aboutsummaryrefslogtreecommitdiff
path: root/unsupported/test/FFTW.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/test/FFTW.cpp')
-rw-r--r--unsupported/test/FFTW.cpp265
1 files changed, 265 insertions, 0 deletions
diff --git a/unsupported/test/FFTW.cpp b/unsupported/test/FFTW.cpp
new file mode 100644
index 000000000..a07bf274b
--- /dev/null
+++ b/unsupported/test/FFTW.cpp
@@ -0,0 +1,265 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Mark Borgerding mark a borgerding net
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+#include <unsupported/Eigen/FFT>
+
+template <typename T>
+std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); }
+
+using namespace std;
+using namespace Eigen;
+
+float norm(float x) {return x*x;}
+double norm(double x) {return x*x;}
+long double norm(long double x) {return x*x;}
+
+template < typename T>
+complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }
+
+complex<long double> promote(float x) { return complex<long double>( x); }
+complex<long double> promote(double x) { return complex<long double>( x); }
+complex<long double> promote(long double x) { return complex<long double>( x); }
+
+
+ template <typename VT1,typename VT2>
+ long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf)
+ {
+ long double totalpower=0;
+ long double difpower=0;
+ long double pi = acos((long double)-1 );
+ for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) {
+ complex<long double> acc = 0;
+ long double phinc = -2.*k0* pi / timebuf.size();
+ for (size_t k1=0;k1<(size_t)timebuf.size();++k1) {
+ acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
+ }
+ totalpower += norm(acc);
+ complex<long double> x = promote(fftbuf[k0]);
+ complex<long double> dif = acc - x;
+ difpower += norm(dif);
+ //cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(norm(dif)) << endl;
+ }
+ cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
+ return sqrt(difpower/totalpower);
+ }
+
+ template <typename VT1,typename VT2>
+ long double dif_rmse( const VT1 buf1,const VT2 buf2)
+ {
+ long double totalpower=0;
+ long double difpower=0;
+ size_t n = (min)( buf1.size(),buf2.size() );
+ for (size_t k=0;k<n;++k) {
+ totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
+ difpower += norm(buf1[k] - buf2[k]);
+ }
+ return sqrt(difpower/totalpower);
+ }
+
+enum { StdVectorContainer, EigenVectorContainer };
+
+template<int Container, typename Scalar> struct VectorType;
+
+template<typename Scalar> struct VectorType<StdVectorContainer,Scalar>
+{
+ typedef vector<Scalar> type;
+};
+
+template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar>
+{
+ typedef Matrix<Scalar,Dynamic,1> type;
+};
+
+template <int Container, typename T>
+void test_scalar_generic(int nfft)
+{
+ typedef typename FFT<T>::Complex Complex;
+ typedef typename FFT<T>::Scalar Scalar;
+ typedef typename VectorType<Container,Scalar>::type ScalarVector;
+ typedef typename VectorType<Container,Complex>::type ComplexVector;
+
+ FFT<T> fft;
+ ScalarVector tbuf(nfft);
+ ComplexVector freqBuf;
+ for (int k=0;k<nfft;++k)
+ tbuf[k]= (T)( rand()/(double)RAND_MAX - .5);
+
+ // make sure it DOESN'T give the right full spectrum answer
+ // if we've asked for half-spectrum
+ fft.SetFlag(fft.HalfSpectrum );
+ fft.fwd( freqBuf,tbuf);
+ VERIFY((size_t)freqBuf.size() == (size_t)( (nfft>>1)+1) );
+ VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>() );// gross check
+
+ fft.ClearFlag(fft.HalfSpectrum );
+ fft.fwd( freqBuf,tbuf);
+ VERIFY( (size_t)freqBuf.size() == (size_t)nfft);
+ VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>() );// gross check
+
+ if (nfft&1)
+ return; // odd FFTs get the wrong size inverse FFT
+
+ ScalarVector tbuf2;
+ fft.inv( tbuf2 , freqBuf);
+ VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>() );// gross check
+
+
+ // verify that the Unscaled flag takes effect
+ ScalarVector tbuf3;
+ fft.SetFlag(fft.Unscaled);
+
+ fft.inv( tbuf3 , freqBuf);
+
+ for (int k=0;k<nfft;++k)
+ tbuf3[k] *= T(1./nfft);
+
+
+ //for (size_t i=0;i<(size_t) tbuf.size();++i)
+ // cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " - in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) << endl;
+
+ VERIFY( dif_rmse(tbuf,tbuf3) < test_precision<T>() );// gross check
