aboutsummaryrefslogtreecommitdiff
path: root/unsupported/test/cxx11_tensor_sycl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/test/cxx11_tensor_sycl.cpp')
-rw-r--r--unsupported/test/cxx11_tensor_sycl.cpp308
1 files changed, 255 insertions, 53 deletions
diff --git a/unsupported/test/cxx11_tensor_sycl.cpp b/unsupported/test/cxx11_tensor_sycl.cpp
index 6a9c33422..e6c5e2378 100644
--- a/unsupported/test/cxx11_tensor_sycl.cpp
+++ b/unsupported/test/cxx11_tensor_sycl.cpp
@@ -15,8 +15,8 @@
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
-#define EIGEN_TEST_FUNC cxx11_tensor_sycl
-#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
+
+#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
#define EIGEN_USE_SYCL
#include "main.h"
@@ -27,36 +27,188 @@ using Eigen::SyclDevice;
using Eigen::Tensor;
using Eigen::TensorMap;
-void test_sycl_cpu(const Eigen::SyclDevice &sycl_device) {
+template <typename DataType, int DataLayout, typename IndexType>
+void test_sycl_mem_transfers(const Eigen::SyclDevice &sycl_device) {
+ IndexType sizeDim1 = 5;
+ IndexType sizeDim2 = 5;
+ IndexType sizeDim3 = 1;
+ array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
+ Tensor<DataType, 3, DataLayout, IndexType> in1(tensorRange);
+ Tensor<DataType, 3, DataLayout, IndexType> out1(tensorRange);
+ Tensor<DataType, 3, DataLayout, IndexType> out2(tensorRange);
+ Tensor<DataType, 3, DataLayout, IndexType> out3(tensorRange);
+
+ in1 = in1.random();
+
+ DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType)));
+ DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(out1.size()*sizeof(DataType)));
+
+ TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
+ TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu2(gpu_data2, tensorRange);
+
+ sycl_device.memcpyHostToDevice(gpu_data1, in1.data(),(in1.size())*sizeof(DataType));
+ sycl_device.memcpyHostToDevice(gpu_data2, in1.data(),(in1.size())*sizeof(DataType));
+ gpu1.device(sycl_device) = gpu1 * 3.14f;
+ gpu2.device(sycl_device) = gpu2 * 2.7f;
+ sycl_device.memcpyDeviceToHost(out1.data(), gpu_data1,(out1.size())*sizeof(DataType));
+ sycl_device.memcpyDeviceToHost(out2.data(), gpu_data1,(out2.size())*sizeof(DataType));
+ sycl_device.memcpyDeviceToHost(out3.data(), gpu_data2,(out3.size())*sizeof(DataType));
+ sycl_device.synchronize();
+
+ for (IndexType i = 0; i < in1.size(); ++i) {
+ // std::cout << "SYCL DATA : " << out1(i) << " vs CPU DATA : " << in1(i) * 3.14f << "\n";
+ VERIFY_IS_APPROX(out1(i), in1(i) * 3.14f);
+ VERIFY_IS_APPROX(out2(i), in1(i) * 3.14f);
+ VERIFY_IS_APPROX(out3(i), in1(i) * 2.7f);
+ }
+
+ sycl_device.deallocate(gpu_data1);
+ sycl_device.deallocate(gpu_data2);
+}
+
+template <typename DataType, int DataLayout, typename IndexType>
+void test_sycl_mem_sync(const Eigen::SyclDevice &sycl_device) {
+ IndexType size = 20;
+ array<IndexType, 1> tensorRange = {{size}};
+ Tensor<DataType, 1, DataLayout, IndexType> in1(tensorRange);
+ Tensor<DataType, 1, DataLayout, IndexType> in2(tensorRange);
+ Tensor<DataType, 1, DataLayout, IndexType> out(tensorRange);
+
+ in1 = in1.random();
+ in2 = in1;
+
+ DataType* gpu_data = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType)));
+
+ TensorMap<Tensor<DataType, 1, DataLayout, IndexType>> gpu1(gpu_data, tensorRange);
+ sycl_device.memcpyHostToDevice(gpu_data, in1.data(),(in1.size())*sizeof(DataType));
+ sycl_device.synchronize();
