommented in the divide method
- 2) remember the values of the singular values that are already computed (zi=0)
- 3) assign the singular values found in m_computed at the right places (with the ones found in step 2) )
- in decreasing order
- 4) set the firstcol to zero (except the first element) in m_computed
- 5) compute all the singular vectors when CompV is set to true and only the left vectors when
- CompV is set to false
- 6) multiply naiveU and naiveV to the right by the matrices found, only naiveU when CompV is set to
- false, /!\ if CompU is false NaiveU has only 2 rows
- 7) delete everything commented in step 0)
diff --git a/unsupported/Eigen/src/SVD/doneInBDCSVD.txt b/unsupported/Eigen/src/SVD/doneInBDCSVD.txt
deleted file mode 100644
index 8563ddab8..000000000
--- a/unsupported/Eigen/src/SVD/doneInBDCSVD.txt
+++ /dev/null
@@ -1,21 +0,0 @@
-This unsupported package is about a divide and conquer algorithm to compute SVD.
-
-The implementation follows as closely as possible the following reference paper :
-http://www.cs.yale.edu/publications/techreports/tr933.pdf
-
-The code documentation uses the same names for variables as the reference paper. The code, deflation included, is
-working but there are a few things that could be optimised as explained in the TODOBdsvd.
-
-In the code comments were put at the line where would be the third step of the algorithm so one could simply add the call
-of a function doing the last part of the algorithm and that would not require any knowledge of the part we implemented.
-
-In the TODOBdcsvd we explain what is the main difficulty of the last part and suggest a reference paper to help solve it.
-
-The implemented has trouble with fixed size matrices.
-
-In the actual implementation, it returns matrices of zero when ask to do a svd on an int matrix.
-
-
-Paper for the third part:
-http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf
-
diff --git a/unsupported/Eigen/src/Skyline/CMakeLists.txt b/unsupported/Eigen/src/Skyline/CMakeLists.txt
deleted file mode 100644
index 3bf1b0dd4..000000000
--- a/unsupported/Eigen/src/Skyline/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Skyline_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Skyline_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/Skyline COMPONENT Devel
- )
diff --git a/unsupported/Eigen/src/Skyline/SkylineProduct.h b/unsupported/Eigen/src/Skyline/SkylineProduct.h
index 1ddf455e2..d9eb814c1 100644
--- a/unsupported/Eigen/src/Skyline/SkylineProduct.h
+++ b/unsupported/Eigen/src/Skyline/SkylineProduct.h
@@ -14,8 +14,8 @@ namespace Eigen {
template<typename Lhs, typename Rhs, int ProductMode>
struct SkylineProductReturnType {
- typedef const typename internal::nested<Lhs, Rhs::RowsAtCompileTime>::type LhsNested;
- typedef const typename internal::nested<Rhs, Lhs::RowsAtCompileTime>::type RhsNested;
+ typedef const typename internal::nested_eval<Lhs, Rhs::RowsAtCompileTime>::type LhsNested;
+ typedef const typename internal::nested_eval<Rhs, Lhs::RowsAtCompileTime>::type RhsNested;
typedef SkylineProduct<LhsNested, RhsNested, ProductMode> Type;
};
@@ -49,7 +49,7 @@ struct internal::traits<SkylineProduct<LhsNested, RhsNested, ProductMode> > {
| EvalBeforeAssigningBit
| EvalBeforeNestingBit,
- CoeffReadCost = Dynamic
+ CoeffReadCost = HugeCost
};
typedef typename internal::conditional<ResultIsSkyline,
diff --git a/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h b/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h
new file mode 100644
index 000000000..0e8350a7d
--- /dev/null
+++ b/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h
@@ -0,0 +1,1079 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
+// Copyright (C) 2013 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSEBLOCKMATRIX_H
+#define EIGEN_SPARSEBLOCKMATRIX_H
+
+namespace Eigen {
+/** \ingroup SparseCore_Module
+ *
+ * \class BlockSparseMatrix
+ *
+ * \brief A versatile sparse matrix representation where each element is a block
+ *
+ * This class provides routines to manipulate block sparse matrices stored in a
+ * BSR-like representation. There are two main types :
+ *
+ * 1. All blocks have the same number of rows and columns, called block size
+ * in the following. In this case, if this block size is known at compile time,
+ * it can be given as a template parameter like
+ * \code
+ * BlockSparseMatrix<Scalar, 3, ColMajor> bmat(b_rows, b_cols);
+ * \endcode
+ * Here, bmat is a b_rows x b_cols block sparse matrix
+ * where each coefficient is a 3x3 dense matrix.
+ * If the block size is fixed but will be given at runtime,
+ * \code
+ * BlockSparseMatrix<Scalar, Dynamic, ColMajor> bmat(b_rows, b_cols);
+ * bmat.setBlockSize(block_size);
+ * \endcode
+ *
+ * 2. The second case is for variable-block sparse matrices.
+ * Here each block has its own dimensions. The only restriction is that all the blocks
+ * in a row (resp. a column) should have the same number of rows (resp. of columns).
+ * It is thus required in this case to describe the layout of the matrix by calling
+ * setBlockLayout(rowBlocks, colBlocks).
+ *
+ * In any of the previous case, the matrix can be filled by calling setFromTriplets().
+ * A regular sparse matrix can be converted to a block sparse matrix and vice versa.
+ * It is obviously required to describe the block layout beforehand by calling either
+ * setBlockSize() for fixed-size blocks or setBlockLayout for variable-size blocks.
+ *
+ * \tparam _Scalar The Scalar type
+ * \tparam _BlockAtCompileTime The block layout option. It takes the following values
+ * Dynamic : block size known at runtime
+ * a numeric number : fixed-size block known at compile time
+ */
+template<typename _Scalar, int _BlockAtCompileTime=Dynamic, int _Options=ColMajor, typename _StorageIndex=int> class BlockSparseMatrix;
+
+template<typename BlockSparseMatrixT> class BlockSparseMatrixView;
+
+namespace internal {
+template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _Index>
+struct traits<BlockSparseMatrix<_Scalar,_BlockAtCompileTime,_Options, _Index> >
+{
+ typedef _Scalar Scalar;
+ typedef _Index Index;
+ typedef Sparse StorageKind; // FIXME Where is it used ??
+ typedef MatrixXpr XprKind;
+ enum {
+ RowsAtCompileTime = Dynamic,
+ ColsAtCompileTime = Dynamic,
+ MaxRowsAtCompileTime = Dynamic,
+ MaxColsAtCompileTime = Dynamic,
+ BlockSize = _BlockAtCompileTime,
+ Flags = _Options | NestByRefBit | LvalueBit,
+ CoeffReadCost = NumTraits<Scalar>::ReadCost,
+ SupportedAccessPatterns = InnerRandomAccessPattern
+ };
+};
+template<typename BlockSparseMatrixT>
+struct traits<BlockSparseMatrixView<BlockSparseMatrixT> >
+{
+ typedef Ref<Matrix<typename BlockSparseMatrixT::Scalar, BlockSparseMatrixT::BlockSize, BlockSparseMatrixT::BlockSize> > Scalar;
+ typedef Ref<Matrix<typename BlockSparseMatrixT::RealScalar, BlockSparseMatrixT::BlockSize, BlockSparseMatrixT::BlockSize> > RealScalar;
+
+};
+
+// Function object to sort a triplet list
+template<typename Iterator, bool IsColMajor>
+struct TripletComp
+{
+ typedef typename Iterator::value_type Triplet;
+ bool operator()(const Triplet& a, const Triplet& b)
+ { if(IsColMajor)
+ return ((a.col() == b.col() && a.row() < b.row()) || (a.col() < b.col()));
+ else
+ return ((a.row() == b.row() && a.col() < b.col()) || (a.row() < b.row()));
+ }
+};
+} // end namespace internal
+
+
+/* Proxy to view the block sparse matrix as a regular sparse matrix */
+template<typename BlockSparseMatrixT>
+class BlockSparseMatrixView : public SparseMatrixBase<BlockSparseMatrixT>
+{
+ public:
+ typedef Ref<typename BlockSparseMatrixT::BlockScalar> Scalar;
+ typedef Ref<typename BlockSparseMatrixT::BlockRealScalar> RealScalar;
+ typedef typename BlockSparseMatrixT::Index Index;
+ typedef BlockSparseMatrixT Nested;
+ enum {
+ Flags = BlockSparseMatrixT::Options,
+ Options = BlockSparseMatrixT::Options,
+ RowsAtCompileTime = BlockSparseMatrixT::RowsAtCompileTime,
+ ColsAtCompileTime = BlockSparseMatrixT::ColsAtCompileTime,
+ MaxColsAtCompileTime = BlockSparseMatrixT::MaxColsAtCompileTime,
+ MaxRowsAtCompileTime = BlockSparseMatrixT::MaxRowsAtCompileTime
+ };
+ public:
+ BlockSparseMatrixView(const BlockSparseMatrixT& spblockmat)
+ : m_spblockmat(spblockmat)
+ {}
+
+ Index outerSize() const
+ {
+ return (Flags&RowMajorBit) == 1 ? this->rows() : this->cols();
+ }
+ Index cols() const
+ {
+ return m_spblockmat.blockCols();
+ }
+ Index rows() const
+ {
+ return m_spblockmat.blockRows();
+ }
+ Scalar coeff(Index row, Index col)
+ {
+ return m_spblockmat.coeff(row, col);
+ }
+ Scalar coeffRef(Index row, Index col)
+ {
+ return m_spblockmat.coeffRef(row, col);
+ }
+ // Wrapper to iterate over all blocks
+ class InnerIterator : public BlockSparseMatrixT::BlockInnerIterator
+ {
+ public:
+ InnerIterator(const BlockSparseMatrixView& mat, Index outer)
+ : BlockSparseMatrixT::BlockInnerIterator(mat.m_spblockmat, outer)
+ {}
+
+ };
+
+ protected:
+ const BlockSparseMatrixT& m_spblockmat;
+};
+
+// Proxy to view a regular vector as a block vector
+template<typename BlockSparseMatrixT, typename VectorType>
+class BlockVectorView
+{
+ public:
+ enum {
+ BlockSize = BlockSparseMatrixT::BlockSize,
+ ColsAtCompileTime = VectorType::ColsAtCompileTime,
+ RowsAtCompileTime = VectorType::RowsAtCompileTime,
+ Flags = VectorType::Flags
+ };
+ typedef Ref<const Matrix<typename BlockSparseMatrixT::Scalar, (RowsAtCompileTime==1)? 1 : BlockSize, (ColsAtCompileTime==1)? 1 : BlockSize> >Scalar;
+ typedef typename BlockSparseMatrixT::Index Index;
+ public:
+ BlockVectorView(const BlockSparseMatrixT& spblockmat, const VectorType& vec)
+ : m_spblockmat(spblockmat),m_vec(vec)
+ { }
+ inline Index cols() const
+ {
+ return m_vec.cols();
+ }
+ inline Index size() const
+ {
+ return m_spblockmat.blockRows();
+ }
+ inline Scalar coeff(Index bi) const
+ {
+ Index startRow = m_spblockmat.blockRowsIndex(bi);
+ Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
+ return m_vec.middleRows(startRow, rowSize);
+ }
+ inline Scalar coeff(Index bi, Index j) const
+ {
+ Index startRow = m_spblockmat.blockRowsIndex(bi);
+ Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
+ return m_vec.block(startRow, j, rowSize, 1);
+ }
+ protected:
+ const BlockSparseMatrixT& m_spblockmat;
+ const VectorType& m_vec;
+};
+
+template<typename VectorType, typename Index> class BlockVectorReturn;
+
+
+// Proxy to view a regular vector as a block vector
+template<typename BlockSparseMatrixT, typename VectorType>
+class BlockVectorReturn
+{
+ public:
+ enum {
+ ColsAtCompileTime = VectorType::ColsAtCompileTime,
+ RowsAtCompileTime = VectorType::RowsAtCompileTime,
+ Flags = VectorType::Flags
+ };
+ typedef Ref<Matrix<typename VectorType::Scalar, RowsAtCompileTime, ColsAtCompileTime> > Scalar;
+ typedef typename BlockSparseMatrixT::Index Index;
+ public:
+ BlockVectorReturn(const BlockSparseMatrixT& spblockmat, VectorType& vec)
+ : m_spblockmat(spblockmat),m_vec(vec)
+ { }
+ inline Index size() const
+ {
+ return m_spblockmat.blockRows();
+ }
+ inline Scalar coeffRef(Index bi)
+ {
+ Index startRow = m_spblockmat.blockRowsIndex(bi);
+ Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
+ return m_vec.middleRows(startRow, rowSize);
+ }
+ inline Scalar coeffRef(Index bi, Index j)
+ {
+ Index startRow = m_spblockmat.blockRowsIndex(bi);
+ Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
+ return m_vec.block(startRow, j, rowSize, 1);
+ }
+
+ protected:
+ const BlockSparseMatrixT& m_spblockmat;
+ VectorType& m_vec;
+};
+
+// Block version of the sparse dense product
+template<typename Lhs, typename Rhs>
+class BlockSparseTimeDenseProduct;
+
+namespace internal {
+
+template<typename BlockSparseMatrixT, typename VecType>
+struct traits<BlockSparseTimeDenseProduct<BlockSparseMatrixT, VecType> >
+{
+ typedef Dense StorageKind;
+ typedef MatrixXpr XprKind;
+ typedef typename BlockSparseMatrixT::Scalar Scalar;
+ typedef typename BlockSparseMatrixT::Index Index;
+ enum {
+ RowsAtCompileTime = Dynamic,
+ ColsAtCompileTime = Dynamic,
+ MaxRowsAtCompileTime = Dynamic,
+ MaxColsAtCompileTime = Dynamic,
+ Flags = 0,
+ CoeffReadCost = internal::traits<BlockSparseMatrixT>::CoeffReadCost
+ };
+};
+} // end namespace internal
+
+template<typename Lhs, typename Rhs>
+class BlockSparseTimeDenseProduct
+ : public ProductBase<BlockSparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs>
+{
+ public:
+ EIGEN_PRODUCT_PUBLIC_INTERFACE(BlockSparseTimeDenseProduct)
+
+ BlockSparseTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
+ {}
+
+ template<typename Dest> void scaleAndAddTo(Dest& dest, const typename Rhs::Scalar& alpha) const
+ {
+ BlockVectorReturn<Lhs,Dest> tmpDest(m_lhs, dest);
+ internal::sparse_time_dense_product( BlockSparseMatrixView<Lhs>(m_lhs), BlockVectorView<Lhs, Rhs>(m_lhs, m_rhs), tmpDest, alpha);
+ }
+
+ private:
+ BlockSparseTimeDenseProduct& operator=(const BlockSparseTimeDenseProduct&);
+};
+
+template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _StorageIndex>
+class BlockSparseMatrix : public SparseMatrixBase<BlockSparseMatrix<_Scalar,_BlockAtCompileTime, _Options,_StorageIndex> >
+{
+ public:
+ typedef _Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef _StorageIndex StorageIndex;
+ typedef typename internal::ref_selector<BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, _StorageIndex> >::type Nested;
+
+ enum {
+ Options = _Options,
+ Flags = Options,
+ BlockSize=_BlockAtCompileTime,
+ RowsAtCompileTime = Dynamic,
+ ColsAtCompileTime = Dynamic,
+ MaxRowsAtCompileTime = Dynamic,
+ MaxColsAtCompileTime = Dynamic,
+ IsVectorAtCompileTime = 0,
+ IsColMajor = Flags&RowMajorBit ? 0 : 1
+ };
+ typedef Matrix<Scalar, _BlockAtCompileTime, _BlockAtCompileTime,IsColMajor ? ColMajor : RowMajor> BlockScalar;
+ typedef Matrix<RealScalar, _BlockAtCompileTime, _BlockAtCompileTime,IsColMajor ? ColMajor : RowMajor> BlockRealScalar;
+ typedef typename internal::conditional<_BlockAtCompileTime==Dynamic, Scalar, BlockScalar>::type BlockScalarReturnType;
+ typedef BlockSparseMatrix<Scalar, BlockSize, IsColMajor ? ColMajor : RowMajor, StorageIndex> PlainObject;
+ public:
+ // Default constructor
+ BlockSparseMatrix()
+ : m_innerBSize(0),m_outerBSize(0),m_innerOffset(0),m_outerOffset(0),
+ m_nonzerosblocks(0),m_values(0),m_blockPtr(0),m_indices(0),
+ m_outerIndex(0),m_blockSize(BlockSize)
+ { }
+
+
+ /**
+ * \brief Construct and resize
+ *
+ */
+ BlockSparseMatrix(Index brow, Index bcol)
+ : m_innerBSize(IsColMajor ? brow : bcol),
+ m_outerBSize(IsColMajor ? bcol : brow),
+ m_innerOffset(0),m_outerOffset(0),m_nonzerosblocks(0),
+ m_values(0),m_blockPtr(0),m_indices(0),
+ m_outerIndex(0),m_blockSize(BlockSize)
+ { }
+
+ /**
+ * \brief Copy-constructor
+ */
+ BlockSparseMatrix(const BlockSparseMatrix& other)
+ : m_innerBSize(other.m_innerBSize),m_outerBSize(other.m_outerBSize),
+ m_nonzerosblocks(other.m_nonzerosblocks),m_nonzeros(other.m_nonzeros),
+ m_blockPtr(0),m_blockSize(other.m_blockSize)
+ {
+ // should we allow copying between variable-size blocks and fixed-size blocks ??
