aboutsummaryrefslogtreecommitdiff
path: root/unsupported/test/cxx11_tensor_builtins_sycl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/test/cxx11_tensor_builtins_sycl.cpp')
-rw-r--r--unsupported/test/cxx11_tensor_builtins_sycl.cpp354
1 files changed, 354 insertions, 0 deletions
diff --git a/unsupported/test/cxx11_tensor_builtins_sycl.cpp b/unsupported/test/cxx11_tensor_builtins_sycl.cpp
new file mode 100644
index 000000000..72cb62fd5
--- /dev/null
+++ b/unsupported/test/cxx11_tensor_builtins_sycl.cpp
@@ -0,0 +1,354 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#define EIGEN_TEST_NO_LONGDOUBLE
+#define EIGEN_TEST_NO_COMPLEX
+
+#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
+#define EIGEN_USE_SYCL
+
+#include "main.h"
+#include <unsupported/Eigen/CXX11/Tensor>
+
+using Eigen::array;
+using Eigen::SyclDevice;
+using Eigen::Tensor;
+using Eigen::TensorMap;
+
+// Functions used to compare the TensorMap implementation on the device with
+// the equivalent on the host
+namespace cl {
+namespace sycl {
+template <typename T> T abs(T x) { return cl::sycl::fabs(x); }
+template <typename T> T square(T x) { return x * x; }
+template <typename T> T cube(T x) { return x * x * x; }
+template <typename T> T inverse(T x) { return T(1) / x; }
+template <typename T> T cwiseMax(T x, T y) { return cl::sycl::max(x, y); }
+template <typename T> T cwiseMin(T x, T y) { return cl::sycl::min(x, y); }
+}
+}
+
+struct EqualAssignement {
+ template <typename Lhs, typename Rhs>
+ void operator()(Lhs& lhs, const Rhs& rhs) { lhs = rhs; }
+};
+
+struct PlusEqualAssignement {
+ template <typename Lhs, typename Rhs>
+ void operator()(Lhs& lhs, const Rhs& rhs) { lhs += rhs; }
+};
+
+template <typename DataType, int DataLayout,
+ typename Assignement, typename Operator>
+void test_unary_builtins_for_scalar(const Eigen::SyclDevice& sycl_device,
+ const array<int64_t, 3>& tensor_range) {
+ Operator op;
+ Assignement asgn;
+ {
+ /* Assignement(out, Operator(in)) */
+ Tensor<DataType, 3, DataLayout, int64_t> in(tensor_range);
+ Tensor<DataType, 3, DataLayout, int64_t> out(tensor_range);
+ in = in.random() + DataType(0.01);
+ out = out.random() + DataType(0.01);
+ Tensor<DataType, 3, DataLayout, int64_t> reference(out);
+ DataType *gpu_data = static_cast<DataType *>(
+ sycl_device.allocate(in.size() * sizeof(DataType)));
+ DataType *gpu_data_out = static_cast<DataType *>(
+ sycl_device.allocate(out.size() * sizeof(DataType)));
+ TensorMap<Tensor<DataType, 3, DataLayout, int64_t>> gpu(gpu_data, tensor_range);
+ TensorMap<Tensor<DataType, 3, DataLayout, int64_t>> gpu_out(gpu_data_out, tensor_range);
+ sycl_device.memcpyHostToDevice(gpu_data, in.data(),
+ (in.size()) * sizeof(DataType));
+ sycl_device.memcpyHostToDevice(gpu_data_out, out.data(),
+ (out.size()) * sizeof(DataType));
+ auto device_expr = gpu_out.device(sycl_device);
+ asgn(device_expr, op(gpu));
+ sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out,
+ (out.size()) * sizeof(DataType));
+ for (int64_t i = 0; i < out.size(); ++i) {
+ DataType ver = reference(i);
+ asgn(ver, op(in(i)));
+ VERIFY_IS_APPROX(out(i), ver);
+ }
+ sycl_device.deallocate(gpu_data);
+ sycl_device.deallocate(gpu_data_out);
+ }
+ {
+ /* Assignement(out, Operator(out)) */
+ Tensor<DataType, 3, DataLayout, int64_t> out(tensor_range);
+ out = out.random() + DataType(0.01);
+ Tensor<DataType, 3, DataLayout, int64_t> reference(out);