+ in1.setZero();
+
+ sycl_device.memcpyDeviceToHost(out.data(), gpu_data, out.size()*sizeof(DataType));
+ sycl_device.synchronize();
+
+ for (IndexType i = 0; i < in1.size(); ++i) {
+ VERIFY_IS_APPROX(out(i), in2(i));
+ }
+
+ sycl_device.deallocate(gpu_data);
+}
+
+template <typename DataType, int DataLayout, typename IndexType>
+void test_sycl_mem_sync_offsets(const Eigen::SyclDevice &sycl_device) {
+ using tensor_type = Tensor<DataType, 1, DataLayout, IndexType>;
+ IndexType full_size = 32;
+ IndexType half_size = full_size / 2;
+ array<IndexType, 1> tensorRange = {{full_size}};
+ tensor_type in1(tensorRange);
+ tensor_type out(tensorRange);
+
+ DataType* gpu_data = static_cast<DataType*>(sycl_device.allocate(full_size * sizeof(DataType)));
+ TensorMap<tensor_type> gpu1(gpu_data, tensorRange);
+
+ in1 = in1.random();
+ // Copy all data to device, then permute on copy back to host
+ sycl_device.memcpyHostToDevice(gpu_data, in1.data(), full_size * sizeof(DataType));
+ sycl_device.memcpyDeviceToHost(out.data(), gpu_data + half_size, half_size * sizeof(DataType));
+ sycl_device.memcpyDeviceToHost(out.data() + half_size, gpu_data, half_size * sizeof(DataType));
+
+ for (IndexType i = 0; i < half_size; ++i) {
+ VERIFY_IS_APPROX(out(i), in1(i + half_size));
+ VERIFY_IS_APPROX(out(i + half_size), in1(i));
+ }
+
+ in1 = in1.random();
+ out.setZero();
+ // Permute copies to device, then copy all back to host
+ sycl_device.memcpyHostToDevice(gpu_data + half_size, in1.data(), half_size * sizeof(DataType));
+ sycl_device.memcpyHostToDevice(gpu_data, in1.data() + half_size, half_size * sizeof(DataType));
+ sycl_device.memcpyDeviceToHost(out.data(), gpu_data, full_size * sizeof(DataType));
+
+ for (IndexType i = 0; i < half_size; ++i) {
+ VERIFY_IS_APPROX(out(i), in1(i + half_size));
+ VERIFY_IS_APPROX(out(i + half_size), in1(i));
+ }
+
+ in1 = in1.random();
+ out.setZero();
+ DataType* gpu_data_out = static_cast<DataType*>(sycl_device.allocate(full_size * sizeof(DataType)));
+ TensorMap<tensor_type> gpu2(gpu_data_out, tensorRange);
+ // Copy all to device, permute copies on device, then copy all back to host
+ sycl_device.memcpyHostToDevice(gpu_data, in1.data(), full_size * sizeof(DataType));
+ sycl_device.memcpy(gpu_data_out + half_size, gpu_data, half_size * sizeof(DataType));
+ sycl_device.memcpy(gpu_data_out, gpu_data + half_size, half_size * sizeof(DataType));
+ sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, full_size * sizeof(DataType));
+
+ for (IndexType i = 0; i < half_size; ++i) {
+ VERIFY_IS_APPROX(out(i), in1(i + half_size));
+ VERIFY_IS_APPROX(out(i + half_size), in1(i));
+ }
+
+ sycl_device.deallocate(gpu_data_out);
+ sycl_device.deallocate(gpu_data);
+}
+
+template <typename DataType, int DataLayout, typename IndexType>
+void test_sycl_memset_offsets(const Eigen::SyclDevice &sycl_device) {
+ using tensor_type = Tensor<DataType, 1, DataLayout, IndexType>;
+ IndexType full_size = 32;
+ IndexType half_size = full_size / 2;
+ array<IndexType, 1> tensorRange = {{full_size}};
+ tensor_type cpu_out(tensorRange);
+ tensor_type out(tensorRange);
+
+ cpu_out.setZero();
+
+ std::memset(cpu_out.data(), 0, half_size * sizeof(DataType));
+ std::memset(cpu_out.data() + half_size, 1, half_size * sizeof(DataType));
+
+ DataType* gpu_data = static_cast<DataType*>(sycl_device.allocate(full_size * sizeof(DataType)));