+ eigen_assert(m_blockSize == BlockSize && " CAN NOT COPY BETWEEN FIXED-SIZE AND VARIABLE-SIZE BLOCKS");
+
+ std::copy(other.m_innerOffset, other.m_innerOffset+m_innerBSize+1, m_innerOffset);
+ std::copy(other.m_outerOffset, other.m_outerOffset+m_outerBSize+1, m_outerOffset);
+ std::copy(other.m_values, other.m_values+m_nonzeros, m_values);
+
+ if(m_blockSize != Dynamic)
+ std::copy(other.m_blockPtr, other.m_blockPtr+m_nonzerosblocks, m_blockPtr);
+
+ std::copy(other.m_indices, other.m_indices+m_nonzerosblocks, m_indices);
+ std::copy(other.m_outerIndex, other.m_outerIndex+m_outerBSize, m_outerIndex);
+ }
+
+ friend void swap(BlockSparseMatrix& first, BlockSparseMatrix& second)
+ {
+ std::swap(first.m_innerBSize, second.m_innerBSize);
+ std::swap(first.m_outerBSize, second.m_outerBSize);
+ std::swap(first.m_innerOffset, second.m_innerOffset);
+ std::swap(first.m_outerOffset, second.m_outerOffset);
+ std::swap(first.m_nonzerosblocks, second.m_nonzerosblocks);
+ std::swap(first.m_nonzeros, second.m_nonzeros);
+ std::swap(first.m_values, second.m_values);
+ std::swap(first.m_blockPtr, second.m_blockPtr);
+ std::swap(first.m_indices, second.m_indices);
+ std::swap(first.m_outerIndex, second.m_outerIndex);
+ std::swap(first.m_BlockSize, second.m_blockSize);
+ }
+
+ BlockSparseMatrix& operator=(BlockSparseMatrix other)
+ {
+ //Copy-and-swap paradigm ... avoid leaked data if thrown
+ swap(*this, other);
+ return *this;
+ }
+
+ // Destructor
+ ~BlockSparseMatrix()
+ {
+ delete[] m_outerIndex;
+ delete[] m_innerOffset;
+ delete[] m_outerOffset;
+ delete[] m_indices;
+ delete[] m_blockPtr;
+ delete[] m_values;
+ }
+
+
+ /**
+ * \brief Constructor from a sparse matrix
+ *
+ */
+ template<typename MatrixType>
+ inline BlockSparseMatrix(const MatrixType& spmat) : m_blockSize(BlockSize)
+ {
+ EIGEN_STATIC_ASSERT((m_blockSize != Dynamic), THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE);
+
+ *this = spmat;
+ }
+
+ /**
+ * \brief Assignment from a sparse matrix with the same storage order
+ *
+ * Convert from a sparse matrix to block sparse matrix.
+ * \warning Before calling this function, tt is necessary to call
+ * either setBlockLayout() (matrices with variable-size blocks)
+ * or setBlockSize() (for fixed-size blocks).
+ */
+ template<typename MatrixType>
+ inline BlockSparseMatrix& operator=(const MatrixType& spmat)
+ {
+ eigen_assert((m_innerBSize != 0 && m_outerBSize != 0)
+ && "Trying to assign to a zero-size matrix, call resize() first");
+ eigen_assert(((MatrixType::Options&RowMajorBit) != IsColMajor) && "Wrong storage order");
+ typedef SparseMatrix<bool,MatrixType::Options,typename MatrixType::Index> MatrixPatternType;
+ MatrixPatternType blockPattern(blockRows(), blockCols());
+ m_nonzeros = 0;
+
+ // First, compute the number of nonzero blocks and their locations
+ for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
+ {
+ // Browse each outer block and compute the structure
+ std::vector<bool> nzblocksFlag(m_innerBSize,false); // Record the existing blocks
+ blockPattern.startVec(bj);
+ for(StorageIndex j = blockOuterIndex(bj); j < blockOuterIndex(bj+1); ++j)
+ {
+ typename MatrixType::InnerIterator it_spmat(spmat, j);
+ for(; it_spmat; ++it_spmat)
+ {
+ StorageIndex bi = innerToBlock(it_spmat.index()); // Index of the current nonzero block
+ if(!nzblocksFlag[bi])
+ {
+ // Save the index of this nonzero block
+ nzblocksFlag[bi] = true;
+ blockPattern.insertBackByOuterInnerUnordered(bj, bi) = true;
+ // Compute the total number of nonzeros (including explicit zeros in blocks)
+ m_nonzeros += blockOuterSize(bj) * blockInnerSize(bi);
+ }
+ }
+ } // end current outer block
+ }
+ blockPattern.finalize();
+
+ // Allocate the internal arrays
+ setBlockStructure(blockPattern);
+
+ for(StorageIndex nz = 0; nz < m_nonzeros; ++nz) m_values[nz] = Scalar(0);
+ for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
+ {
+ // Now copy the values
+ for(StorageIndex j = blockOuterIndex(bj); j < blockOuterIndex(bj+1); ++j)
+ {
+ // Browse the outer block column by column (for column-major matrices)
+ typename MatrixType::InnerIterator it_spmat(spmat, j);
+ for(; it_spmat; ++it_spmat)
+ {
+ StorageIndex idx = 0; // Position of this block in the column block
+ StorageIndex bi = innerToBlock(it_spmat.index()); // Index of the current nonzero block
+ // Go to the inner block where this element belongs to
+ while(bi > m_indices[m_outerIndex[bj]+idx]) ++idx; // Not expensive for ordered blocks
+ StorageIndex idxVal;// Get the right position in the array of values for this element
+ if(m_blockSize == Dynamic)
+ {
+ // Offset from all blocks before ...
+ idxVal = m_blockPtr[m_outerIndex[bj]+idx];
+ // ... and offset inside the block
+ idxVal += (j - blockOuterIndex(bj)) * blockOuterSize(bj) + it_spmat.index() - m_innerOffset[bi];
+ }
+ else
+ {
+ // All blocks before
+ idxVal = (m_outerIndex[bj] + idx) * m_blockSize * m_blockSize;
+ // inside the block
+ idxVal += (j - blockOuterIndex(bj)) * m_blockSize + (it_spmat.index()%m_blockSize);
+ }
+ // Insert the value
+ m_values[idxVal] = it_spmat.value();
+ } // end of this column
+ } // end of this block
+ } // end of this outer block
+
+ return *this;
+ }
+
+ /**
+ * \brief Set the nonzero block pattern of the matrix
+ *
+ * Given a sparse matrix describing the nonzero block pattern,
+ * this function prepares the internal pointers for values.
+ * After calling this function, any *nonzero* block (bi, bj) can be set
+ * with a simple call to coeffRef(bi,bj).
+ *
+ *
+ * \warning Before calling this function, tt is necessary to call
+ * either setBlockLayout() (matrices with variable-size blocks)
+ * or setBlockSize() (for fixed-size blocks).
+ *
+ * \param blockPattern Sparse matrix of boolean elements describing the block structure
+ *
+ * \sa setBlockLayout() \sa setBlockSize()
+ */
+ template<typename MatrixType>
+ void setBlockStructure(const MatrixType& blockPattern)
+ {
+ resize(blockPattern.rows(), blockPattern.cols());
+ reserve(blockPattern.nonZeros());
+
+ // Browse the block pattern and set up the various pointers
+ m_outerIndex[0] = 0;
+ if(m_blockSize == Dynamic) m_blockPtr[0] = 0;
+ for(StorageIndex nz = 0; nz < m_nonzeros; ++nz) m_values[nz] = Scalar(0);
+ for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
+ {
+ //Browse each outer block
+
+ //First, copy and save the indices of nonzero blocks
+ //FIXME : find a way to avoid this ...
+ std::vector<int> nzBlockIdx;
+ typename MatrixType::InnerIterator it(blockPattern, bj);
+ for(; it; ++it)
+ {
+ nzBlockIdx.push_back(it.index());
+ }
+ std::sort(nzBlockIdx.begin(), nzBlockIdx.end());
+
+ // Now, fill block indices and (eventually) pointers to blocks
+ for(StorageIndex idx = 0; idx < nzBlockIdx.size(); ++idx)
+ {
+ StorageIndex offset = m_outerIndex[bj]+idx; // offset in m_indices
+ m_indices[offset] = nzBlockIdx[idx];
+ if(m_blockSize == Dynamic)
+ m_blockPtr[offset] = m_blockPtr[offset-1] + blockInnerSize(nzBlockIdx[idx]) * blockOuterSize(bj);
+ // There is no blockPtr for fixed-size blocks... not needed !???
+ }
+ // Save the pointer to the next outer block
+ m_outerIndex[bj+1] = m_outerIndex[bj] + nzBlockIdx.size();
+ }
+ }
+
+ /**
+ * \brief Set the number of rows and columns blocks
+ */
+ inline void resize(Index brow, Index bcol)
+ {
+ m_innerBSize = IsColMajor ? brow : bcol;
+ m_outerBSize = IsColMajor ? bcol : brow;
+ }
+
+ /**
+ * \brief set the block size at runtime for fixed-size block layout
+ *
+ * Call this only for fixed-size blocks
+ */
+ inline void setBlockSize(Index blockSize)
+ {
+ m_blockSize = blockSize;
+ }
+
+ /**
+ * \brief Set the row and column block layouts,
+ *
+ * This function set the size of each row and column block.
+ * So this function should be used only for blocks with variable size.
+ * \param rowBlocks : Number of rows per row block
+ * \param colBlocks : Number of columns per column block
+ * \sa resize(), setBlockSize()
+ */
+ inline void setBlockLayout(const VectorXi& rowBlocks, const VectorXi& colBlocks)
+ {
+ const VectorXi& innerBlocks = IsColMajor ? rowBlocks : colBlocks;
+ const VectorXi& outerBlocks = IsColMajor ? colBlocks : rowBlocks;
+ eigen_assert(m_innerBSize == innerBlocks.size() && "CHECK THE NUMBER OF ROW OR COLUMN BLOCKS");
+ eigen_assert(m_outerBSize == outerBlocks.size() && "CHECK THE NUMBER OF ROW OR COLUMN BLOCKS");
+ m_outerBSize = outerBlocks.size();
+ // starting index of blocks... cumulative sums
+ m_innerOffset = new StorageIndex[m_innerBSize+1];
+ m_outerOffset = new StorageIndex[m_outerBSize+1];
+ m_innerOffset[0] = 0;
+ m_outerOffset[0] = 0;
+ std::partial_sum(&innerBlocks[0], &innerBlocks[m_innerBSize-1]+1, &m_innerOffset[1]);
+ std::partial_sum(&outerBlocks[0], &outerBlocks[m_outerBSize-1]+1, &m_outerOffset[1]);
+
+ // Compute the total number of nonzeros
+ m_nonzeros = 0;
+ for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
+ for(StorageIndex bi = 0; bi < m_innerBSize; ++bi)
+ m_nonzeros += outerBlocks[bj] * innerBlocks[bi];
+
+ }
+
+ /**
+ * \brief Allocate the internal array of pointers to blocks and their inner indices
+ *
+ * \note For fixed-size blocks, call setBlockSize() to set the block.
+ * And For variable-size blocks, call setBlockLayout() before using this function
+ *
+ * \param nonzerosblocks Number of nonzero blocks. The total number of nonzeros is
+ * is computed in setBlockLayout() for variable-size blocks
+ * \sa setBlockSize()
+ */
+ inline void reserve(const Index nonzerosblocks)
+ {
+ eigen_assert((m_innerBSize != 0 && m_outerBSize != 0) &&
+ "TRYING TO RESERVE ZERO-SIZE MATRICES, CALL resize() first");
+
+ //FIXME Should free if already allocated
+ m_outerIndex = new StorageIndex[m_outerBSize+1];
+
+ m_nonzerosblocks = nonzerosblocks;
+ if(m_blockSize != Dynamic)
+ {
+ m_nonzeros = nonzerosblocks * (m_blockSize * m_blockSize);
+ m_blockPtr = 0;
+ }
+ else
+ {
+ // m_nonzeros is already computed in setBlockLayout()
+ m_blockPtr = new StorageIndex[m_nonzerosblocks+1];
+ }
+ m_indices = new StorageIndex[m_nonzerosblocks+1];
+ m_values = new Scalar[m_nonzeros];
+ }
+
+
+ /**
+ * \brief Fill values in a matrix from a triplet list.
+ *
+ * Each triplet item has a block stored in an Eigen dense matrix.
+ * The InputIterator class should provide the functions row(), col() and value()
+ *
+ * \note For fixed-size blocks, call setBlockSize() before this function.
+ *
+ * FIXME Do not accept duplicates
+ */
+ template<typename InputIterator>
+ void setFromTriplets(const InputIterator& begin, const InputIterator& end)
+ {
+ eigen_assert((m_innerBSize!=0 && m_outerBSize !=0) && "ZERO BLOCKS, PLEASE CALL resize() before");
+
+ /* First, sort the triplet list
+ * FIXME This can be unnecessarily expensive since only the inner indices have to be sorted
+ * The best approach is like in SparseMatrix::setFromTriplets()
+ */
+ internal::TripletComp<InputIterator, IsColMajor> tripletcomp;
+ std::sort(begin, end, tripletcomp);
+
+ /* Count the number of rows and column blocks,
+ * and the number of nonzero blocks per outer dimension
+ */
+ VectorXi rowBlocks(m_innerBSize); // Size of each block row
+ VectorXi colBlocks(m_outerBSize); // Size of each block column
+ rowBlocks.setZero(); colBlocks.setZero();
+ VectorXi nzblock_outer(m_outerBSize); // Number of nz blocks per outer vector
+ VectorXi nz_outer(m_outerBSize); // Number of nz per outer vector...for variable-size blocks
+ nzblock_outer.setZero();
+ nz_outer.setZero();
+ for(InputIterator it(begin); it !=end; ++it)
+ {
+ eigen_assert(it->row() >= 0 && it->row() < this->blockRows() && it->col() >= 0 && it->col() < this->blockCols());
+ eigen_assert((it->value().rows() == it->value().cols() && (it->value().rows() == m_blockSize))
+ || (m_blockSize == Dynamic));
+
+ if(m_blockSize == Dynamic)
+ {
+ eigen_assert((rowBlocks[it->row()] == 0 || rowBlocks[it->row()] == it->value().rows()) &&
+ "NON CORRESPONDING SIZES FOR ROW BLOCKS");
+ eigen_assert((colBlocks[it->col()] == 0 || colBlocks[it->col()] == it->value().cols()) &&
+ "NON CORRESPONDING SIZES FOR COLUMN BLOCKS");
+ rowBlocks[it->row()] =it->value().rows();
+ colBlocks[it->col()] = it->value().cols();
+ }
+ nz_outer(IsColMajor ? it->col() : it->row()) += it->value().rows() * it->value().cols();
+ nzblock_outer(IsColMajor ? it->col() : it->row())++;
+ }
+ // Allocate member arrays
+ if(m_blockSize == Dynamic) setBlockLayout(rowBlocks, colBlocks);
+ StorageIndex nzblocks = nzblock_outer.sum();
+ reserve(nzblocks);
+
+ // Temporary markers
+ VectorXi block_id(m_outerBSize); // To be used as a block marker during insertion
+
+ // Setup outer index pointers and markers
+ m_outerIndex[0] = 0;
+ if (m_blockSize == Dynamic) m_blockPtr[0] = 0;
+ for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
+ {
+ m_outerIndex[bj+1] = m_outerIndex[bj] + nzblock_outer(bj);
+ block_id(bj) = m_outerIndex[bj];
+ if(m_blockSize==Dynamic)
+ {
+ m_blockPtr[m_outerIndex[bj+1]] = m_blockPtr[m_outerIndex[bj]] + nz_outer(bj);
+ }
+ }
+
+ // Fill the matrix
+ for(InputIterator it(begin); it!=end; ++it)
+ {
+ StorageIndex outer = IsColMajor ? it->col() : it->row();
+ StorageIndex inner = IsColMajor ? it->row() : it->col();
+ m_indices[block_id(outer)] = inner;
+ StorageIndex block_size = it->value().rows()*it->value().cols();
+ StorageIndex nz_marker = blockPtr(block_id[outer]);
+ memcpy(&(m_values[nz_marker]), it->value().data(), block_size * sizeof(Scalar));
+ if(m_blockSize == Dynamic)
+ {
+ m_blockPtr[block_id(outer)+1] = m_blockPtr[block_id(outer)] + block_size;
+ }
+ block_id(outer)++;
+ }
+
+ // An alternative when the outer indices are sorted...no need to use an array of markers
+// for(Index bcol = 0; bcol < m_outerBSize; ++bcol)
+// {
+// Index id = 0, id_nz = 0, id_nzblock = 0;
+// for(InputIterator it(begin); it!=end; ++it)
+// {
+// while (id<bcol) // one pass should do the job unless there are empty columns
+// {
+// id++;
+// m_outerIndex[id+1]=m_outerIndex[id];
+// }
+// m_outerIndex[id+1] += 1;
+// m_indices[id_nzblock]=brow;
+// Index block_size = it->value().rows()*it->value().cols();
+// m_blockPtr[id_nzblock+1] = m_blockPtr[id_nzblock] + block_size;
+// id_nzblock++;
+// memcpy(&(m_values[id_nz]),it->value().data(), block_size*sizeof(Scalar));
+// id_nz += block_size;
+// }
+// while(id < m_outerBSize-1) // Empty columns at the end
+// {
+// id++;
+// m_outerIndex[id+1]=m_outerIndex[id];
+// }
+// }
+ }
+
+
+ /**
+ * \returns the number of rows
+ */
+ inline Index rows() const
+ {
+// return blockRows();
+ return (IsColMajor ? innerSize() : outerSize());
+ }
+
+ /**
+ * \returns the number of cols
+ */
+ inline Index cols() const
+ {
+// return blockCols();
+ return (IsColMajor ? outerSize() : innerSize());
+ }
+
+ inline Index innerSize() const
+ {
+ if(m_blockSize == Dynamic) return m_innerOffset[m_innerBSize];
+ else return (m_innerBSize * m_blockSize) ;
+ }
+
+ inline Index outerSize() const
+ {
+ if(m_blockSize == Dynamic) return m_outerOffset[m_outerBSize];
+ else return (m_outerBSize * m_blockSize) ;
+ }
+ /** \returns the number of rows grouped by blocks */
+ inline Index blockRows() const
+ {
+ return (IsColMajor ? m_innerBSize : m_outerBSize);
+ }
+ /** \returns the number of columns grouped by blocks */
+ inline Index blockCols() const
+ {
+ return (IsColMajor ? m_outerBSize : m_innerBSize);
+ }
+
+ inline Index outerBlocks() const { return m_outerBSize; }
+ inline Index innerBlocks() const { return m_innerBSize; }
+
+ /** \returns the block index where outer belongs to */
+ inline Index outerToBlock(Index outer) const
+ {
+ eigen_assert(outer < outerSize() && "OUTER INDEX OUT OF BOUNDS");
+
+ if(m_blockSize != Dynamic)
+ return (outer / m_blockSize); // Integer division
+
+ StorageIndex b_outer = 0;
+ while(m_outerOffset[b_outer] <= outer) ++b_outer;
+ return b_outer - 1;
+ }
+ /** \returns the block index where inner belongs to */
+ inline Index innerToBlock(Index inner) const
+ {
+ eigen_assert(inner < innerSize() && "OUTER INDEX OUT OF BOUNDS");
+
+ if(m_blockSize != Dynamic)
+ return (inner / m_blockSize); // Integer division
+
+ StorageIndex b_inner = 0;
+ while(m_innerOffset[b_inner] <= inner) ++b_inner;
+ return b_inner - 1;
+ }
+
+ /**
+ *\returns a reference to the (i,j) block as an Eigen Dense Matrix
+ */
+ Ref<BlockScalar> coeffRef(Index brow, Index bcol)
+ {
+ eigen_assert(brow < blockRows() && "BLOCK ROW INDEX OUT OF BOUNDS");
+ eigen_assert(bcol < blockCols() && "BLOCK nzblocksFlagCOLUMN OUT OF BOUNDS");
+
+ StorageIndex rsize = IsColMajor ? blockInnerSize(brow): blockOuterSize(bcol);
+ StorageIndex csize = IsColMajor ? blockOuterSize(bcol) : blockInnerSize(brow);
+ StorageIndex inner = IsColMajor ? brow : bcol;
+ StorageIndex outer = IsColMajor ? bcol : brow;
+ StorageIndex offset = m_outerIndex[outer];
+ while(offset < m_outerIndex[outer+1] && m_indices[offset] != inner)
+ offset++;
+ if(m_indices[offset] == inner)
+ {
+ return Map<BlockScalar>(&(m_values[blockPtr(offset)]), rsize, csize);
+ }
+ else
+ {
+ //FIXME the block does not exist, Insert it !!!!!!!!!