+
+ // verify that ClearFlag works
+ fft.ClearFlag(fft.Unscaled);
+ fft.inv( tbuf2 , freqBuf);
+ VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>() );// gross check
+}
+
+template <typename T>
+void test_scalar(int nfft)
+{
+ test_scalar_generic<StdVectorContainer,T>(nfft);
+ //test_scalar_generic<EigenVectorContainer,T>(nfft);
+}
+
+
+template <int Container, typename T>
+void test_complex_generic(int nfft)
+{
+ typedef typename FFT<T>::Complex Complex;
+ typedef typename VectorType<Container,Complex>::type ComplexVector;
+
+ FFT<T> fft;
+
+ ComplexVector inbuf(nfft);
+ ComplexVector outbuf;
+ ComplexVector buf3;
+ for (int k=0;k<nfft;++k)
+ inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
+ fft.fwd( outbuf , inbuf);
+
+ VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
+ fft.inv( buf3 , outbuf);
+
+ VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
+
+ // verify that the Unscaled flag takes effect
+ ComplexVector buf4;
+ fft.SetFlag(fft.Unscaled);
+ fft.inv( buf4 , outbuf);
+ for (int k=0;k<nfft;++k)
+ buf4[k] *= T(1./nfft);
+ VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check
+
+ // verify that ClearFlag works
+ fft.ClearFlag(fft.Unscaled);
+ fft.inv( buf3 , outbuf);
+ VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
+}
+
+template <typename T>
+void test_complex(int nfft)
+{
+ test_complex_generic<StdVectorContainer,T>(nfft);
+ test_complex_generic<EigenVectorContainer,T>(nfft);
+}
+/*
+template <typename T,int nrows,int ncols>
+void test_complex2d()
+{
+ typedef typename Eigen::FFT<T>::Complex Complex;
+ FFT<T> fft;
+ Eigen::Matrix<Complex,nrows,ncols> src,src2,dst,dst2;
+
+ src = Eigen::Matrix<Complex,nrows,ncols>::Random();
+ //src = Eigen::Matrix<Complex,nrows,ncols>::Identity();
+
+ for (int k=0;k<ncols;k++) {
+ Eigen::Matrix<Complex,nrows,1> tmpOut;
+ fft.fwd( tmpOut,src.col(k) );
+ dst2.col(k) = tmpOut;
+ }
+
+ for (int k=0;k<nrows;k++) {
+ Eigen::Matrix<Complex,1,ncols> tmpOut;
+ fft.fwd( tmpOut, dst2.row(k) );
+ dst2.row(k) = tmpOut;
+ }
+
+ fft.fwd2(dst.data(),src.data(),ncols,nrows);
+ fft.inv2(src2.data(),dst.data(),ncols,nrows);
+ VERIFY( (src-src2).norm() < test_precision<T>() );
+ VERIFY( (dst-dst2).norm() < test_precision<T>() );
+}
+*/
+
+
+void test_return_by_value(int len)
+{
+ VectorXf in;
+ VectorXf in1;
+ in.setRandom( len );
+ VectorXcf out1,out2;
+ FFT<float> fft;
+
+ fft.SetFlag(fft.HalfSpectrum );
+
+ fft.fwd(out1,in);
+ out2 = fft.fwd(in);
+ VERIFY( (out1-out2).norm() < test_precision<float>() );
+ in1 = fft.inv(out1);
+ VERIFY( (in1-in).norm() < test_precision<float>() );
+}
+
+void test_FFTW()
+{
+ CALL_SUBTEST( test_return_by_value(32) );
+ //CALL_SUBTEST( ( test_complex2d<float,4,8> () ) ); CALL_SUBTEST( ( test_complex2d<double,4,8> () ) );
+ //CALL_SUBTEST( ( test_complex2d<long double,4,8> () ) );
+ CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) );
+ CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) );
+ CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) );
+ CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) );
+ CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) );
+ CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) );
+ CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) );
+
+ CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) );
+ CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) );
+ CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) );
+ CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) );
+ CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) );
+
+ #ifdef EIGEN_HAS_FFTWL
+ CALL_SUBTEST( test_complex<long double>(32) );
+ CALL_SUBTEST( test_complex<long double>(256) );
+ CALL_SUBTEST( test_complex<long double>(3*8) );
+ CALL_SUBTEST( test_complex<long double>(5*32) );
+ CALL_SUBTEST( test_complex<long double>(2*3*4) );
+ CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
+ CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
+
+ CALL_SUBTEST( test_scalar<long double>(32) );
+ CALL_SUBTEST( test_scalar<long double>(45) );
+ CALL_SUBTEST( test_scalar<long double>(50) );
+ CALL_SUBTEST( test_scalar<long double>(256) );
+ CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
+ #endif
+}