+ DataType *gpu_data_out = static_cast<DataType *>(
+ sycl_device.allocate(out.size() * sizeof(DataType)));
+ TensorMap<Tensor<DataType, 3, DataLayout, int64_t>> gpu_out(gpu_data_out, tensor_range);
+ sycl_device.memcpyHostToDevice(gpu_data_out, out.data(),
+ (out.size()) * sizeof(DataType));
+ auto device_expr = gpu_out.device(sycl_device);
+ asgn(device_expr, op(gpu_out));
+ sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out,
+ (out.size()) * sizeof(DataType));
+ for (int64_t i = 0; i < out.size(); ++i) {
+ DataType ver = reference(i);
+ asgn(ver, op(reference(i)));
+ VERIFY_IS_APPROX(out(i), ver);
+ }
+ sycl_device.deallocate(gpu_data_out);
+ }
+}
+
+#define DECLARE_UNARY_STRUCT(FUNC) \
+ struct op_##FUNC { \
+ template <typename T> \
+ auto operator()(const T& x) -> decltype(cl::sycl::FUNC(x)) { \
+ return cl::sycl::FUNC(x); \
+ } \
+ template <typename T> \
+ auto operator()(const TensorMap<T>& x) -> decltype(x.FUNC()) { \
+ return x.FUNC(); \
+ } \
+ };
+
+DECLARE_UNARY_STRUCT(abs)
+DECLARE_UNARY_STRUCT(sqrt)
+DECLARE_UNARY_STRUCT(rsqrt)
+DECLARE_UNARY_STRUCT(square)
+DECLARE_UNARY_STRUCT(cube)
+DECLARE_UNARY_STRUCT(inverse)
+DECLARE_UNARY_STRUCT(tanh)
+DECLARE_UNARY_STRUCT(exp)
+DECLARE_UNARY_STRUCT(expm1)
+DECLARE_UNARY_STRUCT(log)
+DECLARE_UNARY_STRUCT(ceil)
+DECLARE_UNARY_STRUCT(floor)
+DECLARE_UNARY_STRUCT(round)
+DECLARE_UNARY_STRUCT(log1p)
+DECLARE_UNARY_STRUCT(sign)
+DECLARE_UNARY_STRUCT(isnan)
+DECLARE_UNARY_STRUCT(isfinite)
+DECLARE_UNARY_STRUCT(isinf)
+
+template <typename DataType, int DataLayout, typename Assignement>
+void test_unary_builtins_for_assignement(const Eigen::SyclDevice& sycl_device,
+ const array<int64_t, 3>& tensor_range) {
+#define RUN_UNARY_TEST(FUNC) \
+ test_unary_builtins_for_scalar<DataType, DataLayout, Assignement, \
+ op_##FUNC>(sycl_device, tensor_range)
+ RUN_UNARY_TEST(abs);
+ RUN_UNARY_TEST(sqrt);
+ RUN_UNARY_TEST(rsqrt);
+ RUN_UNARY_TEST(square);
+ RUN_UNARY_TEST(cube);
+ RUN_UNARY_TEST(inverse);
+ RUN_UNARY_TEST(tanh);
+ RUN_UNARY_TEST(exp);
+ RUN_UNARY_TEST(expm1);
+ RUN_UNARY_TEST(log);
+ RUN_UNARY_TEST(ceil);
+ RUN_UNARY_TEST(floor);
+ RUN_UNARY_TEST(round);
+ RUN_UNARY_TEST(log1p);
+ RUN_UNARY_TEST(sign);
+}
+
+template <typename DataType, int DataLayout, typename Operator>
+void test_unary_builtins_return_bool(const Eigen::SyclDevice& sycl_device,
+ const array<int64_t, 3>& tensor_range) {
+ /* out = op(in) */
+ Operator op;
+ Tensor<DataType, 3, DataLayout, int64_t> in(tensor_range);
+ Tensor<bool, 3, DataLayout, int64_t> out(tensor_range);
+ in = in.random() + DataType(0.01);
+ DataType *gpu_data = static_cast<DataType *>(
+ sycl_device.allocate(in.size() * sizeof(DataType)));
+ bool *gpu_data_out =
+ static_cast<bool *>(sycl_device.allocate(out.size() * sizeof(bool)));
+ TensorMap<Tensor<DataType, 3, DataLayout, int64_t>> gpu(gpu_data, tensor_range);
+ TensorMap<Tensor<bool, 3, DataLayout, int64_t>> gpu_out(gpu_data_out, tensor_range);
+ sycl_device.memcpyHostToDevice(gpu_data, in.data(),
+ (in.size()) * sizeof(DataType));
+ gpu_out.device(sycl_device) = op(gpu);
+ sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out,
+ (out.size()) * sizeof(bool));
+ for (int64_t i = 0; i < out.size(); ++i) {
+ VERIFY_IS_EQUAL(out(i), op(in(i)));
+ }
+ sycl_device.deallocate(gpu_data);
+ sycl_device.deallocate(gpu_data_out);
+}
+
+template <typename DataType, int DataLayout>