+ eigen_assert("DYNAMIC INSERTION IS NOT YET SUPPORTED");
+ }
+ }
+
+ /**
+ * \returns the value of the (i,j) block as an Eigen Dense Matrix
+ */
+ Map<const BlockScalar> coeff(Index brow, Index bcol) const
+ {
+ eigen_assert(brow < blockRows() && "BLOCK ROW INDEX OUT OF BOUNDS");
+ eigen_assert(bcol < blockCols() && "BLOCK COLUMN OUT OF BOUNDS");
+
+ StorageIndex rsize = IsColMajor ? blockInnerSize(brow): blockOuterSize(bcol);
+ StorageIndex csize = IsColMajor ? blockOuterSize(bcol) : blockInnerSize(brow);
+ StorageIndex inner = IsColMajor ? brow : bcol;
+ StorageIndex outer = IsColMajor ? bcol : brow;
+ StorageIndex offset = m_outerIndex[outer];
+ while(offset < m_outerIndex[outer+1] && m_indices[offset] != inner) offset++;
+ if(m_indices[offset] == inner)
+ {
+ return Map<const BlockScalar> (&(m_values[blockPtr(offset)]), rsize, csize);
+ }
+ else
+// return BlockScalar::Zero(rsize, csize);
+ eigen_assert("NOT YET SUPPORTED");
+ }
+
+ // Block Matrix times vector product
+ template<typename VecType>
+ BlockSparseTimeDenseProduct<BlockSparseMatrix, VecType> operator*(const VecType& lhs) const
+ {
+ return BlockSparseTimeDenseProduct<BlockSparseMatrix, VecType>(*this, lhs);
+ }
+
+ /** \returns the number of nonzero blocks */
+ inline Index nonZerosBlocks() const { return m_nonzerosblocks; }
+ /** \returns the total number of nonzero elements, including eventual explicit zeros in blocks */
+ inline Index nonZeros() const { return m_nonzeros; }
+
+ inline BlockScalarReturnType *valuePtr() {return static_cast<BlockScalarReturnType *>(m_values);}
+// inline Scalar *valuePtr(){ return m_values; }
+ inline StorageIndex *innerIndexPtr() {return m_indices; }
+ inline const StorageIndex *innerIndexPtr() const {return m_indices; }
+ inline StorageIndex *outerIndexPtr() {return m_outerIndex; }
+ inline const StorageIndex* outerIndexPtr() const {return m_outerIndex; }
+
+ /** \brief for compatibility purposes with the SparseMatrix class */
+ inline bool isCompressed() const {return true;}
+ /**
+ * \returns the starting index of the bi row block
+ */
+ inline Index blockRowsIndex(Index bi) const
+ {
+ return IsColMajor ? blockInnerIndex(bi) : blockOuterIndex(bi);
+ }
+
+ /**
+ * \returns the starting index of the bj col block
+ */
+ inline Index blockColsIndex(Index bj) const
+ {
+ return IsColMajor ? blockOuterIndex(bj) : blockInnerIndex(bj);
+ }
+
+ inline Index blockOuterIndex(Index bj) const
+ {
+ return (m_blockSize == Dynamic) ? m_outerOffset[bj] : (bj * m_blockSize);
+ }
+ inline Index blockInnerIndex(Index bi) const
+ {
+ return (m_blockSize == Dynamic) ? m_innerOffset[bi] : (bi * m_blockSize);
+ }
+
+ // Not needed ???
+ inline Index blockInnerSize(Index bi) const
+ {
+ return (m_blockSize == Dynamic) ? (m_innerOffset[bi+1] - m_innerOffset[bi]) : m_blockSize;
+ }
+ inline Index blockOuterSize(Index bj) const
+ {
+ return (m_blockSize == Dynamic) ? (m_outerOffset[bj+1]- m_outerOffset[bj]) : m_blockSize;
+ }
+
+ /**
+ * \brief Browse the matrix by outer index
+ */
+ class InnerIterator; // Browse column by column
+
+ /**
+ * \brief Browse the matrix by block outer index
+ */
+ class BlockInnerIterator; // Browse block by block
+
+ friend std::ostream & operator << (std::ostream & s, const BlockSparseMatrix& m)
+ {
+ for (StorageIndex j = 0; j < m.outerBlocks(); ++j)
+ {
+ BlockInnerIterator itb(m, j);
+ for(; itb; ++itb)
+ {
+ s << "("<<itb.row() << ", " << itb.col() << ")\n";
+ s << itb.value() <<"\n";
+ }
+ }
+ s << std::endl;
+ return s;
+ }
+
+ /**
+ * \returns the starting position of the block <id> in the array of values
+ */
+ Index blockPtr(Index id) const
+ {
+ if(m_blockSize == Dynamic) return m_blockPtr[id];
+ else return id * m_blockSize * m_blockSize;
+ //return blockDynIdx(id, typename internal::conditional<(BlockSize==Dynamic), internal::true_type, internal::false_type>::type());
+ }
+
+
+ protected:
+// inline Index blockDynIdx(Index id, internal::true_type) const
+// {
+// return m_blockPtr[id];
+// }
+// inline Index blockDynIdx(Index id, internal::false_type) const
+// {
+// return id * BlockSize * BlockSize;
+// }
+
+ // To be implemented
+ // Insert a block at a particular location... need to make a room for that
+ Map<BlockScalar> insert(Index brow, Index bcol);
+
+ Index m_innerBSize; // Number of block rows
+ Index m_outerBSize; // Number of block columns
+ StorageIndex *m_innerOffset; // Starting index of each inner block (size m_innerBSize+1)
+ StorageIndex *m_outerOffset; // Starting index of each outer block (size m_outerBSize+1)
+ Index m_nonzerosblocks; // Total nonzeros blocks (lower than m_innerBSize x m_outerBSize)
+ Index m_nonzeros; // Total nonzeros elements
+ Scalar *m_values; //Values stored block column after block column (size m_nonzeros)
+ StorageIndex *m_blockPtr; // Pointer to the beginning of each block in m_values, size m_nonzeroblocks ... null for fixed-size blocks
+ StorageIndex *m_indices; //Inner block indices, size m_nonzerosblocks ... OK
+ StorageIndex *m_outerIndex; // Starting pointer of each block column in m_indices (size m_outerBSize)... OK
+ Index m_blockSize; // Size of a block for fixed-size blocks, otherwise -1
+};
+
+template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _StorageIndex>
+class BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, _StorageIndex>::BlockInnerIterator
+{
+ public:
+
+ enum{
+ Flags = _Options
+ };
+
+ BlockInnerIterator(const BlockSparseMatrix& mat, const Index outer)
+ : m_mat(mat),m_outer(outer),
+ m_id(mat.m_outerIndex[outer]),
+ m_end(mat.m_outerIndex[outer+1])
+ {
+ }
+
+ inline BlockInnerIterator& operator++() {m_id++; return *this; }
+
+ inline const Map<const BlockScalar> value() const
+ {
+ return Map<const BlockScalar>(&(m_mat.m_values[m_mat.blockPtr(m_id)]),
+ rows(),cols());
+ }
+ inline Map<BlockScalar> valueRef()
+ {
+ return Map<BlockScalar>(&(m_mat.m_values[m_mat.blockPtr(m_id)]),
+ rows(),cols());
+ }
+ // Block inner index
+ inline Index index() const {return m_mat.m_indices[m_id]; }
+ inline Index outer() const { return m_outer; }
+ // block row index
+ inline Index row() const {return index(); }
+ // block column index
+ inline Index col() const {return outer(); }
+ // FIXME Number of rows in the current block
+ inline Index rows() const { return (m_mat.m_blockSize==Dynamic) ? (m_mat.m_innerOffset[index()+1] - m_mat.m_innerOffset[index()]) : m_mat.m_blockSize; }
+ // Number of columns in the current block ...
+ inline Index cols() const { return (m_mat.m_blockSize==Dynamic) ? (m_mat.m_outerOffset[m_outer+1]-m_mat.m_outerOffset[m_outer]) : m_mat.m_blockSize;}
+ inline operator bool() const { return (m_id < m_end); }
+
+ protected:
+ const BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, StorageIndex>& m_mat;
+ const Index m_outer;
+ Index m_id;
+ Index m_end;
+};
+
+template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _StorageIndex>
+class BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, _StorageIndex>::InnerIterator
+{
+ public:
+ InnerIterator(const BlockSparseMatrix& mat, Index outer)
+ : m_mat(mat),m_outerB(mat.outerToBlock(outer)),m_outer(outer),
+ itb(mat, mat.outerToBlock(outer)),
+ m_offset(outer - mat.blockOuterIndex(m_outerB))
+ {
+ if (itb)
+ {
+ m_id = m_mat.blockInnerIndex(itb.index());
+ m_start = m_id;
+ m_end = m_mat.blockInnerIndex(itb.index()+1);
+ }
+ }
+ inline InnerIterator& operator++()
+ {
+ m_id++;
+ if (m_id >= m_end)
+ {
+ ++itb;
+ if (itb)
+ {
+ m_id = m_mat.blockInnerIndex(itb.index());
+ m_start = m_id;
+ m_end = m_mat.blockInnerIndex(itb.index()+1);
+ }
+ }
+ return *this;
+ }
+ inline const Scalar& value() const
+ {
+ return itb.value().coeff(m_id - m_start, m_offset);
+ }
+ inline Scalar& valueRef()
+ {
+ return itb.valueRef().coeff(m_id - m_start, m_offset);
+ }
+ inline Index index() const { return m_id; }
+ inline Index outer() const {return m_outer; }
+ inline Index col() const {return outer(); }
+ inline Index row() const { return index();}
+ inline operator bool() const
+ {
+ return itb;
+ }
+ protected:
+ const BlockSparseMatrix& m_mat;
+ const Index m_outer;
+ const Index m_outerB;
+ BlockInnerIterator itb; // Iterator through the blocks
+ const Index m_offset; // Position of this column in the block
+ Index m_start; // starting inner index of this block
+ Index m_id; // current inner index in the block
+ Index m_end; // starting inner index of the next block
+
+};
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSEBLOCKMATRIX_H
diff --git a/unsupported/Eigen/src/SparseExtra/CMakeLists.txt b/unsupported/Eigen/src/SparseExtra/CMakeLists.txt
deleted file mode 100644
index 7ea32ca5e..000000000
--- a/unsupported/Eigen/src/SparseExtra/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_SparseExtra_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_SparseExtra_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/SparseExtra COMPONENT Devel
- )
diff --git a/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h b/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h
index dec16df28..037a13f86 100644
--- a/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h
+++ b/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h
@@ -33,11 +33,11 @@ namespace Eigen {
*/
namespace internal {
-template<typename _Scalar, int _Options, typename _Index>
-struct traits<DynamicSparseMatrix<_Scalar, _Options, _Index> >
+template<typename _Scalar, int _Options, typename _StorageIndex>
+struct traits<DynamicSparseMatrix<_Scalar, _Options, _StorageIndex> >
{
typedef _Scalar Scalar;
- typedef _Index Index;
+ typedef _StorageIndex StorageIndex;
typedef Sparse StorageKind;
typedef MatrixXpr XprKind;
enum {
@@ -52,10 +52,12 @@ struct traits<DynamicSparseMatrix<_Scalar, _Options, _Index> >
};
}
-template<typename _Scalar, int _Options, typename _Index>
+template<typename _Scalar, int _Options, typename _StorageIndex>
class DynamicSparseMatrix
- : public SparseMatrixBase<DynamicSparseMatrix<_Scalar, _Options, _Index> >
+ : public SparseMatrixBase<DynamicSparseMatrix<_Scalar, _Options, _StorageIndex> >
{
+ typedef SparseMatrixBase<DynamicSparseMatrix> Base;
+ using Base::convert_index;
public:
EIGEN_SPARSE_PUBLIC_INTERFACE(DynamicSparseMatrix)
// FIXME: why are these operator already alvailable ???
@@ -70,21 +72,21 @@ template<typename _Scalar, int _Options, typename _Index>
protected:
- typedef DynamicSparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
+ typedef DynamicSparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0), StorageIndex> TransposedSparseMatrix;
Index m_innerSize;
- std::vector<internal::CompressedStorage<Scalar,Index> > m_data;
+ std::vector<internal::CompressedStorage<Scalar,StorageIndex> > m_data;
public:
inline Index rows() const { return IsRowMajor ? outerSize() : m_innerSize; }
inline Index cols() const { return IsRowMajor ? m_innerSize : outerSize(); }
inline Index innerSize() const { return m_innerSize; }
- inline Index outerSize() const { return static_cast<Index>(m_data.size()); }
+ inline Index outerSize() const { return convert_index(m_data.size()); }
inline Index innerNonZeros(Index j) const { return m_data[j].size(); }
- std::vector<internal::CompressedStorage<Scalar,Index> >& _data() { return m_data; }
- const std::vector<internal::CompressedStorage<Scalar,Index> >& _data() const { return m_data; }
+ std::vector<internal::CompressedStorage<Scalar,StorageIndex> >& _data() { return m_data; }
+ const std::vector<internal::CompressedStorage<Scalar,StorageIndex> >& _data() const { return m_data; }
/** \returns the coefficient value at given position \a row, \a col
* This operation involes a log(rho*outer_size) binary search.