+ TensorMap<tensor_type> gpu1(gpu_data, tensorRange);
+
+ sycl_device.memset(gpu_data, 0, half_size * sizeof(DataType));
+ sycl_device.memset(gpu_data + half_size, 1, half_size * sizeof(DataType));
+ sycl_device.memcpyDeviceToHost(out.data(), gpu_data, full_size * sizeof(DataType));
+
+ for (IndexType i = 0; i < full_size; ++i) {
+ VERIFY_IS_APPROX(out(i), cpu_out(i));
+ }
+
+ sycl_device.deallocate(gpu_data);
+}
+
+template <typename DataType, int DataLayout, typename IndexType>
+void test_sycl_computations(const Eigen::SyclDevice &sycl_device) {
- int sizeDim1 = 100;
- int sizeDim2 = 100;
- int sizeDim3 = 100;
- array<int, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
- Tensor<float, 3> in1(tensorRange);
- Tensor<float, 3> in2(tensorRange);
- Tensor<float, 3> in3(tensorRange);
- Tensor<float, 3> out(tensorRange);
+ IndexType sizeDim1 = 100;
+ IndexType sizeDim2 = 10;
+ IndexType sizeDim3 = 20;
+ array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
+ Tensor<DataType, 3,DataLayout, IndexType> in1(tensorRange);
+ Tensor<DataType, 3,DataLayout, IndexType> in2(tensorRange);
+ Tensor<DataType, 3,DataLayout, IndexType> in3(tensorRange);
+ Tensor<DataType, 3,DataLayout, IndexType> out(tensorRange);
in2 = in2.random();
in3 = in3.random();
- float * gpu_in1_data = static_cast<float*>(sycl_device.allocate(in1.dimensions().TotalSize()*sizeof(float)));
- float * gpu_in2_data = static_cast<float*>(sycl_device.allocate(in2.dimensions().TotalSize()*sizeof(float)));
- float * gpu_in3_data = static_cast<float*>(sycl_device.allocate(in3.dimensions().TotalSize()*sizeof(float)));
- float * gpu_out_data = static_cast<float*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(float)));
+ DataType * gpu_in1_data = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType)));
+ DataType * gpu_in2_data = static_cast<DataType*>(sycl_device.allocate(in2.size()*sizeof(DataType)));
+ DataType * gpu_in3_data = static_cast<DataType*>(sycl_device.allocate(in3.size()*sizeof(DataType)));
+ DataType * gpu_out_data = static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType)));
- TensorMap<Tensor<float, 3>> gpu_in1(gpu_in1_data, tensorRange);
- TensorMap<Tensor<float, 3>> gpu_in2(gpu_in2_data, tensorRange);
- TensorMap<Tensor<float, 3>> gpu_in3(gpu_in3_data, tensorRange);
- TensorMap<Tensor<float, 3>> gpu_out(gpu_out_data, tensorRange);
+ TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in1(gpu_in1_data, tensorRange);
+ TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in2(gpu_in2_data, tensorRange);
+ TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in3(gpu_in3_data, tensorRange);
+ TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_out(gpu_out_data, tensorRange);
/// a=1.2f
gpu_in1.device(sycl_device) = gpu_in1.constant(1.2f);
- sycl_device.memcpyDeviceToHost(in1.data(), gpu_in1_data ,(in1.dimensions().TotalSize())*sizeof(float));
- for (int i = 0; i < sizeDim1; ++i) {
- for (int j = 0; j < sizeDim2; ++j) {
- for (int k = 0; k < sizeDim3; ++k) {
+ sycl_device.memcpyDeviceToHost(in1.data(), gpu_in1_data ,(in1.size())*sizeof(DataType));
+ sycl_device.synchronize();
+
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim2; ++j) {
+ for (IndexType k = 0; k < sizeDim3; ++k) {
VERIFY_IS_APPROX(in1(i,j,k), 1.2f);
}
}
@@ -65,10 +217,12 @@ void test_sycl_cpu(const Eigen::SyclDevice &sycl_device) {
/// a=b*1.2f