+void test_unary_builtins(const Eigen::SyclDevice& sycl_device,
+ const array<int64_t, 3>& tensor_range) {
+ test_unary_builtins_for_assignement<DataType, DataLayout,
+ PlusEqualAssignement>(sycl_device, tensor_range);
+ test_unary_builtins_for_assignement<DataType, DataLayout,
+ EqualAssignement>(sycl_device, tensor_range);
+ test_unary_builtins_return_bool<DataType, DataLayout,
+ op_isnan>(sycl_device, tensor_range);
+ test_unary_builtins_return_bool<DataType, DataLayout,
+ op_isfinite>(sycl_device, tensor_range);
+ test_unary_builtins_return_bool<DataType, DataLayout,
+ op_isinf>(sycl_device, tensor_range);
+}
+
+template <typename DataType>
+static void test_builtin_unary_sycl(const Eigen::SyclDevice &sycl_device) {
+ int64_t sizeDim1 = 10;
+ int64_t sizeDim2 = 10;
+ int64_t sizeDim3 = 10;
+ array<int64_t, 3> tensor_range = {{sizeDim1, sizeDim2, sizeDim3}};
+
+ test_unary_builtins<DataType, RowMajor>(sycl_device, tensor_range);
+ test_unary_builtins<DataType, ColMajor>(sycl_device, tensor_range);
+}
+
+template <typename DataType, int DataLayout, typename Operator>
+void test_binary_builtins_func(const Eigen::SyclDevice& sycl_device,
+ const array<int64_t, 3>& tensor_range) {
+ /* out = op(in_1, in_2) */
+ Operator op;
+ Tensor<DataType, 3, DataLayout, int64_t> in_1(tensor_range);
+ Tensor<DataType, 3, DataLayout, int64_t> in_2(tensor_range);
+ Tensor<DataType, 3, DataLayout, int64_t> out(tensor_range);
+ in_1 = in_1.random() + DataType(0.01);
+ in_2 = in_2.random() + DataType(0.01);
+ Tensor<DataType, 3, DataLayout, int64_t> reference(out);
+ DataType *gpu_data_1 = static_cast<DataType *>(
+ sycl_device.allocate(in_1.size() * sizeof(DataType)));
+ DataType *gpu_data_2 = static_cast<DataType *>(
+ sycl_device.allocate(in_2.size() * sizeof(DataType)));
+ DataType *gpu_data_out = static_cast<DataType *>(
+ sycl_device.allocate(out.size() * sizeof(DataType)));
+ TensorMap<Tensor<DataType, 3, DataLayout, int64_t>> gpu_1(gpu_data_1, tensor_range);
+ TensorMap<Tensor<DataType, 3, DataLayout, int64_t>> gpu_2(gpu_data_2, tensor_range);
+ TensorMap<Tensor<DataType, 3, DataLayout, int64_t>> gpu_out(gpu_data_out, tensor_range);
+ sycl_device.memcpyHostToDevice(gpu_data_1, in_1.data(),
+ (in_1.size()) * sizeof(DataType));
+ sycl_device.memcpyHostToDevice(gpu_data_2, in_2.data(),
+ (in_2.size()) * sizeof(DataType));
+ gpu_out.device(sycl_device) = op(gpu_1, gpu_2);
+ sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out,
+ (out.size()) * sizeof(DataType));
+ for (int64_t i = 0; i < out.size(); ++i) {
+ VERIFY_IS_APPROX(out(i), op(in_1(i), in_2(i)));
+ }
+ sycl_device.deallocate(gpu_data_1);
+ sycl_device.deallocate(gpu_data_2);
+ sycl_device.deallocate(gpu_data_out);
+}
+
+template <typename DataType, int DataLayout, typename Operator>
+void test_binary_builtins_fixed_arg2(const Eigen::SyclDevice& sycl_device,
+ const array<int64_t, 3>& tensor_range) {
+ /* out = op(in_1, 2) */
+ Operator op;
+ const DataType arg2(2);
+ Tensor<DataType, 3, DataLayout, int64_t> in_1(tensor_range);
+ Tensor<DataType, 3, DataLayout, int64_t> out(tensor_range);
+ in_1 = in_1.random();
+ Tensor<DataType, 3, DataLayout, int64_t> reference(out);
+ DataType *gpu_data_1 = static_cast<DataType *>(
+ sycl_device.allocate(in_1.size() * sizeof(DataType)));
+ DataType *gpu_data_out = static_cast<DataType *>(
+ sycl_device.allocate(out.size() * sizeof(DataType)));
+ TensorMap<Tensor<DataType, 3, DataLayout, int64_t>> gpu_1(gpu_data_1, tensor_range);