@@ -121,7 +123,7 @@ template<typename _Scalar, int _Options, typename _Index>
{
Index res = 0;
for (Index j=0; j<outerSize(); ++j)
- res += static_cast<Index>(m_data[j].size());
+ res += m_data[j].size();
return res;
}
@@ -197,7 +199,7 @@ template<typename _Scalar, int _Options, typename _Index>
void resize(Index rows, Index cols)
{
const Index outerSize = IsRowMajor ? rows : cols;
- m_innerSize = IsRowMajor ? cols : rows;
+ m_innerSize = convert_index(IsRowMajor ? cols : rows);
setZero();
if (Index(m_data.size()) != outerSize)
{
@@ -320,10 +322,10 @@ template<typename _Scalar, int _Options, typename _Index>
# endif
};
-template<typename Scalar, int _Options, typename _Index>
-class DynamicSparseMatrix<Scalar,_Options,_Index>::InnerIterator : public SparseVector<Scalar,_Options,_Index>::InnerIterator
+template<typename Scalar, int _Options, typename _StorageIndex>
+class DynamicSparseMatrix<Scalar,_Options,_StorageIndex>::InnerIterator : public SparseVector<Scalar,_Options,_StorageIndex>::InnerIterator
{
- typedef typename SparseVector<Scalar,_Options,_Index>::InnerIterator Base;
+ typedef typename SparseVector<Scalar,_Options,_StorageIndex>::InnerIterator Base;
public:
InnerIterator(const DynamicSparseMatrix& mat, Index outer)
: Base(mat.m_data[outer]), m_outer(outer)
@@ -331,15 +333,16 @@ class DynamicSparseMatrix<Scalar,_Options,_Index>::InnerIterator : public Sparse
inline Index row() const { return IsRowMajor ? m_outer : Base::index(); }
inline Index col() const { return IsRowMajor ? Base::index() : m_outer; }
+ inline Index outer() const { return m_outer; }
protected:
const Index m_outer;
};
-template<typename Scalar, int _Options, typename _Index>
-class DynamicSparseMatrix<Scalar,_Options,_Index>::ReverseInnerIterator : public SparseVector<Scalar,_Options,_Index>::ReverseInnerIterator
+template<typename Scalar, int _Options, typename _StorageIndex>
+class DynamicSparseMatrix<Scalar,_Options,_StorageIndex>::ReverseInnerIterator : public SparseVector<Scalar,_Options,_StorageIndex>::ReverseInnerIterator
{
- typedef typename SparseVector<Scalar,_Options,_Index>::ReverseInnerIterator Base;
+ typedef typename SparseVector<Scalar,_Options,_StorageIndex>::ReverseInnerIterator Base;
public:
ReverseInnerIterator(const DynamicSparseMatrix& mat, Index outer)
: Base(mat.m_data[outer]), m_outer(outer)
@@ -347,11 +350,43 @@ class DynamicSparseMatrix<Scalar,_Options,_Index>::ReverseInnerIterator : public
inline Index row() const { return IsRowMajor ? m_outer : Base::index(); }
inline Index col() const { return IsRowMajor ? Base::index() : m_outer; }
+ inline Index outer() const { return m_outer; }
protected:
const Index m_outer;
};
+namespace internal {
+
+template<typename _Scalar, int _Options, typename _StorageIndex>
+struct evaluator<DynamicSparseMatrix<_Scalar,_Options,_StorageIndex> >
+ : evaluator_base<DynamicSparseMatrix<_Scalar,_Options,_StorageIndex> >
+{
+ typedef _Scalar Scalar;
+ typedef DynamicSparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType;
+ typedef typename SparseMatrixType::InnerIterator InnerIterator;
+ typedef typename SparseMatrixType::ReverseInnerIterator ReverseInnerIterator;
+
+ enum {
+ CoeffReadCost = NumTraits<_Scalar>::ReadCost,
+ Flags = SparseMatrixType::Flags
+ };
+
+ evaluator() : m_matrix(0) {}
+ evaluator(const SparseMatrixType &mat) : m_matrix(&mat) {}
+
+ operator SparseMatrixType&() { return m_matrix->const_cast_derived(); }
+ operator const SparseMatrixType&() const { return *m_matrix; }
+
+ Scalar coeff(Index row, Index col) const { return m_matrix->coeff(row,col); }
+
+ Index nonZerosEstimate() const { return m_matrix->nonZeros(); }
+
+ const SparseMatrixType *m_matrix;
+};
+
+}
+
} // end namespace Eigen
#endif // EIGEN_DYNAMIC_SPARSEMATRIX_H
diff --git a/unsupported/Eigen/src/SparseExtra/MarketIO.h b/unsupported/Eigen/src/SparseExtra/MarketIO.h
index 7aafce928..cdc14f86e 100644
--- a/unsupported/Eigen/src/SparseExtra/MarketIO.h
+++ b/unsupported/Eigen/src/SparseExtra/MarketIO.h
@@ -18,7 +18,7 @@ namespace Eigen {
namespace internal
{
template <typename Scalar>
- inline bool GetMarketLine (std::stringstream& line, int& M, int& N, int& i, int& j, Scalar& value)
+ inline bool GetMarketLine (std::stringstream& line, Index& M, Index& N, Index& i, Index& j, Scalar& value)
{
line >> i >> j >> value;
i--;
@@ -31,7 +31,7 @@ namespace internal
return false;
}
template <typename Scalar>
- inline bool GetMarketLine (std::stringstream& line, int& M, int& N, int& i, int& j, std::complex<Scalar>& value)
+ inline bool GetMarketLine (std::stringstream& line, Index& M, Index& N, Index& i, Index& j, std::complex<Scalar>& value)
{
Scalar valR, valI;
line >> i >> j >> valR >> valI;
@@ -133,6 +133,7 @@ template<typename SparseMatrixType>
bool loadMarket(SparseMatrixType& mat, const std::string& filename)
{
typedef typename SparseMatrixType::Scalar Scalar;
+ typedef typename SparseMatrixType::Index Index;
std::ifstream input(filename.c_str(),std::ios::in);
if(!input)
return false;
@@ -142,11 +143,11 @@ bool loadMarket(SparseMatrixType& mat, const std::string& filename)
bool readsizes = false;
- typedef Triplet<Scalar,int> T;
+ typedef Triplet<Scalar,Index> T;
std::vector<T> elements;
- int M(-1), N(-1), NNZ(-1);
- int count = 0;
+ Index M(-1), N(-1), NNZ(-1);
+ Index count = 0;
while(input.getline(buffer, maxBuffersize))
{
// skip comments
@@ -162,14 +163,14 @@ bool loadMarket(SparseMatrixType& mat, const std::string& filename)
if(M > 0 && N > 0 && NNZ > 0)
{
readsizes = true;
- std::cout << "sizes: " << M << "," << N << "," << NNZ << "\n";
+ //std::cout << "sizes: " << M << "," << N << "," << NNZ << "\n";
mat.resize(M,N);
mat.reserve(NNZ);
}
}
else
{
- int i(-1), j(-1);
+ Index i(-1), j(-1);
Scalar value;
if( internal::GetMarketLine(line, M, N, i, j, value) )
{
@@ -238,9 +239,9 @@ bool saveMarket(const SparseMatrixType& mat, const std::string& filename, int sy
for(int j=0; j<mat.outerSize(); ++j)
for(typename SparseMatrixType::InnerIterator it(mat,j); it; ++it)
{
- ++ count;
- internal::PutMatrixElt(it.value(), it.row()+1, it.col()+1, out);
- // out << it.row()+1 << " " << it.col()+1 << " " << it.value() << "\n";
+ ++ count;
+ internal::PutMatrixElt(it.value(), it.row()+1, it.col()+1, out);
+ // out << it.row()+1 << " " << it.col()+1 << " " << it.value() << "\n";
}
out.close();
return true;
diff --git a/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h b/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h
index bf13cf21f..02916ea6f 100644
--- a/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h
+++ b/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h
@@ -41,20 +41,18 @@ enum {
template <typename Scalar>
class MatrixMarketIterator
{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
public:
typedef Matrix<Scalar,Dynamic,1> VectorType;
typedef SparseMatrix<Scalar,ColMajor> MatrixType;
public:
- MatrixMarketIterator(const std::string folder):m_sym(0),m_isvalid(false),m_matIsLoaded(false),m_hasRhs(false),m_hasrefX(false),m_folder(folder)
+ MatrixMarketIterator(const std::string &folder)
+ : m_sym(0), m_isvalid(false), m_matIsLoaded(false), m_hasRhs(false), m_hasrefX(false), m_folder(folder)
{
m_folder_id = opendir(folder.c_str());
- if (!m_folder_id){
- m_isvalid = false;
- std::cerr << "The provided Matrix folder could not be opened \n\n";
- abort();
- }
- Getnextvalidmatrix();
+ if(m_folder_id)
+ Getnextvalidmatrix();
}
~MatrixMarketIterator()
@@ -81,16 +79,30 @@ class MatrixMarketIterator
std::string matrix_file = m_folder + "/" + m_matname + ".mtx";
if ( !loadMarket(m_mat, matrix_file))
{
+ std::cerr << "Warning loadMarket failed when loading \"" << matrix_file << "\"" << std::endl;
m_matIsLoaded = false;
return m_mat;
}
m_matIsLoaded = true;
-
+
if (m_sym != NonSymmetric)
- { // Store the upper part of the matrix. It is needed by the solvers dealing with nonsymmetric matrices ??
- MatrixType B;
- B = m_mat;
- m_mat = B.template selfadjointView<Lower>();
+ {
+ // Check whether we need to restore a full matrix:
+ RealScalar diag_norm = m_mat.diagonal().norm();
+ RealScalar lower_norm = m_mat.template triangularView<Lower>().norm();
+ RealScalar upper_norm = m_mat.template triangularView<Upper>().norm();
+ if(lower_norm>diag_norm && upper_norm==diag_norm)
+ {
+ // only the lower part is stored
+ MatrixType tmp(m_mat);
+ m_mat = tmp.template selfadjointView<Lower>();
+ }
+ else if(upper_norm>diag_norm && lower_norm==diag_norm)
+ {
+ // only the upper part is stored
+ MatrixType tmp(m_mat);
+ m_mat = tmp.template selfadjointView<Upper>();
+ }
}
return m_mat;
}
@@ -143,6 +155,8 @@ class MatrixMarketIterator
m_refX.resize(m_mat.cols());
m_hasrefX = loadMarketVector(m_refX, lhs_file);
}
+ else
+ m_refX.resize(0);
return m_refX;
}
@@ -150,8 +164,9 @@ class MatrixMarketIterator
inline int sym() { return m_sym; }
- inline bool hasRhs() {return m_hasRhs; }
- inline bool hasrefX() {return m_hasrefX; }
+ bool hasRhs() {return m_hasRhs; }
+ bool hasrefX() {return m_hasrefX; }
+ bool isFolderValid() { return bool(m_folder_id); }
protected:
diff --git a/unsupported/Eigen/src/SparseExtra/RandomSetter.h b/unsupported/Eigen/src/SparseExtra/RandomSetter.h
index dee1708e7..ee97299af 100644
--- a/unsupported/Eigen/src/SparseExtra/RandomSetter.h
+++ b/unsupported/Eigen/src/SparseExtra/RandomSetter.h
@@ -95,10 +95,10 @@ template<typename Scalar> struct GoogleSparseHashMapTraits
*
* \brief The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access
*
- * \param SparseMatrixType the type of the sparse matrix we are updating
- * \param MapTraits a traits class representing the map implementation used for the temporary sparse storage.
+ * \tparam SparseMatrixType the type of the sparse matrix we are updating
+ * \tparam MapTraits a traits class representing the map implementation used for the temporary sparse storage.
* Its default value depends on the system.
- * \param OuterPacketBits defines the number of rows (or columns) manage by a single map object
+ * \tparam OuterPacketBits defines the number of rows (or columns) manage by a single map object
* as a power of two exponent.
*
* This class temporarily represents a sparse matrix object using a generic map implementation allowing for
@@ -154,7 +154,7 @@ template<typename SparseMatrixType,
class RandomSetter
{
typedef typename SparseMatrixType::Scalar Scalar;
- typedef typename SparseMatrixType::Index Index;
+ typedef typename SparseMatrixType::StorageIndex StorageIndex;
struct ScalarWrapper
{
@@ -296,7 +296,7 @@ class RandomSetter
const Index inner = SetterRowMajor ? col : row;
const Index outerMajor = outer >> OuterPacketBits; // index of the packet/map
const Index outerMinor = outer & OuterPacketMask; // index of the inner vector in the packet
- const KeyType key = (KeyType(outerMinor)<<m_keyBitsOffset) | inner;
+ const KeyType key = internal::convert_index<KeyType>((outerMinor<<m_keyBitsOffset) | inner);
return m_hashmaps[outerMajor][key].value;
}
diff --git a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h
new file mode 100644
index 000000000..ed415db99
--- /dev/null
+++ b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h
@@ -0,0 +1,124 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+
+#ifndef EIGEN_SPECIALFUNCTIONS_ARRAYAPI_H
+#define EIGEN_SPECIALFUNCTIONS_ARRAYAPI_H
+
+namespace Eigen {
+
+/** \cpp11 \returns an expression of the coefficient-wise igamma(\a a, \a x) to the given arrays.
+ *
+ * This function computes the coefficient-wise incomplete gamma function.
+ *
+ * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types,
+ * or float/double in non c++11 mode, the user has to provide implementations of igammac(T,T) for any scalar
+ * type T to be supported.
+ *
+ * \sa Eigen::igammac(), Eigen::lgamma()
+ */
+template<typename Derived,typename ExponentDerived>
+inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived>
+igamma(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x)
+{
+ return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived>(
+ a.derived(),
+ x.derived()
+ );
+}
+
+/** \cpp11 \returns an expression of the coefficient-wise igammac(\a a, \a x) to the given arrays.
+ *
+ * This function computes the coefficient-wise complementary incomplete gamma function.
+ *
+ * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types,
+ * or float/double in non c++11 mode, the user has to provide implementations of igammac(T,T) for any scalar
+ * type T to be supported.
+ *
+ * \sa Eigen::igamma(), Eigen::lgamma()
+ */
+template<typename Derived,typename ExponentDerived>
+inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived>
+igammac(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x)
+{
+ return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived>(
+ a.derived(),
+ x.derived()
+ );
+}
+
+/** \cpp11 \returns an expression of the coefficient-wise polygamma(\a n, \a x) to the given arrays.
+ *
+ * It returns the \a n -th derivative of the digamma(psi) evaluated at \c x.
+ *
+ * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types,
+ * or float/double in non c++11 mode, the user has to provide implementations of polygamma(T,T) for any scalar
+ * type T to be supported.
+ *
+ * \sa Eigen::digamma()
+ */
+// * \warning Be careful with the order of the parameters: x.polygamma(n) is equivalent to polygamma(n,x)
+// * \sa ArrayBase::polygamma()
+template<typename DerivedN,typename DerivedX>
+inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_polygamma_op<typename DerivedX::Scalar>, const DerivedN, const DerivedX>
+polygamma(const Eigen::ArrayBase<DerivedN>& n, const Eigen::ArrayBase<DerivedX>& x)
+{
+ return Eigen::CwiseBinaryOp<Eigen::internal::scalar_polygamma_op<typename DerivedX::Scalar>, const DerivedN, const DerivedX>(
+ n.derived(),
+ x.derived()
+ );
+}
+
+/** \cpp11 \returns an expression of the coefficient-wise betainc(\a x, \a a, \a b) to the given arrays.
+ *
+ * This function computes the regularized incomplete beta function (integral).
+ *
+ * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types,
+ * or float/double in non c++11 mode, the user has to provide implementations of betainc(T,T,T) for any scalar
+ * type T to be supported.
+ *
+ * \sa Eigen::betainc(), Eigen::lgamma()
+ */
+template<typename ArgADerived, typename ArgBDerived, typename ArgXDerived>
+inline const Eigen::CwiseTernaryOp<Eigen::internal::scalar_betainc_op<typename ArgXDerived::Scalar>, const ArgADerived, const ArgBDerived, const ArgXDerived>
+betainc(const Eigen::ArrayBase<ArgADerived>& a, const Eigen::ArrayBase<ArgBDerived>& b, const Eigen::ArrayBase<ArgXDerived>& x)
+{
+ return Eigen::CwiseTernaryOp<Eigen::internal::scalar_betainc_op<typename ArgXDerived::Scalar>, const ArgADerived, const ArgBDerived, const ArgXDerived>(
+ a.derived(),
+ b.derived(),
+ x.derived()
+ );
+}
+
+
+/** \returns an expression of the coefficient-wise zeta(\a x, \a q) to the given arrays.
+ *
+ * It returns the Riemann zeta function of two arguments \a x and \a q:
+ *
+ * \param x is the exposent, it must be > 1
+ * \param q is the shift, it must be > 0
+ *
+ * \note This function supports only float and double scalar types. To support other scalar types, the user has
+ * to provide implementations of zeta(T,T) for any scalar type T to be supported.
+ *
+ * \sa ArrayBase::zeta()
+ */
+template<typename DerivedX,typename DerivedQ>
+inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_zeta_op<typename DerivedX::Scalar>, const DerivedX, const DerivedQ>
+zeta(const Eigen::ArrayBase<DerivedX>& x, const Eigen::ArrayBase<DerivedQ>& q)
+{
+ return Eigen::CwiseBinaryOp<Eigen::internal::scalar_zeta_op<typename DerivedX::Scalar>, const DerivedX, const DerivedQ>(
+ x.derived(),
+ q.derived()
+ );
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPECIALFUNCTIONS_ARRAYAPI_H
diff --git a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h
new file mode 100644
index 000000000..d8f2363be
--- /dev/null
+++ b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h
@@ -0,0 +1,236 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016 Eugene Brevdo <ebrevdo@gmail.com>
+// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPECIALFUNCTIONS_FUNCTORS_H
+#define EIGEN_SPECIALFUNCTIONS_FUNCTORS_H
+
+namespace Eigen {
+
+namespace internal {
+
+
+/** \internal
+ * \brief Template functor to compute the incomplete gamma function igamma(a, x)
+ *
+ * \sa class CwiseBinaryOp, Cwise::igamma
+ */
+template<typename Scalar> struct scalar_igamma_op : binary_op_base<Scalar,Scalar>
+{
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_igamma_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& x) const {
+ using numext::igamma; return igamma(a, x);
+ }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& x) const {
+ return internal::pigamma(a, x);
+ }
+};
+template<typename Scalar>
+struct functor_traits<scalar_igamma_op<Scalar> > {
+ enum {
+ // Guesstimate
+ Cost = 20 * NumTraits<Scalar>::MulCost + 10 * NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasIGamma
+ };
+};
+
+
+/** \internal
+ * \brief Template functor to compute the complementary incomplete gamma function igammac(a, x)
+ *
+ * \sa class CwiseBinaryOp, Cwise::igammac
+ */
+template<typename Scalar> struct scalar_igammac_op : binary_op_base<Scalar,Scalar>
+{
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_igammac_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& x) const {
+ using numext::igammac; return igammac(a, x);
+ }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& x) const
+ {
+ return internal::pigammac(a, x);
+ }
+};
+template<typename Scalar>
+struct functor_traits<scalar_igammac_op<Scalar> > {
+ enum {
+ // Guesstimate
+ Cost = 20 * NumTraits<Scalar>::MulCost + 10 * NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasIGammac
+ };
+};
+
+
+/** \internal
+ * \brief Template functor to compute the incomplete beta integral betainc(a, b, x)
+ *
+ */
+template<typename Scalar> struct scalar_betainc_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_betainc_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& x, const Scalar& a, const Scalar& b) const {
+ using numext::betainc; return betainc(x, a, b);
+ }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& x, const Packet& a, const Packet& b) const
+ {
+ return internal::pbetainc(x, a, b);
+ }
+};
+template<typename Scalar>
+struct functor_traits<scalar_betainc_op<Scalar> > {
+ enum {
+ // Guesstimate
+ Cost = 400 * NumTraits<Scalar>::MulCost + 400 * NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasBetaInc
+ };
+};
+
+
+/** \internal
+ * \brief Template functor to compute the natural log of the absolute
+ * value of Gamma of a scalar
+ * \sa class CwiseUnaryOp, Cwise::lgamma()
+ */
+template<typename Scalar> struct scalar_lgamma_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_lgamma_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const {
+ using numext::lgamma; return lgamma(a);
+ }
+ typedef typename packet_traits<Scalar>::type Packet;
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plgamma(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_lgamma_op<Scalar> >
+{
+ enum {
+ // Guesstimate
+ Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasLGamma
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute psi, the derivative of lgamma of a scalar.