gpu_out.device(sycl_device) = gpu_in1 * 1.2f;
- sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data ,(out.dimensions().TotalSize())*sizeof(float));
- for (int i = 0; i < sizeDim1; ++i) {
- for (int j = 0; j < sizeDim2; ++j) {
- for (int k = 0; k < sizeDim3; ++k) {
+ sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data ,(out.size())*sizeof(DataType));
+ sycl_device.synchronize();
+
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim2; ++j) {
+ for (IndexType k = 0; k < sizeDim3; ++k) {
VERIFY_IS_APPROX(out(i,j,k),
in1(i,j,k) * 1.2f);
}
@@ -77,12 +231,14 @@ void test_sycl_cpu(const Eigen::SyclDevice &sycl_device) {
printf("a=b*1.2f Test Passed\n");
/// c=a*b
- sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.dimensions().TotalSize())*sizeof(float));
+ sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.size())*sizeof(DataType));
gpu_out.device(sycl_device) = gpu_in1 * gpu_in2;
- sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float));
- for (int i = 0; i < sizeDim1; ++i) {
- for (int j = 0; j < sizeDim2; ++j) {
- for (int k = 0; k < sizeDim3; ++k) {
+ sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType));
+ sycl_device.synchronize();
+
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim2; ++j) {
+ for (IndexType k = 0; k < sizeDim3; ++k) {
VERIFY_IS_APPROX(out(i,j,k),
in1(i,j,k) *
in2(i,j,k));
@@ -93,10 +249,11 @@ void test_sycl_cpu(const Eigen::SyclDevice &sycl_device) {
/// c=a+b
gpu_out.device(sycl_device) = gpu_in1 + gpu_in2;
- sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float));
- for (int i = 0; i < sizeDim1; ++i) {
- for (int j = 0; j < sizeDim2; ++j) {
- for (int k = 0; k < sizeDim3; ++k) {
+ sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType));
+ sycl_device.synchronize();
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim2; ++j) {
+ for (IndexType k = 0; k < sizeDim3; ++k) {
VERIFY_IS_APPROX(out(i,j,k),
in1(i,j,k) +
in2(i,j,k));
@@ -107,10 +264,11 @@ void test_sycl_cpu(const Eigen::SyclDevice &sycl_device) {
/// c=a*a
gpu_out.device(sycl_device) = gpu_in1 * gpu_in1;
- sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float));
- for (int i = 0; i < sizeDim1; ++i) {
- for (int j = 0; j < sizeDim2; ++j) {
- for (int k = 0; k < sizeDim3; ++k) {
+ sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType));
+ sycl_device.synchronize();
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim2; ++j) {
+ for (IndexType k = 0; k < sizeDim3; ++k) {
VERIFY_IS_APPROX(out(i,j,k),
in1(i,j,k) *
in1(i,j,k));
@@ -121,10 +279,11 @@ void test_sycl_cpu(const Eigen::SyclDevice &sycl_device) {
//a*3.14f + b*2.7f
gpu_out.device(sycl_device) = gpu_in1 * gpu_in1.constant(3.14f) + gpu_in2 * gpu_in2.constant(2.7f);
- sycl_device.memcpyDeviceToHost(out.data(),gpu_out_data,(out.dimensions().TotalSize())*sizeof(float));
- for (int i = 0; i < sizeDim1; ++i) {
- for (int j = 0; j < sizeDim2; ++j) {
- for (int k = 0; k < sizeDim3; ++k) {
+ sycl_device.memcpyDeviceToHost(out.data(),gpu_out_data,(out.size())*sizeof(DataType));
+ sycl_device.synchronize();
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim2; ++j) {
+ for (IndexType k = 0; k < sizeDim3; ++k) {
VERIFY_IS_APPROX(out(i,j,k),
in1(i,j,k) * 3.14f
+ in2(i,j,k) * 2.7f);
@@ -134,12 +293,13 @@ void test_sycl_cpu(const Eigen::SyclDevice &sycl_device) {
printf("a*3.14f + b*2.7f Test Passed\n");
///d= (a>0.5? b:c)