+ TensorMap<Tensor<DataType, 3, DataLayout, int64_t>> gpu_out(gpu_data_out, tensor_range);
+ sycl_device.memcpyHostToDevice(gpu_data_1, in_1.data(),
+ (in_1.size()) * sizeof(DataType));
+ gpu_out.device(sycl_device) = op(gpu_1, arg2);
+ sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out,
+ (out.size()) * sizeof(DataType));
+ for (int64_t i = 0; i < out.size(); ++i) {
+ VERIFY_IS_APPROX(out(i), op(in_1(i), arg2));
+ }
+ sycl_device.deallocate(gpu_data_1);
+ sycl_device.deallocate(gpu_data_out);
+}
+
+#define DECLARE_BINARY_STRUCT(FUNC) \
+ struct op_##FUNC { \
+ template <typename T1, typename T2> \
+ auto operator()(const T1& x, const T2& y) -> decltype(cl::sycl::FUNC(x, y)) { \
+ return cl::sycl::FUNC(x, y); \
+ } \
+ template <typename T1, typename T2> \
+ auto operator()(const TensorMap<T1>& x, const TensorMap<T2>& y) -> decltype(x.FUNC(y)) { \
+ return x.FUNC(y); \
+ } \
+ };
+
+DECLARE_BINARY_STRUCT(cwiseMax)
+DECLARE_BINARY_STRUCT(cwiseMin)
+
+#define DECLARE_BINARY_STRUCT_OP(NAME, OPERATOR) \
+ struct op_##NAME { \
+ template <typename T1, typename T2> \
+ auto operator()(const T1& x, const T2& y) -> decltype(x OPERATOR y) { \
+ return x OPERATOR y; \
+ } \
+ };
+
+DECLARE_BINARY_STRUCT_OP(plus, +)
+DECLARE_BINARY_STRUCT_OP(minus, -)
+DECLARE_BINARY_STRUCT_OP(times, *)
+DECLARE_BINARY_STRUCT_OP(divide, /)
+DECLARE_BINARY_STRUCT_OP(modulo, %)
+
+template <typename DataType, int DataLayout>
+void test_binary_builtins(const Eigen::SyclDevice& sycl_device,
+ const array<int64_t, 3>& tensor_range) {
+ test_binary_builtins_func<DataType, DataLayout,
+ op_cwiseMax>(sycl_device, tensor_range);
+ test_binary_builtins_func<DataType, DataLayout,
+ op_cwiseMin>(sycl_device, tensor_range);
+ test_binary_builtins_func<DataType, DataLayout,
+ op_plus>(sycl_device, tensor_range);
+ test_binary_builtins_func<DataType, DataLayout,
+ op_minus>(sycl_device, tensor_range);
+ test_binary_builtins_func<DataType, DataLayout,
+ op_times>(sycl_device, tensor_range);
+ test_binary_builtins_func<DataType, DataLayout,
+ op_divide>(sycl_device, tensor_range);
+}
+
+template <typename DataType>
+static void test_floating_builtin_binary_sycl(const Eigen::SyclDevice &sycl_device) {
+ int64_t sizeDim1 = 10;
+ int64_t sizeDim2 = 10;
+ int64_t sizeDim3 = 10;
+ array<int64_t, 3> tensor_range = {{sizeDim1, sizeDim2, sizeDim3}};
+ test_binary_builtins<DataType, RowMajor>(sycl_device, tensor_range);
+ test_binary_builtins<DataType, ColMajor>(sycl_device, tensor_range);
+}
+
+template <typename DataType>
+static void test_integer_builtin_binary_sycl(const Eigen::SyclDevice &sycl_device) {
+ int64_t sizeDim1 = 10;
+ int64_t sizeDim2 = 10;
+ int64_t sizeDim3 = 10;
+ array<int64_t, 3> tensor_range = {{sizeDim1, sizeDim2, sizeDim3}};
+ test_binary_builtins_fixed_arg2<DataType, RowMajor,
+ op_modulo>(sycl_device, tensor_range);
+ test_binary_builtins_fixed_arg2<DataType, ColMajor,
+ op_modulo>(sycl_device, tensor_range);
+}
+
+EIGEN_DECLARE_TEST(cxx11_tensor_builtins_sycl) {
+ for (const auto& device :Eigen::get_sycl_supported_devices()) {
+ QueueInterface queueInterface(device);
+ Eigen::SyclDevice sycl_device(&queueInterface);
+ CALL_SUBTEST_1(test_builtin_unary_sycl<float>(sycl_device));
+ CALL_SUBTEST_2(test_floating_builtin_binary_sycl<float>(sycl_device));
+ CALL_SUBTEST_3(test_integer_builtin_binary_sycl<int>(sycl_device));
+ }
+}