+ * \sa class CwiseUnaryOp, Cwise::digamma()
+ */
+template<typename Scalar> struct scalar_digamma_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_digamma_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const {
+ using numext::digamma; return digamma(a);
+ }
+ typedef typename packet_traits<Scalar>::type Packet;
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pdigamma(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_digamma_op<Scalar> >
+{
+ enum {
+ // Guesstimate
+ Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasDiGamma
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the Riemann Zeta function of two arguments.
+ * \sa class CwiseUnaryOp, Cwise::zeta()
+ */
+template<typename Scalar> struct scalar_zeta_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_zeta_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& x, const Scalar& q) const {
+ using numext::zeta; return zeta(x, q);
+ }
+ typedef typename packet_traits<Scalar>::type Packet;
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& x, const Packet& q) const { return internal::pzeta(x, q); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_zeta_op<Scalar> >
+{
+ enum {
+ // Guesstimate
+ Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasZeta
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the polygamma function.
+ * \sa class CwiseUnaryOp, Cwise::polygamma()
+ */
+template<typename Scalar> struct scalar_polygamma_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_polygamma_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& n, const Scalar& x) const {
+ using numext::polygamma; return polygamma(n, x);
+ }
+ typedef typename packet_traits<Scalar>::type Packet;
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& n, const Packet& x) const { return internal::ppolygamma(n, x); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_polygamma_op<Scalar> >
+{
+ enum {
+ // Guesstimate
+ Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasPolygamma
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the Gauss error function of a
+ * scalar
+ * \sa class CwiseUnaryOp, Cwise::erf()
+ */
+template<typename Scalar> struct scalar_erf_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_erf_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const {
+ using numext::erf; return erf(a);
+ }
+ typedef typename packet_traits<Scalar>::type Packet;
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::perf(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_erf_op<Scalar> >
+{
+ enum {
+ // Guesstimate
+ Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasErf
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the Complementary Error Function
+ * of a scalar
+ * \sa class CwiseUnaryOp, Cwise::erfc()
+ */
+template<typename Scalar> struct scalar_erfc_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_erfc_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const {
+ using numext::erfc; return erfc(a);
+ }
+ typedef typename packet_traits<Scalar>::type Packet;
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::perfc(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_erfc_op<Scalar> >
+{
+ enum {
+ // Guesstimate
+ Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasErfc
+ };
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPECIALFUNCTIONS_FUNCTORS_H
diff --git a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h
new file mode 100644
index 000000000..553bcda6a
--- /dev/null
+++ b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h
@@ -0,0 +1,47 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPECIALFUNCTIONS_HALF_H
+#define EIGEN_SPECIALFUNCTIONS_HALF_H
+
+namespace Eigen {
+namespace numext {
+
+#if EIGEN_HAS_C99_MATH
+template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half lgamma(const Eigen::half& a) {
+ return Eigen::half(Eigen::numext::lgamma(static_cast<float>(a)));
+}
+template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half digamma(const Eigen::half& a) {
+ return Eigen::half(Eigen::numext::digamma(static_cast<float>(a)));
+}
+template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half zeta(const Eigen::half& x, const Eigen::half& q) {
+ return Eigen::half(Eigen::numext::zeta(static_cast<float>(x), static_cast<float>(q)));
+}
+template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half polygamma(const Eigen::half& n, const Eigen::half& x) {
+ return Eigen::half(Eigen::numext::polygamma(static_cast<float>(n), static_cast<float>(x)));
+}
+template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half erf(const Eigen::half& a) {
+ return Eigen::half(Eigen::numext::erf(static_cast<float>(a)));
+}
+template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half erfc(const Eigen::half& a) {
+ return Eigen::half(Eigen::numext::erfc(static_cast<float>(a)));
+}
+template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half igamma(const Eigen::half& a, const Eigen::half& x) {
+ return Eigen::half(Eigen::numext::igamma(static_cast<float>(a), static_cast<float>(x)));
+}
+template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half igammac(const Eigen::half& a, const Eigen::half& x) {
+ return Eigen::half(Eigen::numext::igammac(static_cast<float>(a), static_cast<float>(x)));
+}
+template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half betainc(const Eigen::half& a, const Eigen::half& b, const Eigen::half& x) {
+ return Eigen::half(Eigen::numext::betainc(static_cast<float>(a), static_cast<float>(b), static_cast<float>(x)));
+}
+#endif
+
+} // end namespace numext
+} // end namespace Eigen
+
+#endif // EIGEN_SPECIALFUNCTIONS_HALF_H
diff --git a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
new file mode 100644
index 000000000..f524d7137
--- /dev/null
+++ b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
@@ -0,0 +1,1565 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPECIAL_FUNCTIONS_H
+#define EIGEN_SPECIAL_FUNCTIONS_H
+
+namespace Eigen {
+namespace internal {
+
+// Parts of this code are based on the Cephes Math Library.
+//
+// Cephes Math Library Release 2.8: June, 2000
+// Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
+//
+// Permission has been kindly provided by the original author
+// to incorporate the Cephes software into the Eigen codebase:
+//
+// From: Stephen Moshier
+// To: Eugene Brevdo
+// Subject: Re: Permission to wrap several cephes functions in Eigen
+//
+// Hello Eugene,
+//
+// Thank you for writing.
+//
+// If your licensing is similar to BSD, the formal way that has been
+// handled is simply to add a statement to the effect that you are incorporating
+// the Cephes software by permission of the author.
+//
+// Good luck with your project,
+// Steve
+
+namespace cephes {
+
+/* polevl (modified for Eigen)
+ *
+ * Evaluate polynomial
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * int N;
+ * Scalar x, y, coef[N+1];
+ *
+ * y = polevl<decltype(x), N>( x, coef);
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Evaluates polynomial of degree N:
+ *
+ * 2 N
+ * y = C + C x + C x +...+ C x
+ * 0 1 2 N
+ *
+ * Coefficients are stored in reverse order:
+ *
+ * coef[0] = C , ..., coef[N] = C .
+ * N 0
+ *
+ * The function p1evl() assumes that coef[N] = 1.0 and is
+ * omitted from the array. Its calling arguments are
+ * otherwise the same as polevl().
+ *
+ *
+ * The Eigen implementation is templatized. For best speed, store
+ * coef as a const array (constexpr), e.g.
+ *
+ * const double coef[] = {1.0, 2.0, 3.0, ...};
+ *
+ */
+template <typename Scalar, int N>
+struct polevl {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Scalar x, const Scalar coef[]) {
+ EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
+
+ return polevl<Scalar, N - 1>::run(x, coef) * x + coef[N];
+ }
+};
+
+template <typename Scalar>
+struct polevl<Scalar, 0> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Scalar, const Scalar coef[]) {
+ return coef[0];
+ }
+};
+
+} // end namespace cephes
+
+/****************************************************************************
+ * Implementation of lgamma, requires C++11/C99 *
+ ****************************************************************************/
+
+template <typename Scalar>
+struct lgamma_impl {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+template <typename Scalar>
+struct lgamma_retval {
+ typedef Scalar type;
+};
+
+#if EIGEN_HAS_C99_MATH
+template <>
+struct lgamma_impl<float> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE float run(float x) {
+#if !defined(__CUDA_ARCH__) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__)
+ int signgam;
+ return ::lgammaf_r(x, &signgam);
+#else
+ return ::lgammaf(x);
+#endif
+ }
+};
+
+template <>
+struct lgamma_impl<double> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE double run(double x) {
+#if !defined(__CUDA_ARCH__) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__)
+ int signgam;
+ return ::lgamma_r(x, &signgam);
+#else
+ return ::lgamma(x);
+#endif
+ }
+};
+#endif
+
+/****************************************************************************
+ * Implementation of digamma (psi), based on Cephes *
+ ****************************************************************************/
+
+template <typename Scalar>
+struct digamma_retval {
+ typedef Scalar type;
+};
+
+/*
+ *
+ * Polynomial evaluation helper for the Psi (digamma) function.
+ *
+ * digamma_impl_maybe_poly::run(s) evaluates the asymptotic Psi expansion for
+ * input Scalar s, assuming s is above 10.0.
+ *
+ * If s is above a certain threshold for the given Scalar type, zero
+ * is returned. Otherwise the polynomial is evaluated with enough
+ * coefficients for results matching Scalar machine precision.
+ *
+ *
+ */
+template <typename Scalar>
+struct digamma_impl_maybe_poly {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+
+template <>
+struct digamma_impl_maybe_poly<float> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE float run(const float s) {
+ const float A[] = {
+ -4.16666666666666666667E-3f,
+ 3.96825396825396825397E-3f,
+ -8.33333333333333333333E-3f,
+ 8.33333333333333333333E-2f
+ };
+
+ float z;
+ if (s < 1.0e8f) {
+ z = 1.0f / (s * s);
+ return z * cephes::polevl<float, 3>::run(z, A);
+ } else return 0.0f;
+ }
+};
+
+template <>
+struct digamma_impl_maybe_poly<double> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE double run(const double s) {
+ const double A[] = {
+ 8.33333333333333333333E-2,
+ -2.10927960927960927961E-2,
+ 7.57575757575757575758E-3,
+ -4.16666666666666666667E-3,
+ 3.96825396825396825397E-3,
+ -8.33333333333333333333E-3,
+ 8.33333333333333333333E-2
+ };
+
+ double z;
+ if (s < 1.0e17) {
+ z = 1.0 / (s * s);
+ return z * cephes::polevl<double, 6>::run(z, A);
+ }
+ else return 0.0;
+ }
+};
+
+template <typename Scalar>
+struct digamma_impl {
+ EIGEN_DEVICE_FUNC
+ static Scalar run(Scalar x) {
+ /*
+ *
+ * Psi (digamma) function (modified for Eigen)
+ *
+ *
+ * SYNOPSIS:
+ *
+ * double x, y, psi();
+ *
+ * y = psi( x );
+ *
+ *
+ * DESCRIPTION:
+ *
+ * d -
+ * psi(x) = -- ln | (x)
+ * dx
+ *
+ * is the logarithmic derivative of the gamma function.
+ * For integer x,
+ * n-1
+ * -
+ * psi(n) = -EUL + > 1/k.
+ * -
+ * k=1
+ *
+ * If x is negative, it is transformed to a positive argument by the
+ * reflection formula psi(1-x) = psi(x) + pi cot(pi x).
+ * For general positive x, the argument is made greater than 10
+ * using the recurrence psi(x+1) = psi(x) + 1/x.
+ * Then the following asymptotic expansion is applied:
+ *
+ * inf. B
+ * - 2k
+ * psi(x) = log(x) - 1/2x - > -------
+ * - 2k
+ * k=1 2k x
+ *
+ * where the B2k are Bernoulli numbers.
+ *
+ * ACCURACY (float):
+ * Relative error (except absolute when |psi| < 1):
+ * arithmetic domain # trials peak rms
+ * IEEE 0,30 30000 1.3e-15 1.4e-16
+ * IEEE -30,0 40000 1.5e-15 2.2e-16
+ *
+ * ACCURACY (double):
+ * Absolute error, relative when |psi| > 1 :
+ * arithmetic domain # trials peak rms
+ * IEEE -33,0 30000 8.2e-7 1.2e-7
+ * IEEE 0,33 100000 7.3e-7 7.7e-8
+ *
+ * ERROR MESSAGES:
+ * message condition value returned
+ * psi singularity x integer <=0 INFINITY
+ */
+
+ Scalar p, q, nz, s, w, y;
+ bool negative = false;
+
+ const Scalar maxnum = NumTraits<Scalar>::infinity();
+ const Scalar m_pi = Scalar(EIGEN_PI);
+
+ const Scalar zero = Scalar(0);
+ const Scalar one = Scalar(1);
+ const Scalar half = Scalar(0.5);
+ nz = zero;
+
+ if (x <= zero) {
+ negative = true;
+ q = x;
+ p = numext::floor(q);
+ if (p == q) {
+ return maxnum;
+ }
+ /* Remove the zeros of tan(m_pi x)
+ * by subtracting the nearest integer from x
+ */
+ nz = q - p;
+ if (nz != half) {
+ if (nz > half) {
+ p += one;
+ nz = q - p;
+ }
+ nz = m_pi / numext::tan(m_pi * nz);
+ }
+ else {
+ nz = zero;
+ }
+ x = one - x;
+ }
+
+ /* use the recurrence psi(x+1) = psi(x) + 1/x. */
+ s = x;
+ w = zero;
+ while (s < Scalar(10)) {
+ w += one / s;
+ s += one;
+ }
+
+ y = digamma_impl_maybe_poly<Scalar>::run(s);
+
+ y = numext::log(s) - (half / s) - y - w;
+
+ return (negative) ? y - nz : y;
+ }
+};
+
+/****************************************************************************
+ * Implementation of erf, requires C++11/C99 *
+ ****************************************************************************/
+
+template <typename Scalar>
+struct erf_impl {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+template <typename Scalar>
+struct erf_retval {
+ typedef Scalar type;
+};
+
+#if EIGEN_HAS_C99_MATH
+template <>
+struct erf_impl<float> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE float run(float x) { return ::erff(x); }
+};
+
+template <>
+struct erf_impl<double> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE double run(double x) { return ::erf(x); }
+};
+#endif // EIGEN_HAS_C99_MATH
+
+/***************************************************************************
+* Implementation of erfc, requires C++11/C99 *
+****************************************************************************/
+
+template <typename Scalar>
+struct erfc_impl {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+template <typename Scalar>
+struct erfc_retval {
+ typedef Scalar type;
+};
+
+#if EIGEN_HAS_C99_MATH
+template <>
+struct erfc_impl<float> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE float run(const float x) { return ::erfcf(x); }
+};
+
+template <>
+struct erfc_impl<double> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE double run(const double x) { return ::erfc(x); }
+};
+#endif // EIGEN_HAS_C99_MATH
+
+/**************************************************************************************************************
+ * Implementation of igammac (complemented incomplete gamma integral), based on Cephes but requires C++11/C99 *
+ **************************************************************************************************************/
+
+template <typename Scalar>
+struct igammac_retval {
+ typedef Scalar type;
+};
+
+// NOTE: cephes_helper is also used to implement zeta
+template <typename Scalar>
+struct cephes_helper {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar machep() { assert(false && "machep not supported for this type"); return 0.0; }
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar big() { assert(false && "big not supported for this type"); return 0.0; }
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar biginv() { assert(false && "biginv not supported for this type"); return 0.0; }
+};
+
+template <>
+struct cephes_helper<float> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE float machep() {
+ return NumTraits<float>::epsilon() / 2; // 1.0 - machep == 1.0
+ }
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE float big() {
+ // use epsneg (1.0 - epsneg == 1.0)
+ return 1.0f / (NumTraits<float>::epsilon() / 2);
+ }
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE float biginv() {
+ // epsneg
+ return machep();
+ }
+};
+
+template <>
+struct cephes_helper<double> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE double machep() {
+ return NumTraits<double>::epsilon() / 2; // 1.0 - machep == 1.0
+ }
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE double big() {
+ return 1.0 / NumTraits<double>::epsilon();
+ }
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE double biginv() {
+ // inverse of eps
+ return NumTraits<double>::epsilon();
+ }
+};
+
+#if !EIGEN_HAS_C99_MATH
+
+template <typename Scalar>
+struct igammac_impl {
+ EIGEN_DEVICE_FUNC
+ static Scalar run(Scalar a, Scalar x) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+#else
+
+template <typename Scalar> struct igamma_impl; // predeclare igamma_impl
+
+template <typename Scalar>
+struct igammac_impl {
+ EIGEN_DEVICE_FUNC
+ static Scalar run(Scalar a, Scalar x) {
+ /* igamc()
+ *
+ * Incomplete gamma integral (modified for Eigen)
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * double a, x, y, igamc();
+ *
+ * y = igamc( a, x );
+ *
+ * DESCRIPTION:
+ *
+ * The function is defined by
+ *
+ *
+ * igamc(a,x) = 1 - igam(a,x)
+ *
+ * inf.
+ * -
+ * 1 | | -t a-1
+ * = ----- | e t dt.
+ * - | |
+ * | (a) -
+ * x
+ *
+ *
+ * In this implementation both arguments must be positive.
+ * The integral is evaluated by either a power series or
+ * continued fraction expansion, depending on the relative
+ * values of a and x.
+ *
+ * ACCURACY (float):
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE 0,30 30000 7.8e-6 5.9e-7
+ *
+ *
+ * ACCURACY (double):
+ *
+ * Tested at random a, x.
+ * a x Relative error:
+ * arithmetic domain domain # trials peak rms
+ * IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
+ * IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
+ *
+ */
+ /*
+ Cephes Math Library Release 2.2: June, 1992
+ Copyright 1985, 1987, 1992 by Stephen L. Moshier
+ Direct inquiries to 30 Frost Street, Cambridge, MA 02140
+ */
+ const Scalar zero = 0;
+ const Scalar one = 1;
+ const Scalar nan = NumTraits<Scalar>::quiet_NaN();
+
+ if ((x < zero) || (a <= zero)) {
+ // domain error
+ return nan;
+ }
+
+ if ((x < one) || (x < a)) {
+ /* The checks above ensure that we meet the preconditions for
+ * igamma_impl::Impl(), so call it, rather than igamma_impl::Run().
+ * Calling Run() would also work, but in that case the compiler may not be
+ * able to prove that igammac_impl::Run and igamma_impl::Run are not
+ * mutually recursive. This leads to worse code, particularly on
+ * platforms like nvptx, where recursion is allowed only begrudgingly.
+ */
+ return (one - igamma_impl<Scalar>::Impl(a, x));
+ }
+
+ return Impl(a, x);
+ }
+
+ private:
+ /* igamma_impl calls igammac_impl::Impl. */
+ friend struct igamma_impl<Scalar>;
+
+ /* Actually computes igamc(a, x).