- sycl_device.memcpyHostToDevice(gpu_in3_data, in3.data(),(in3.dimensions().TotalSize())*sizeof(float));
+ sycl_device.memcpyHostToDevice(gpu_in3_data, in3.data(),(in3.size())*sizeof(DataType));
gpu_out.device(sycl_device) =(gpu_in1 > gpu_in1.constant(0.5f)).select(gpu_in2, gpu_in3);
- sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float));
- for (int i = 0; i < sizeDim1; ++i) {
- for (int j = 0; j < sizeDim2; ++j) {
- for (int k = 0; k < sizeDim3; ++k) {
+ sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType));
+ sycl_device.synchronize();
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim2; ++j) {
+ for (IndexType k = 0; k < sizeDim3; ++k) {
VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) > 0.5f)
? in2(i, j, k)
: in3(i, j, k));
@@ -152,8 +312,50 @@ void test_sycl_cpu(const Eigen::SyclDevice &sycl_device) {
sycl_device.deallocate(gpu_in3_data);
sycl_device.deallocate(gpu_out_data);
}
-void test_cxx11_tensor_sycl() {
- cl::sycl::gpu_selector s;
- Eigen::SyclDevice sycl_device(s);
- CALL_SUBTEST(test_sycl_cpu(sycl_device));
+template<typename Scalar1, typename Scalar2, int DataLayout, typename IndexType>
+static void test_sycl_cast(const Eigen::SyclDevice& sycl_device){
+ IndexType size = 20;
+ array<IndexType, 1> tensorRange = {{size}};
+ Tensor<Scalar1, 1, DataLayout, IndexType> in(tensorRange);
+ Tensor<Scalar2, 1, DataLayout, IndexType> out(tensorRange);
+ Tensor<Scalar2, 1, DataLayout, IndexType> out_host(tensorRange);
+
+ in = in.random();
+
+ Scalar1* gpu_in_data = static_cast<Scalar1*>(sycl_device.allocate(in.size()*sizeof(Scalar1)));
+ Scalar2 * gpu_out_data = static_cast<Scalar2*>(sycl_device.allocate(out.size()*sizeof(Scalar2)));
+
+ TensorMap<Tensor<Scalar1, 1, DataLayout, IndexType>> gpu_in(gpu_in_data, tensorRange);
+ TensorMap<Tensor<Scalar2, 1, DataLayout, IndexType>> gpu_out(gpu_out_data, tensorRange);
+ sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.size())*sizeof(Scalar1));
+ gpu_out.device(sycl_device) = gpu_in. template cast<Scalar2>();
+ sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data, out.size()*sizeof(Scalar2));
+ out_host = in. template cast<Scalar2>();
+ for(IndexType i=0; i< size; i++)
+ {
+ VERIFY_IS_APPROX(out(i), out_host(i));
+ }
+ printf("cast Test Passed\n");
+ sycl_device.deallocate(gpu_in_data);
+ sycl_device.deallocate(gpu_out_data);
+}
+template<typename DataType, typename dev_Selector> void sycl_computing_test_per_device(dev_Selector s){
+ QueueInterface queueInterface(s);
+ auto sycl_device = Eigen::SyclDevice(&queueInterface);
+ test_sycl_mem_transfers<DataType, RowMajor, int64_t>(sycl_device);
+ test_sycl_computations<DataType, RowMajor, int64_t>(sycl_device);
+ test_sycl_mem_sync<DataType, RowMajor, int64_t>(sycl_device);
+ test_sycl_mem_sync_offsets<DataType, RowMajor, int64_t>(sycl_device);
+ test_sycl_memset_offsets<DataType, RowMajor, int64_t>(sycl_device);
+ test_sycl_mem_transfers<DataType, ColMajor, int64_t>(sycl_device);
+ test_sycl_computations<DataType, ColMajor, int64_t>(sycl_device);
+ test_sycl_mem_sync<DataType, ColMajor, int64_t>(sycl_device);
+ test_sycl_cast<DataType, int, RowMajor, int64_t>(sycl_device);
+ test_sycl_cast<DataType, int, ColMajor, int64_t>(sycl_device);
+}
+
+EIGEN_DECLARE_TEST(cxx11_tensor_sycl) {
+ for (const auto& device :Eigen::get_sycl_supported_devices()) {
+ CALL_SUBTEST(sycl_computing_test_per_device<float>(device));
+ }
}