+ *
+ * Preconditions:
+ * a > 0
+ * x >= 1
+ * x >= a
+ */
+ EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) {
+ const Scalar zero = 0;
+ const Scalar one = 1;
+ const Scalar two = 2;
+ const Scalar machep = cephes_helper<Scalar>::machep();
+ const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
+ const Scalar big = cephes_helper<Scalar>::big();
+ const Scalar biginv = cephes_helper<Scalar>::biginv();
+ const Scalar inf = NumTraits<Scalar>::infinity();
+
+ Scalar ans, ax, c, yc, r, t, y, z;
+ Scalar pk, pkm1, pkm2, qk, qkm1, qkm2;
+
+ if (x == inf) return zero; // std::isinf crashes on CUDA
+
+ /* Compute x**a * exp(-x) / gamma(a) */
+ ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
+ if (ax < -maxlog) { // underflow
+ return zero;
+ }
+ ax = numext::exp(ax);
+
+ // continued fraction
+ y = one - a;
+ z = x + y + one;
+ c = zero;
+ pkm2 = one;
+ qkm2 = x;
+ pkm1 = x + one;
+ qkm1 = z * x;
+ ans = pkm1 / qkm1;
+
+ while (true) {
+ c += one;
+ y += one;
+ z += two;
+ yc = y * c;
+ pk = pkm1 * z - pkm2 * yc;
+ qk = qkm1 * z - qkm2 * yc;
+ if (qk != zero) {
+ r = pk / qk;
+ t = numext::abs((ans - r) / r);
+ ans = r;
+ } else {
+ t = one;
+ }
+ pkm2 = pkm1;
+ pkm1 = pk;
+ qkm2 = qkm1;
+ qkm1 = qk;
+ if (numext::abs(pk) > big) {
+ pkm2 *= biginv;
+ pkm1 *= biginv;
+ qkm2 *= biginv;
+ qkm1 *= biginv;
+ }
+ if (t <= machep) {
+ break;
+ }
+ }
+
+ return (ans * ax);
+ }
+};
+
+#endif // EIGEN_HAS_C99_MATH
+
+/************************************************************************************************
+ * Implementation of igamma (incomplete gamma integral), based on Cephes but requires C++11/C99 *
+ ************************************************************************************************/
+
+template <typename Scalar>
+struct igamma_retval {
+ typedef Scalar type;
+};
+
+#if !EIGEN_HAS_C99_MATH
+
+template <typename Scalar>
+struct igamma_impl {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar x) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+#else
+
+template <typename Scalar>
+struct igamma_impl {
+ EIGEN_DEVICE_FUNC
+ static Scalar run(Scalar a, Scalar x) {
+ /* igam()
+ * Incomplete gamma integral
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * double a, x, y, igam();
+ *
+ * y = igam( a, x );
+ *
+ * DESCRIPTION:
+ *
+ * The function is defined by
+ *
+ * x
+ * -
+ * 1 | | -t a-1
+ * igam(a,x) = ----- | e t dt.
+ * - | |
+ * | (a) -
+ * 0
+ *
+ *
+ * In this implementation both arguments must be positive.
+ * The integral is evaluated by either a power series or
+ * continued fraction expansion, depending on the relative
+ * values of a and x.
+ *
+ * ACCURACY (double):
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE 0,30 200000 3.6e-14 2.9e-15
+ * IEEE 0,100 300000 9.9e-14 1.5e-14
+ *
+ *
+ * ACCURACY (float):
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE 0,30 20000 7.8e-6 5.9e-7
+ *
+ */
+ /*
+ Cephes Math Library Release 2.2: June, 1992
+ Copyright 1985, 1987, 1992 by Stephen L. Moshier
+ Direct inquiries to 30 Frost Street, Cambridge, MA 02140
+ */
+
+
+ /* left tail of incomplete gamma function:
+ *
+ * inf. k
+ * a -x - x
+ * x e > ----------
+ * - -
+ * k=0 | (a+k+1)
+ *
+ */
+ const Scalar zero = 0;
+ const Scalar one = 1;
+ const Scalar nan = NumTraits<Scalar>::quiet_NaN();
+
+ if (x == zero) return zero;
+
+ if ((x < zero) || (a <= zero)) { // domain error
+ return nan;
+ }
+
+ if ((x > one) && (x > a)) {
+ /* The checks above ensure that we meet the preconditions for
+ * igammac_impl::Impl(), so call it, rather than igammac_impl::Run().
+ * Calling Run() would also work, but in that case the compiler may not be
+ * able to prove that igammac_impl::Run and igamma_impl::Run are not
+ * mutually recursive. This leads to worse code, particularly on
+ * platforms like nvptx, where recursion is allowed only begrudgingly.
+ */
+ return (one - igammac_impl<Scalar>::Impl(a, x));
+ }
+
+ return Impl(a, x);
+ }
+
+ private:
+ /* igammac_impl calls igamma_impl::Impl. */
+ friend struct igammac_impl<Scalar>;
+
+ /* Actually computes igam(a, x).
+ *
+ * Preconditions:
+ * x > 0
+ * a > 0
+ * !(x > 1 && x > a)
+ */
+ EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) {
+ const Scalar zero = 0;
+ const Scalar one = 1;
+ const Scalar machep = cephes_helper<Scalar>::machep();
+ const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
+
+ Scalar ans, ax, c, r;
+
+ /* Compute x**a * exp(-x) / gamma(a) */
+ ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
+ if (ax < -maxlog) {
+ // underflow
+ return zero;
+ }
+ ax = numext::exp(ax);
+
+ /* power series */
+ r = a;
+ c = one;
+ ans = one;
+
+ while (true) {
+ r += one;
+ c *= x/r;
+ ans += c;
+ if (c/ans <= machep) {
+ break;
+ }
+ }
+
+ return (ans * ax / a);
+ }
+};
+
+#endif // EIGEN_HAS_C99_MATH
+
+/*****************************************************************************
+ * Implementation of Riemann zeta function of two arguments, based on Cephes *
+ *****************************************************************************/
+
+template <typename Scalar>
+struct zeta_retval {
+ typedef Scalar type;
+};
+
+template <typename Scalar>
+struct zeta_impl_series {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+template <>
+struct zeta_impl_series<float> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE bool run(float& a, float& b, float& s, const float x, const float machep) {
+ int i = 0;
+ while(i < 9)
+ {
+ i += 1;
+ a += 1.0f;
+ b = numext::pow( a, -x );
+ s += b;
+ if( numext::abs(b/s) < machep )
+ return true;
+ }
+
+ //Return whether we are done
+ return false;
+ }
+};
+
+template <>
+struct zeta_impl_series<double> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE bool run(double& a, double& b, double& s, const double x, const double machep) {
+ int i = 0;
+ while( (i < 9) || (a <= 9.0) )
+ {
+ i += 1;
+ a += 1.0;
+ b = numext::pow( a, -x );
+ s += b;
+ if( numext::abs(b/s) < machep )
+ return true;
+ }
+
+ //Return whether we are done
+ return false;
+ }
+};
+
+template <typename Scalar>
+struct zeta_impl {
+ EIGEN_DEVICE_FUNC
+ static Scalar run(Scalar x, Scalar q) {
+ /* zeta.c
+ *
+ * Riemann zeta function of two arguments
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * double x, q, y, zeta();
+ *
+ * y = zeta( x, q );
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ *
+ *
+ * inf.
+ * - -x
+ * zeta(x,q) = > (k+q)
+ * -
+ * k=0
+ *
+ * where x > 1 and q is not a negative integer or zero.
+ * The Euler-Maclaurin summation formula is used to obtain
+ * the expansion
+ *
+ * n
+ * - -x
+ * zeta(x,q) = > (k+q)
+ * -
+ * k=1
+ *
+ * 1-x inf. B x(x+1)...(x+2j)
+ * (n+q) 1 - 2j
+ * + --------- - ------- + > --------------------
+ * x-1 x - x+2j+1
+ * 2(n+q) j=1 (2j)! (n+q)
+ *
+ * where the B2j are Bernoulli numbers. Note that (see zetac.c)
+ * zeta(x,1) = zetac(x) + 1.
+ *
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error for single precision:
+ * arithmetic domain # trials peak rms
+ * IEEE 0,25 10000 6.9e-7 1.0e-7
+ *
+ * Large arguments may produce underflow in powf(), in which
+ * case the results are inaccurate.
+ *
+ * REFERENCE:
+ *
+ * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
+ * Series, and Products, p. 1073; Academic Press, 1980.
+ *
+ */
+
+ int i;
+ Scalar p, r, a, b, k, s, t, w;
+
+ const Scalar A[] = {
+ Scalar(12.0),
+ Scalar(-720.0),
+ Scalar(30240.0),
+ Scalar(-1209600.0),
+ Scalar(47900160.0),
+ Scalar(-1.8924375803183791606e9), /*1.307674368e12/691*/
+ Scalar(7.47242496e10),
+ Scalar(-2.950130727918164224e12), /*1.067062284288e16/3617*/
+ Scalar(1.1646782814350067249e14), /*5.109094217170944e18/43867*/
+ Scalar(-4.5979787224074726105e15), /*8.028576626982912e20/174611*/
+ Scalar(1.8152105401943546773e17), /*1.5511210043330985984e23/854513*/
+ Scalar(-7.1661652561756670113e18) /*1.6938241367317436694528e27/236364091*/
+ };
+
+ const Scalar maxnum = NumTraits<Scalar>::infinity();
+ const Scalar zero = 0.0, half = 0.5, one = 1.0;
+ const Scalar machep = cephes_helper<Scalar>::machep();
+ const Scalar nan = NumTraits<Scalar>::quiet_NaN();
+
+ if( x == one )
+ return maxnum;
+
+ if( x < one )
+ {
+ return nan;
+ }
+
+ if( q <= zero )
+ {
+ if(q == numext::floor(q))
+ {
+ return maxnum;
+ }
+ p = x;
+ r = numext::floor(p);
+ if (p != r)
+ return nan;
+ }
+
+ /* Permit negative q but continue sum until n+q > +9 .
+ * This case should be handled by a reflection formula.
+ * If q<0 and x is an integer, there is a relation to
+ * the polygamma function.
+ */
+ s = numext::pow( q, -x );
+ a = q;
+ b = zero;
+ // Run the summation in a helper function that is specific to the floating precision
+ if (zeta_impl_series<Scalar>::run(a, b, s, x, machep)) {
+ return s;
+ }
+
+ w = a;
+ s += b*w/(x-one);
+ s -= half * b;
+ a = one;
+ k = zero;
+ for( i=0; i<12; i++ )
+ {
+ a *= x + k;
+ b /= w;
+ t = a*b/A[i];
+ s = s + t;
+ t = numext::abs(t/s);
+ if( t < machep ) {
+ break;
+ }
+ k += one;
+ a *= x + k;
+ b /= w;
+ k += one;
+ }
+ return s;
+ }
+};
+
+/****************************************************************************
+ * Implementation of polygamma function, requires C++11/C99 *
+ ****************************************************************************/
+
+template <typename Scalar>
+struct polygamma_retval {
+ typedef Scalar type;
+};
+
+#if !EIGEN_HAS_C99_MATH
+
+template <typename Scalar>
+struct polygamma_impl {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(Scalar n, Scalar x) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+#else
+
+template <typename Scalar>
+struct polygamma_impl {
+ EIGEN_DEVICE_FUNC
+ static Scalar run(Scalar n, Scalar x) {
+ Scalar zero = 0.0, one = 1.0;
+ Scalar nplus = n + one;
+ const Scalar nan = NumTraits<Scalar>::quiet_NaN();
+
+ // Check that n is an integer
+ if (numext::floor(n) != n) {
+ return nan;
+ }
+ // Just return the digamma function for n = 1
+ else if (n == zero) {
+ return digamma_impl<Scalar>::run(x);
+ }
+ // Use the same implementation as scipy
+ else {
+ Scalar factorial = numext::exp(lgamma_impl<Scalar>::run(nplus));
+ return numext::pow(-one, nplus) * factorial * zeta_impl<Scalar>::run(nplus, x);
+ }
+ }
+};
+
+#endif // EIGEN_HAS_C99_MATH
+
+/************************************************************************************************
+ * Implementation of betainc (incomplete beta integral), based on Cephes but requires C++11/C99 *
+ ************************************************************************************************/
+
+template <typename Scalar>
+struct betainc_retval {
+ typedef Scalar type;
+};
+
+#if !EIGEN_HAS_C99_MATH
+
+template <typename Scalar>
+struct betainc_impl {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+#else
+
+template <typename Scalar>
+struct betainc_impl {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(Scalar, Scalar, Scalar) {
+ /* betaincf.c
+ *
+ * Incomplete beta integral
+ *
+ *
+ * SYNOPSIS:
+ *
+ * float a, b, x, y, betaincf();
+ *
+ * y = betaincf( a, b, x );
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns incomplete beta integral of the arguments, evaluated
+ * from zero to x. The function is defined as
+ *
+ * x
+ * - -
+ * | (a+b) | | a-1 b-1
+ * ----------- | t (1-t) dt.
+ * - - | |
+ * | (a) | (b) -
+ * 0
+ *
+ * The domain of definition is 0 <= x <= 1. In this
+ * implementation a and b are restricted to positive values.
+ * The integral from x to 1 may be obtained by the symmetry
+ * relation
+ *
+ * 1 - betainc( a, b, x ) = betainc( b, a, 1-x ).
+ *
+ * The integral is evaluated by a continued fraction expansion.
+ * If a < 1, the function calls itself recursively after a
+ * transformation to increase a to a+1.
+ *
+ * ACCURACY (float):
+ *
+ * Tested at random points (a,b,x) with a and b in the indicated
+ * interval and x between 0 and 1.
+ *
+ * arithmetic domain # trials peak rms
+ * Relative error:
+ * IEEE 0,30 10000 3.7e-5 5.1e-6
+ * IEEE 0,100 10000 1.7e-4 2.5e-5
+ * The useful domain for relative error is limited by underflow
+ * of the single precision exponential function.
+ * Absolute error:
+ * IEEE 0,30 100000 2.2e-5 9.6e-7
+ * IEEE 0,100 10000 6.5e-5 3.7e-6
+ *
+ * Larger errors may occur for extreme ratios of a and b.
+ *
+ * ACCURACY (double):
+ * arithmetic domain # trials peak rms
+ * IEEE 0,5 10000 6.9e-15 4.5e-16
+ * IEEE 0,85 250000 2.2e-13 1.7e-14
+ * IEEE 0,1000 30000 5.3e-12 6.3e-13
+ * IEEE 0,10000 250000 9.3e-11 7.1e-12
+ * IEEE 0,100000 10000 8.7e-10 4.8e-11
+ * Outputs smaller than the IEEE gradual underflow threshold
+ * were excluded from these statistics.
+ *
+ * ERROR MESSAGES:
+ * message condition value returned
+ * incbet domain x<0, x>1 nan
+ * incbet underflow nan
+ */
+
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+/* Continued fraction expansion #1 for incomplete beta integral (small_branch = True)
+ * Continued fraction expansion #2 for incomplete beta integral (small_branch = False)
+ */
+template <typename Scalar>
+struct incbeta_cfe {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x, bool small_branch) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, float>::value ||
+ internal::is_same<Scalar, double>::value),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ const Scalar big = cephes_helper<Scalar>::big();
+ const Scalar machep = cephes_helper<Scalar>::machep();
+ const Scalar biginv = cephes_helper<Scalar>::biginv();
+
+ const Scalar zero = 0;
+ const Scalar one = 1;
+ const Scalar two = 2;
+
+ Scalar xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
+ Scalar k1, k2, k3, k4, k5, k6, k7, k8, k26update;
+ Scalar ans;
+ int n;
+
+ const int num_iters = (internal::is_same<Scalar, float>::value) ? 100 : 300;
+ const Scalar thresh =
+ (internal::is_same<Scalar, float>::value) ? machep : Scalar(3) * machep;
+ Scalar r = (internal::is_same<Scalar, float>::value) ? zero : one;
+
+ if (small_branch) {
+ k1 = a;
+ k2 = a + b;
+ k3 = a;
+ k4 = a + one;
+ k5 = one;
+ k6 = b - one;
+ k7 = k4;
+ k8 = a + two;
+ k26update = one;
+ } else {
+ k1 = a;
+ k2 = b - one;
+ k3 = a;
+ k4 = a + one;
+ k5 = one;
+ k6 = a + b;
+ k7 = a + one;
+ k8 = a + two;
+ k26update = -one;
+ x = x / (one - x);
+ }
+
+ pkm2 = zero;
+ qkm2 = one;
+ pkm1 = one;
+ qkm1 = one;
+ ans = one;
+ n = 0;
+
+ do {
+ xk = -(x * k1 * k2) / (k3 * k4);
+ pk = pkm1 + pkm2 * xk;
+ qk = qkm1 + qkm2 * xk;
+ pkm2 = pkm1;
+ pkm1 = pk;
+ qkm2 = qkm1;
+ qkm1 = qk;
+
+ xk = (x * k5 * k6) / (k7 * k8);
+ pk = pkm1 + pkm2 * xk;
+ qk = qkm1 + qkm2 * xk;
+ pkm2 = pkm1;
+ pkm1 = pk;
+ qkm2 = qkm1;
+ qkm1 = qk;
+
+ if (qk != zero) {
+ r = pk / qk;
+ if (numext::abs(ans - r) < numext::abs(r) * thresh) {
+ return r;
+ }
+ ans = r;
+ }
+
+ k1 += one;
+ k2 += k26update;
+ k3 += two;
+ k4 += two;
+ k5 += one;
+ k6 -= k26update;
+ k7 += two;
+ k8 += two;
+
+ if ((numext::abs(qk) + numext::abs(pk)) > big) {
+ pkm2 *= biginv;
+ pkm1 *= biginv;
+ qkm2 *= biginv;
+ qkm1 *= biginv;
+ }
+ if ((numext::abs(qk) < biginv) || (numext::abs(pk) < biginv)) {
+ pkm2 *= big;
+ pkm1 *= big;
+ qkm2 *= big;
+ qkm1 *= big;
+ }
+ } while (++n < num_iters);
+
+ return ans;
+ }
+};
+
+/* Helper functions depending on the Scalar type */
+template <typename Scalar>
+struct betainc_helper {};
+
+template <>
+struct betainc_helper<float> {
+ /* Core implementation, assumes a large (> 1.0) */
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float incbsa(float aa, float bb,
+ float xx) {
+ float ans, a, b, t, x, onemx;
+ bool reversed_a_b = false;
+
+ onemx = 1.0f - xx;
+
+ /* see if x is greater than the mean */
+ if (xx > (aa / (aa + bb))) {
+ reversed_a_b = true;
+ a = bb;
+ b = aa;
+ t = xx;
+ x = onemx;
+ } else {
+ a = aa;
+ b = bb;
+ t = onemx;
+ x = xx;
+ }
+
+ /* Choose expansion for optimal convergence */
+ if (b > 10.0f) {
+ if (numext::abs(b * x / a) < 0.3f) {
+ t = betainc_helper<float>::incbps(a, b, x);
+ if (reversed_a_b) t = 1.0f - t;
+ return t;
+ }
+ }
+
+ ans = x * (a + b - 2.0f) / (a - 1.0f);
+ if (ans < 1.0f) {
+ ans = incbeta_cfe<float>::run(a, b, x, true /* small_branch */);
+ t = b * numext::log(t);
+ } else {
+ ans = incbeta_cfe<float>::run(a, b, x, false /* small_branch */);
+ t = (b - 1.0f) * numext::log(t);
+ }
+
+ t += a * numext::log(x) + lgamma_impl<float>::run(a + b) -
+ lgamma_impl<float>::run(a) - lgamma_impl<float>::run(b);
+ t += numext::log(ans / a);
+ t = numext::exp(t);
+
+ if (reversed_a_b) t = 1.0f - t;
+ return t;
+ }
+
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE float incbps(float a, float b, float x) {
+ float t, u, y, s;
+ const float machep = cephes_helper<float>::machep();
+
+ y = a * numext::log(x) + (b - 1.0f) * numext::log1p(-x) - numext::log(a);
+ y -= lgamma_impl<float>::run(a) + lgamma_impl<float>::run(b);
+ y += lgamma_impl<float>::run(a + b);
+
+ t = x / (1.0f - x);
+ s = 0.0f;
+ u = 1.0f;
+ do {
+ b -= 1.0f;
+ if (b == 0.0f) {
+ break;
+ }
+ a += 1.0f;
+ u *= t * b / a;
+ s += u;
+ } while (numext::abs(u) > machep);
+
+ return numext::exp(y) * (1.0f + s);
+ }
+};
+
+template <>
+struct betainc_impl<float> {
+ EIGEN_DEVICE_FUNC
+ static float run(float a, float b, float x) {
+ const float nan = NumTraits<float>::quiet_NaN();
+ float ans, t;
+
+ if (a <= 0.0f) return nan;
+ if (b <= 0.0f) return nan;
+ if ((x <= 0.0f) || (x >= 1.0f)) {
+ if (x == 0.0f) return 0.0f;
+ if (x == 1.0f) return 1.0f;
+ // mtherr("betaincf", DOMAIN);
+ return nan;
+ }
+
+ /* transformation for small aa */
+ if (a <= 1.0f) {
+ ans = betainc_helper<float>::incbsa(a + 1.0f, b, x);
+ t = a * numext::log(x) + b * numext::log1p(-x) +
+ lgamma_impl<float>::run(a + b) - lgamma_impl<float>::run(a + 1.0f) -
+ lgamma_impl<float>::run(b);
+ return (ans + numext::exp(t));
+ } else {
+ return betainc_helper<float>::incbsa(a, b, x);
+ }
+ }
+};
+
+template <>
+struct betainc_helper<double> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE double incbps(double a, double b, double x) {
+ const double machep = cephes_helper<double>::machep();
+
+ double s, t, u, v, n, t1, z, ai;
+
+ ai = 1.0 / a;
+ u = (1.0 - b) * x;
+ v = u / (a + 1.0);
+ t1 = v;
+ t = u;
+ n = 2.0;
+ s = 0.0;
+ z = machep * ai;
+ while (numext::abs(v) > z) {
+ u = (n - b) * x / n;
+ t *= u;
+ v = t / (a + n);
+ s += v;
+ n += 1.0;
+ }
+ s += t1;
+ s += ai;
+
+ u = a * numext::log(x);
+ // TODO: gamma() is not directly implemented in Eigen.
+ /*
+ if ((a + b) < maxgam && numext::abs(u) < maxlog) {
+ t = gamma(a + b) / (gamma(a) * gamma(b));
+ s = s * t * pow(x, a);
+ } else {
+ */
+ t = lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) -
+ lgamma_impl<double>::run(b) + u + numext::log(s);
+ return s = numext::exp(t);
+ }
+};
+
+template <>
+struct betainc_impl<double> {
+ EIGEN_DEVICE_FUNC
+ static double run(double aa, double bb, double xx) {
+ const double nan = NumTraits<double>::quiet_NaN();
+ const double machep = cephes_helper<double>::machep();
+ // const double maxgam = 171.624376956302725;
+
+ double a, b, t, x, xc, w, y;
+ bool reversed_a_b = false;
+
+ if (aa <= 0.0 || bb <= 0.0) {
+ return nan; // goto domerr;
+ }
+
+ if ((xx <= 0.0) || (xx >= 1.0)) {
+ if (xx == 0.0) return (0.0);
+ if (xx == 1.0) return (1.0);
+ // mtherr("incbet", DOMAIN);
+ return nan;
+ }
+
+ if ((bb * xx) <= 1.0 && xx <= 0.95) {
+ return betainc_helper<double>::incbps(aa, bb, xx);
+ }
+
+ w = 1.0 - xx;
+
+ /* Reverse a and b if x is greater than the mean. */
+ if (xx > (aa / (aa + bb))) {
+ reversed_a_b = true;
+ a = bb;
+ b = aa;
+ xc = xx;
+ x = w;
+ } else {
+ a = aa;
+ b = bb;
+ xc = w;
+ x = xx;
+ }
+
+ if (reversed_a_b && (b * x) <= 1.0 && x <= 0.95) {
+ t = betainc_helper<double>::incbps(a, b, x);
+ if (t <= machep) {
+ t = 1.0 - machep;
+ } else {
+ t = 1.0 - t;
+ }
+ return t;
+ }
+
+ /* Choose expansion for better convergence. */
+ y = x * (a + b - 2.0) - (a - 1.0);
+ if (y < 0.0) {
+ w = incbeta_cfe<double>::run(a, b, x, true /* small_branch */);
+ } else {
+ w = incbeta_cfe<double>::run(a, b, x, false /* small_branch */) / xc;
+ }
+
+ /* Multiply w by the factor
+ a b _ _ _
+ x (1-x) | (a+b) / ( a | (a) | (b) ) . */
+
+ y = a * numext::log(x);
+ t = b * numext::log(xc);
+ // TODO: gamma is not directly implemented in Eigen.
+ /*
+ if ((a + b) < maxgam && numext::abs(y) < maxlog && numext::abs(t) < maxlog)
+ {
+ t = pow(xc, b);
+ t *= pow(x, a);
+ t /= a;
+ t *= w;
+ t *= gamma(a + b) / (gamma(a) * gamma(b));
+ } else {
+ */
+ /* Resort to logarithms. */
+ y += t + lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) -
+ lgamma_impl<double>::run(b);
+ y += numext::log(w / a);
+ t = numext::exp(y);
+
+ /* } */
+ // done:
+
+ if (reversed_a_b) {
+ if (t <= machep) {
+ t = 1.0 - machep;
+ } else {
+ t = 1.0 - t;
+ }
+ }
+ return t;
+ }
+};
+
+#endif // EIGEN_HAS_C99_MATH
+
+} // end namespace internal
+
+namespace numext {
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(lgamma, Scalar)
+ lgamma(const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(lgamma, Scalar)::run(x);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(digamma, Scalar)
+ digamma(const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(zeta, Scalar)
+zeta(const Scalar& x, const Scalar& q) {
+ return EIGEN_MATHFUNC_IMPL(zeta, Scalar)::run(x, q);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(polygamma, Scalar)
+polygamma(const Scalar& n, const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(polygamma, Scalar)::run(n, x);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erf, Scalar)
+ erf(const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(erf, Scalar)::run(x);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar)
+ erfc(const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar)
+ igamma(const Scalar& a, const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(igamma, Scalar)::run(a, x);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar)
+ igammac(const Scalar& a, const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(betainc, Scalar)
+ betainc(const Scalar& a, const Scalar& b, const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(betainc, Scalar)::run(a, b, x);
+}
+
+} // end namespace numext
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPECIAL_FUNCTIONS_H
diff --git a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h
new file mode 100644
index 000000000..46d60d323
--- /dev/null
+++ b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h
@@ -0,0 +1,58 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPECIALFUNCTIONS_PACKETMATH_H
+#define EIGEN_SPECIALFUNCTIONS_PACKETMATH_H
+
+namespace Eigen {
+
+namespace internal {
+
+/** \internal \returns the ln(|gamma(\a a)|) (coeff-wise) */
+template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
+Packet plgamma(const Packet& a) { using numext::lgamma; return lgamma(a); }
+
+/** \internal \returns the derivative of lgamma, psi(\a a) (coeff-wise) */
+template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
+Packet pdigamma(const Packet& a) { using numext::digamma; return digamma(a); }
+
+/** \internal \returns the zeta function of two arguments (coeff-wise) */
+template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
+Packet pzeta(const Packet& x, const Packet& q) { using numext::zeta; return zeta(x, q); }
+
+/** \internal \returns the polygamma function (coeff-wise) */
+template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
+Packet ppolygamma(const Packet& n, const Packet& x) { using numext::polygamma; return polygamma(n, x); }
+
+/** \internal \returns the erf(\a a) (coeff-wise) */
+template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
+Packet perf(const Packet& a) { using numext::erf; return erf(a); }
+
+/** \internal \returns the erfc(\a a) (coeff-wise) */
+template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
+Packet perfc(const Packet& a) { using numext::erfc; return erfc(a); }
+
+/** \internal \returns the incomplete gamma function igamma(\a a, \a x) */
+template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+Packet pigamma(const Packet& a, const Packet& x) { using numext::igamma; return igamma(a, x); }
+
+/** \internal \returns the complementary incomplete gamma function igammac(\a a, \a x) */
+template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+Packet pigammac(const Packet& a, const Packet& x) { using numext::igammac; return igammac(a, x); }
+
+/** \internal \returns the complementary incomplete gamma function betainc(\a a, \a b, \a x) */
+template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+Packet pbetainc(const Packet& a, const Packet& b,const Packet& x) { using numext::betainc; return betainc(a, b, x); }
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPECIALFUNCTIONS_PACKETMATH_H
+
diff --git a/unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h b/unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h
new file mode 100644
index 000000000..ec4fa8448
--- /dev/null
+++ b/unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h
@@ -0,0 +1,165 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CUDA_SPECIALFUNCTIONS_H
+#define EIGEN_CUDA_SPECIALFUNCTIONS_H
+
+namespace Eigen {
+
+namespace internal {
+
+// Make sure this is only available when targeting a GPU: we don't want to
+// introduce conflicts between these packet_traits definitions and the ones
+// we'll use on the host side (SSE, AVX, ...)
+#if defined(__CUDACC__) && defined(EIGEN_USE_GPU)
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+float4 plgamma<float4>(const float4& a)
+{
+ return make_float4(lgammaf(a.x), lgammaf(a.y), lgammaf(a.z), lgammaf(a.w));
+}
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+double2 plgamma<double2>(const double2& a)
+{
+ using numext::lgamma;
+ return make_double2(lgamma(a.x), lgamma(a.y));
+}
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+float4 pdigamma<float4>(const float4& a)
+{
+ using numext::digamma;
+ return make_float4(digamma(a.x), digamma(a.y), digamma(a.z), digamma(a.w));
+}
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+double2 pdigamma<double2>(const double2& a)
+{
+ using numext::digamma;
+ return make_double2(digamma(a.x), digamma(a.y));
+}
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+float4 pzeta<float4>(const float4& x, const float4& q)
+{
+ using numext::zeta;
+ return make_float4(zeta(x.x, q.x), zeta(x.y, q.y), zeta(x.z, q.z), zeta(x.w, q.w));
+}
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+double2 pzeta<double2>(const double2& x, const double2& q)
+{
+ using numext::zeta;
+ return make_double2(zeta(x.x, q.x), zeta(x.y, q.y));
+}
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+float4 ppolygamma<float4>(const float4& n, const float4& x)
+{
+ using numext::polygamma;
+ return make_float4(polygamma(n.x, x.x), polygamma(n.y, x.y), polygamma(n.z, x.z), polygamma(n.w, x.w));
+}
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+double2 ppolygamma<double2>(const double2& n, const double2& x)
+{
+ using numext::polygamma;
+ return make_double2(polygamma(n.x, x.x), polygamma(n.y, x.y));
+}
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+float4 perf<float4>(const float4& a)
+{
+ return make_float4(erff(a.x), erff(a.y), erff(a.z), erff(a.w));
+}
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+double2 perf<double2>(const double2& a)
+{
+ using numext::erf;
+ return make_double2(erf(a.x), erf(a.y));
+}
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+float4 perfc<float4>(const float4& a)
+{
+ using numext::erfc;
+ return make_float4(erfc(a.x), erfc(a.y), erfc(a.z), erfc(a.w));
+}
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+double2 perfc<double2>(const double2& a)
+{
+ using numext::erfc;
+ return make_double2(erfc(a.x), erfc(a.y));
+}
+
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+float4 pigamma<float4>(const float4& a, const float4& x)
+{
+ using numext::igamma;
+ return make_float4(
+ igamma(a.x, x.x),
+ igamma(a.y, x.y),
+ igamma(a.z, x.z),
+ igamma(a.w, x.w));
+}
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+double2 pigamma<double2>(const double2& a, const double2& x)
+{
+ using numext::igamma;
+ return make_double2(igamma(a.x, x.x), igamma(a.y, x.y));
+}
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+float4 pigammac<float4>(const float4& a, const float4& x)
+{
+ using numext::igammac;
+ return make_float4(
+ igammac(a.x, x.x),
+ igammac(a.y, x.y),
+ igammac(a.z, x.z),
+ igammac(a.w, x.w));
+}
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+double2 pigammac<double2>(const double2& a, const double2& x)
+{
+ using numext::igammac;
+ return make_double2(igammac(a.x, x.x), igammac(a.y, x.y));
+}
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+float4 pbetainc<float4>(const float4& a, const float4& b, const float4& x)
+{
+ using numext::betainc;
+ return make_float4(
+ betainc(a.x, b.x, x.x),
+ betainc(a.y, b.y, x.y),
+ betainc(a.z, b.z, x.z),
+ betainc(a.w, b.w, x.w));
+}
+
+template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+double2 pbetainc<double2>(const double2& a, const double2& b, const double2& x)
+{
+ using numext::betainc;
+ return make_double2(betainc(a.x, b.x, x.x), betainc(a.y, b.y, x.y));
+}
+
+#endif
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_CUDA_SPECIALFUNCTIONS_H
diff --git a/unsupported/Eigen/src/Splines/CMakeLists.txt b/unsupported/Eigen/src/Splines/CMakeLists.txt
deleted file mode 100644
index 55c6271e9..000000000
--- a/unsupported/Eigen/src/Splines/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Splines_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Splines_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/Splines COMPONENT Devel
- )
diff --git a/unsupported/Eigen/src/Splines/Spline.h b/unsupported/Eigen/src/Splines/Spline.h
index 771f10432..627f6e482 100644
--- a/unsupported/Eigen/src/Splines/Spline.h
+++ b/unsupported/Eigen/src/Splines/Spline.h
@@ -44,9 +44,15 @@ namespace Eigen
/** \brief The data type used to store knot vectors. */
typedef typename SplineTraits<Spline>::KnotVectorType KnotVectorType;
+
+ /** \brief The data type used to store parameter vectors. */
+ typedef typename SplineTraits<Spline>::ParameterVectorType ParameterVectorType;
/** \brief The data type used to store non-zero basis functions. */
typedef typename SplineTraits<Spline>::BasisVectorType BasisVectorType;
+
+ /** \brief The data type used to store the values of the basis function derivatives. */
+ typedef typename SplineTraits<Spline>::BasisDerivativeType BasisDerivativeType;
/** \brief The data type representing the spline's control points. */
typedef typename SplineTraits<Spline>::ControlPointVectorType ControlPointVectorType;
@@ -57,7 +63,7 @@ namespace Eigen
**/
Spline()
: m_knots(1, (Degree==Dynamic ? 2 : 2*Degree+2))
- , m_ctrls(ControlPointVectorType::Zero(2,(Degree==Dynamic ? 1 : Degree+1)))
+ , m_ctrls(ControlPointVectorType::Zero(Dimension,(Degree==Dynamic ? 1 : Degree+1)))
{
// in theory this code can go to the initializer list but it will get pretty
// much unreadable ...
@@ -88,7 +94,7 @@ namespace Eigen
const KnotVectorType& knots() const { return m_knots; }
/**
- * \brief Returns the knots of the underlying spline.
+ * \brief Returns the ctrls of the underlying spline.
**/
const ControlPointVectorType& ctrls() const { return m_ctrls; }
@@ -203,10 +209,25 @@ namespace Eigen
**/
static BasisVectorType BasisFunctions(Scalar u, DenseIndex degree, const KnotVectorType& knots);
+ /**
+ * \copydoc Spline::basisFunctionDerivatives
+ * \param degree The degree of the underlying spline
+ * \param knots The underlying spline's knot vector.
+ **/
+ static BasisDerivativeType BasisFunctionDerivatives(
+ const Scalar u, const DenseIndex order, const DenseIndex degree, const KnotVectorType& knots);
private:
KnotVectorType m_knots; /*!< Knot vector. */
ControlPointVectorType m_ctrls; /*!< Control points. */
+
+ template <typename DerivativeType>
+ static void BasisFunctionDerivativesImpl(
+ const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
+ const DenseIndex order,
+ const DenseIndex p,
+ const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& U,
+ DerivativeType& N_);
};
template <typename _Scalar, int _Dim, int _Degree>
@@ -345,20 +366,24 @@ namespace Eigen
}
/* --------------------------------------------------------------------------------------------- */
-
- template <typename SplineType, typename DerivativeType>
- void basisFunctionDerivativesImpl(const SplineType& spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType& N_)
+
+
+ template <typename _Scalar, int _Dim, int _Degree>
+ template <typename DerivativeType>
+ void Spline<_Scalar, _Dim, _Degree>::BasisFunctionDerivativesImpl(
+ const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
+ const DenseIndex order,
+ const DenseIndex p,
+ const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& U,
+ DerivativeType& N_)
{
+ typedef Spline<_Scalar, _Dim, _Degree> SplineType;
enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
typedef typename SplineTraits<SplineType>::Scalar Scalar;
typedef typename SplineTraits<SplineType>::BasisVectorType BasisVectorType;
- typedef typename SplineTraits<SplineType>::KnotVectorType KnotVectorType;
-
- const KnotVectorType& U = spline.knots();
-
- const DenseIndex p = spline.degree();
- const DenseIndex span = spline.span(u);
+
+ const DenseIndex span = SplineType::Span(u, p, U);
const DenseIndex n = (std::min)(p, order);
@@ -369,7 +394,7 @@ namespace Eigen
Matrix<Scalar,Order,Order> ndu(p+1,p+1);
- double saved, temp;
+ Scalar saved, temp; // FIXME These were double instead of Scalar. Was there a reason for that?
ndu(0,0) = 1.0;
@@ -408,7 +433,7 @@ namespace Eigen
// Compute the k-th derivative
for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
{
- double d = 0.0;
+ Scalar d = 0.0;
DenseIndex rk,pk,j1,j2;
rk = r-k; pk = p-k;
@@ -446,7 +471,7 @@ namespace Eigen
r = p;
for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
{
- for (DenseIndex j=p; j>=0; --j) N_(k,j) *= r;
+ for (j=p; j>=0; --j) N_(k,j) *= r;
r *= p-k;
}
}
@@ -455,8 +480,8 @@ namespace Eigen
typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType
Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const
{
- typename SplineTraits< Spline >::BasisDerivativeType der;
- basisFunctionDerivativesImpl(*this, u, order, der);
+ typename SplineTraits<Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType der;
+ BasisFunctionDerivativesImpl(u, order, degree(), knots(), der);
return der;
}
@@ -465,8 +490,21 @@ namespace Eigen
typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType
Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const
{
- typename SplineTraits< Spline, DerivativeOrder >::BasisDerivativeType der;
- basisFunctionDerivativesImpl(*this, u, order, der);
+ typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType der;
+ BasisFunctionDerivativesImpl(u, order, degree(), knots(), der);
+ return der;
+ }
+
+ template <typename _Scalar, int _Dim, int _Degree>
+ typename SplineTraits<Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType
+ Spline<_Scalar, _Dim, _Degree>::BasisFunctionDerivatives(
+ const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
+ const DenseIndex order,
+ const DenseIndex degree,
+ const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots)
+ {
+ typename SplineTraits<Spline>::BasisDerivativeType der;
+ BasisFunctionDerivativesImpl(u, order, degree, knots, der);
return der;
}
}
diff --git a/unsupported/Eigen/src/Splines/SplineFitting.h b/unsupported/Eigen/src/Splines/SplineFitting.h
index 0265d532c..c761a9b3d 100644
--- a/unsupported/Eigen/src/Splines/SplineFitting.h
+++ b/unsupported/Eigen/src/Splines/SplineFitting.h
@@ -10,10 +10,14 @@
#ifndef EIGEN_SPLINE_FITTING_H
#define EIGEN_SPLINE_FITTING_H
+#include <algorithm>
+#include <functional>
#include <numeric>
+#include <vector>
#include "SplineFwd.h"
+#include <Eigen/LU>
#include <Eigen/QR>
namespace Eigen
@@ -50,6 +54,129 @@ namespace Eigen
}
/**
+ * \brief Computes knot averages when derivative constraints are present.
+ * Note that this is a technical interpretation of the referenced article
+ * since the algorithm contained therein is incorrect as written.
+ * \ingroup Splines_Module
+ *
+ * \param[in] parameters The parameters at which the interpolation B-Spline
+ * will intersect the given interpolation points. The parameters
+ * are assumed to be a non-decreasing sequence.
+ * \param[in] degree The degree of the interpolating B-Spline. This must be
+ * greater than zero.
+ * \param[in] derivativeIndices The indices corresponding to parameters at
+ * which there are derivative constraints. The indices are assumed
+ * to be a non-decreasing sequence.
+ * \param[out] knots The calculated knot vector. These will be returned as a
+ * non-decreasing sequence
+ *
+ * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008.
+ * Curve interpolation with directional constraints for engineering design.
+ * Engineering with Computers
+ **/
+ template <typename KnotVectorType, typename ParameterVectorType, typename IndexArray>
+ void KnotAveragingWithDerivatives(const ParameterVectorType& parameters,
+ const unsigned int degree,
+ const IndexArray& derivativeIndices,
+ KnotVectorType& knots)
+ {
+ typedef typename ParameterVectorType::Scalar Scalar;
+
+ DenseIndex numParameters = parameters.size();
+ DenseIndex numDerivatives = derivativeIndices.size();
+
+ if (numDerivatives < 1)
+ {
+ KnotAveraging(parameters, degree, knots);
+ return;
+ }
+
+ DenseIndex startIndex;
+ DenseIndex endIndex;
+
+ DenseIndex numInternalDerivatives = numDerivatives;
+
+ if (derivativeIndices[0] == 0)
+ {
+ startIndex = 0;
+ --numInternalDerivatives;
+ }
+ else
+ {
+ startIndex = 1;
+ }
+ if (derivativeIndices[numDerivatives - 1] == numParameters - 1)
+ {
+ endIndex = numParameters - degree;
+ --numInternalDerivatives;
+ }
+ else
+ {
+ endIndex = numParameters - degree - 1;
+ }
+
+ // There are (endIndex - startIndex + 1) knots obtained from the averaging
+ // and 2 for the first and last parameters.
+ DenseIndex numAverageKnots = endIndex - startIndex + 3;
+ KnotVectorType averageKnots(numAverageKnots);
+ averageKnots[0] = parameters[0];
+
+ int newKnotIndex = 0;
+ for (DenseIndex i = startIndex; i <= endIndex; ++i)
+ averageKnots[++newKnotIndex] = parameters.segment(i, degree).mean();
+ averageKnots[++newKnotIndex] = parameters[numParameters - 1];
+
+ newKnotIndex = -1;
+
+ ParameterVectorType temporaryParameters(numParameters + 1);
+ KnotVectorType derivativeKnots(numInternalDerivatives);
+ for (DenseIndex i = 0; i < numAverageKnots - 1; ++i)
+ {
+ temporaryParameters[0] = averageKnots[i];
+ ParameterVectorType parameterIndices(numParameters);
+ int temporaryParameterIndex = 1;
+ for (DenseIndex j = 0; j < numParameters; ++j)
+ {
+ Scalar parameter = parameters[j];
+ if (parameter >= averageKnots[i] && parameter < averageKnots[i + 1])
+ {
+ parameterIndices[temporaryParameterIndex] = j;
+ temporaryParameters[temporaryParameterIndex++] = parameter;
+ }
+ }
+ temporaryParameters[temporaryParameterIndex] = averageKnots[i + 1];
+
+ for (int j = 0; j <= temporaryParameterIndex - 2; ++j)
+ {
+ for (DenseIndex k = 0; k < derivativeIndices.size(); ++k)
+ {
+ if (parameterIndices[j + 1] == derivativeIndices[k]
+ && parameterIndices[j + 1] != 0
+ && parameterIndices[j + 1] != numParameters - 1)
+ {
+ derivativeKnots[++newKnotIndex] = temporaryParameters.segment(j, 3).mean();
+ break;
+ }
+ }
+ }
+ }
+
+ KnotVectorType temporaryKnots(averageKnots.size() + derivativeKnots.size());
+
+ std::merge(averageKnots.data(), averageKnots.data() + averageKnots.size(),
+ derivativeKnots.data(), derivativeKnots.data() + derivativeKnots.size(),
+ temporaryKnots.data());
+
+ // Number of knots (one for each point and derivative) plus spline order.
+ DenseIndex numKnots = numParameters + numDerivatives + degree + 1;
+ knots.resize(numKnots);
+
+ knots.head(degree).fill(temporaryKnots[0]);
+ knots.tail(degree).fill(temporaryKnots.template tail<1>()[0]);
+ knots.segment(degree, temporaryKnots.size()) = temporaryKnots;
+ }
+
+ /**
* \brief Computes chord length parameters which are required for spline interpolation.
* \ingroup Splines_Module
*
@@ -86,6 +213,7 @@ namespace Eigen
struct SplineFitting
{
typedef typename SplineType::KnotVectorType KnotVectorType;
+ typedef typename SplineType::ParameterVectorType ParameterVectorType;
/**
* \brief Fits an interpolating Spline to the given data points.
@@ -109,6 +237,52 @@ namespace Eigen
**/
template <typename PointArrayType>
static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree, const KnotVectorType& knot_parameters);
+
+ /**
+ * \brief Fits an interpolating spline to the given data points and
+ * derivatives.
+ *
+ * \param points The points for which an interpolating spline will be computed.
+ * \param derivatives The desired derivatives of the interpolating spline at interpolation
+ * points.
+ * \param derivativeIndices An array indicating which point each derivative belongs to. This
+ * must be the same size as @a derivatives.
+ * \param degree The degree of the interpolating spline.
+ *
+ * \returns A spline interpolating @a points with @a derivatives at those points.
+ *
+ * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008.
+ * Curve interpolation with directional constraints for engineering design.
+ * Engineering with Computers
+ **/
+ template <typename PointArrayType, typename IndexArray>
+ static SplineType InterpolateWithDerivatives(const PointArrayType& points,
+ const PointArrayType& derivatives,
+ const IndexArray& derivativeIndices,
+ const unsigned int degree);
+
+ /**
+ * \brief Fits an interpolating spline to the given data points and derivatives.
+ *
+ * \param points The points for which an interpolating spline will be computed.
+ * \param derivatives The desired derivatives of the interpolating spline at interpolation points.
+ * \param derivativeIndices An array indicating which point each derivative belongs to. This
+ * must be the same size as @a derivatives.
+ * \param degree The degree of the interpolating spline.
+ * \param parameters The parameters corresponding to the interpolation points.
+ *
+ * \returns A spline interpolating @a points with @a derivatives at those points.
+ *
+ * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008.
+ * Curve interpolation with directional constraints for engineering design.
+ * Engineering with Computers
+ */
+ template <typename PointArrayType, typename IndexArray>
+ static SplineType InterpolateWithDerivatives(const PointArrayType& points,
+ const PointArrayType& derivatives,
+ const IndexArray& derivativeIndices,
+ const unsigned int degree,
+ const ParameterVectorType& parameters);
};
template <typename SplineType>
@@ -151,6 +325,106 @@ namespace Eigen
ChordLengths(pts, chord_lengths);
return Interpolate(pts, degree, chord_lengths);
}
+
+ template <typename SplineType>
+ template <typename PointArrayType, typename IndexArray>
+ SplineType
+ SplineFitting<SplineType>::InterpolateWithDerivatives(const PointArrayType& points,
+ const PointArrayType& derivatives,
+ const IndexArray& derivativeIndices,
+ const unsigned int degree,
+ const ParameterVectorType& parameters)
+ {
+ typedef typename SplineType::KnotVectorType::Scalar Scalar;
+ typedef typename SplineType::ControlPointVectorType ControlPointVectorType;
+
+ typedef Matrix<Scalar, Dynamic, Dynamic> MatrixType;
+
+ const DenseIndex n = points.cols() + derivatives.cols();
+
+ KnotVectorType knots;
+
+ KnotAveragingWithDerivatives(parameters, degree, derivativeIndices, knots);
+
+ // fill matrix
+ MatrixType A = MatrixType::Zero(n, n);
+
+ // Use these dimensions for quicker populating, then transpose for solving.
+ MatrixType b(points.rows(), n);
+
+ DenseIndex startRow;
+ DenseIndex derivativeStart;
+
+ // End derivatives.
+ if (derivativeIndices[0] == 0)
+ {
+ A.template block<1, 2>(1, 0) << -1, 1;
+
+ Scalar y = (knots(degree + 1) - knots(0)) / degree;
+ b.col(1) = y*derivatives.col(0);
+
+ startRow = 2;
+ derivativeStart = 1;
+ }
+ else
+ {
+ startRow = 1;
+ derivativeStart = 0;
+ }
+ if (derivativeIndices[derivatives.cols() - 1] == points.cols() - 1)
+ {
+ A.template block<1, 2>(n - 2, n - 2) << -1, 1;
+
+ Scalar y = (knots(knots.size() - 1) - knots(knots.size() - (degree + 2))) / degree;
+ b.col(b.cols() - 2) = y*derivatives.col(derivatives.cols() - 1);
+ }
+
+ DenseIndex row = startRow;
+ DenseIndex derivativeIndex = derivativeStart;
+ for (DenseIndex i = 1; i < parameters.size() - 1; ++i)
+ {
+ const DenseIndex span = SplineType::Span(parameters[i], degree, knots);
+
+ if (derivativeIndices[derivativeIndex] == i)
+ {
+ A.block(row, span - degree, 2, degree + 1)
+ = SplineType::BasisFunctionDerivatives(parameters[i], 1, degree, knots);
+
+ b.col(row++) = points.col(i);
+ b.col(row++) = derivatives.col(derivativeIndex++);
+ }
+ else
+ {
+ A.row(row++).segment(span - degree, degree + 1)
+ = SplineType::BasisFunctions(parameters[i], degree, knots);
+ }
+ }
+ b.col(0) = points.col(0);
+ b.col(b.cols() - 1) = points.col(points.cols() - 1);
+ A(0,0) = 1;
+ A(n - 1, n - 1) = 1;
+
+ // Solve
+ FullPivLU<MatrixType> lu(A);
+ ControlPointVectorType controlPoints = lu.solve(MatrixType(b.transpose())).transpose();
+
+ SplineType spline(knots, controlPoints);
+
+ return spline;
+ }
+
+ template <typename SplineType>
+ template <typename PointArrayType, typename IndexArray>
+ SplineType
+ SplineFitting<SplineType>::InterpolateWithDerivatives(const PointArrayType& points,
+ const PointArrayType& derivatives,
+ const IndexArray& derivativeIndices,
+ const unsigned int degree)
+ {
+ ParameterVectorType parameters;
+ ChordLengths(points, parameters);
+ return InterpolateWithDerivatives(points, derivatives, derivativeIndices, degree, parameters);
+ }
}
#endif // EIGEN_SPLINE_FITTING_H
diff --git a/unsupported/Eigen/src/Splines/SplineFwd.h b/unsupported/Eigen/src/Splines/SplineFwd.h
index 49db8d35d..0a95fbf3e 100644
--- a/unsupported/Eigen/src/Splines/SplineFwd.h
+++ b/unsupported/Eigen/src/Splines/SplineFwd.h
@@ -31,6 +31,8 @@ namespace Eigen
enum { OrderAtCompileTime = _Degree==Dynamic ? Dynamic : _Degree+1 /*!< The spline curve's order at compile-time. */ };
enum { NumOfDerivativesAtCompileTime = OrderAtCompileTime /*!< The number of derivatives defined for the current spline. */ };
+
+ enum { DerivativeMemoryLayout = Dimension==1 ? RowMajor : ColMajor /*!< The derivative type's memory layout. */ };
/** \brief The data type used to store non-zero basis functions. */
typedef Array<Scalar,1,OrderAtCompileTime> BasisVectorType;
@@ -39,13 +41,16 @@ namespace Eigen
typedef Array<Scalar,Dynamic,Dynamic,RowMajor,NumOfDerivativesAtCompileTime,OrderAtCompileTime> BasisDerivativeType;
/** \brief The data type used to store the spline's derivative values. */
- typedef Array<Scalar,Dimension,Dynamic,ColMajor,Dimension,NumOfDerivativesAtCompileTime> DerivativeType;
+ typedef Array<Scalar,Dimension,Dynamic,DerivativeMemoryLayout,Dimension,NumOfDerivativesAtCompileTime> DerivativeType;
/** \brief The point type the spline is representing. */
typedef Array<Scalar,Dimension,1> PointType;
/** \brief The data type used to store knot vectors. */
typedef Array<Scalar,1,Dynamic> KnotVectorType;
+
+ /** \brief The data type used to store parameter vectors. */
+ typedef Array<Scalar,1,Dynamic> ParameterVectorType;
/** \brief The data type representing the spline's control points. */
typedef Array<Scalar,Dimension,Dynamic> ControlPointVectorType;
@@ -62,12 +67,14 @@ namespace Eigen
{
enum { OrderAtCompileTime = _Degree==Dynamic ? Dynamic : _Degree+1 /*!< The spline curve's order at compile-time. */ };
enum { NumOfDerivativesAtCompileTime = _DerivativeOrder==Dynamic ? Dynamic : _DerivativeOrder+1 /*!< The number of derivatives defined for the current spline. */ };
+
+ enum { DerivativeMemoryLayout = _Dim==1 ? RowMajor : ColMajor /*!< The derivative type's memory layout. */ };
/** \brief The data type used to store the values of the basis function derivatives. */
typedef Array<_Scalar,Dynamic,Dynamic,RowMajor,NumOfDerivativesAtCompileTime,OrderAtCompileTime> BasisDerivativeType;
/** \brief The data type used to store the spline's derivative values. */
- typedef Array<_Scalar,_Dim,Dynamic,ColMajor,_Dim,NumOfDerivativesAtCompileTime> DerivativeType;
+ typedef Array<_Scalar,_Dim,Dynamic,DerivativeMemoryLayout,_Dim,NumOfDerivativesAtCompileTime> DerivativeType;
};
/** \brief 2D float B-spline with dynamic degree. */