From 2b8756b6f1de65d3f8bffab45be6c44ceb7411fc Mon Sep 17 00:00:00 2001 From: Miao Wang Date: Mon, 6 Mar 2017 13:45:08 -0800 Subject: Rebase Eigen to 3.3.3. Bug: 34161771 Test: mm and RenderScript BLAS tests pass on bullhead. Change-Id: Ia448b3202708e395fed9c783ea4323289d69dbef --- unsupported/test/cxx11_tensor_fixed_size.cpp | 261 +++++++++++++++++++++++++++ 1 file changed, 261 insertions(+) create mode 100644 unsupported/test/cxx11_tensor_fixed_size.cpp (limited to 'unsupported/test/cxx11_tensor_fixed_size.cpp') diff --git a/unsupported/test/cxx11_tensor_fixed_size.cpp b/unsupported/test/cxx11_tensor_fixed_size.cpp new file mode 100644 index 000000000..4c660de65 --- /dev/null +++ b/unsupported/test/cxx11_tensor_fixed_size.cpp @@ -0,0 +1,261 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" + +#include + +using Eigen::Tensor; +using Eigen::RowMajor; + + +static void test_0d() +{ + TensorFixedSize > scalar1; + TensorFixedSize, RowMajor> scalar2; + VERIFY_IS_EQUAL(scalar1.rank(), 0); + VERIFY_IS_EQUAL(scalar1.size(), 1); + VERIFY_IS_EQUAL(array_prod(scalar1.dimensions()), 1); + + scalar1() = 7.0; + scalar2() = 13.0; + + // Test against shallow copy. + TensorFixedSize > copy = scalar1; + VERIFY_IS_NOT_EQUAL(scalar1.data(), copy.data()); + VERIFY_IS_APPROX(scalar1(), copy()); + copy = scalar1; + VERIFY_IS_NOT_EQUAL(scalar1.data(), copy.data()); + VERIFY_IS_APPROX(scalar1(), copy()); + + TensorFixedSize > scalar3 = scalar1.sqrt(); + TensorFixedSize, RowMajor> scalar4 = scalar2.sqrt(); + VERIFY_IS_EQUAL(scalar3.rank(), 0); + VERIFY_IS_APPROX(scalar3(), sqrtf(7.0)); + VERIFY_IS_APPROX(scalar4(), sqrtf(13.0)); + + scalar3 = scalar1 + scalar2; + VERIFY_IS_APPROX(scalar3(), 7.0f + 13.0f); +} + +static void test_1d() +{ + TensorFixedSize > vec1; + TensorFixedSize, RowMajor> vec2; + + VERIFY_IS_EQUAL((vec1.size()), 6); + // VERIFY_IS_EQUAL((vec1.dimensions()[0]), 6); + // VERIFY_IS_EQUAL((vec1.dimension(0)), 6); + + vec1(0) = 4.0; vec2(0) = 0.0; + vec1(1) = 8.0; vec2(1) = 1.0; + vec1(2) = 15.0; vec2(2) = 2.0; + vec1(3) = 16.0; vec2(3) = 3.0; + vec1(4) = 23.0; vec2(4) = 4.0; + vec1(5) = 42.0; vec2(5) = 5.0; + + // Test against shallow copy. + TensorFixedSize > copy = vec1; + VERIFY_IS_NOT_EQUAL(vec1.data(), copy.data()); + for (int i = 0; i < 6; ++i) { + VERIFY_IS_APPROX(vec1(i), copy(i)); + } + copy = vec1; + VERIFY_IS_NOT_EQUAL(vec1.data(), copy.data()); + for (int i = 0; i < 6; ++i) { + VERIFY_IS_APPROX(vec1(i), copy(i)); + } + + TensorFixedSize > vec3 = vec1.sqrt(); + TensorFixedSize, RowMajor> vec4 = vec2.sqrt(); + + VERIFY_IS_EQUAL((vec3.size()), 6); + VERIFY_IS_EQUAL(vec3.rank(), 1); + // VERIFY_IS_EQUAL((vec3.dimensions()[0]), 6); + // VERIFY_IS_EQUAL((vec3.dimension(0)), 6); + + VERIFY_IS_APPROX(vec3(0), sqrtf(4.0)); + VERIFY_IS_APPROX(vec3(1), sqrtf(8.0)); + VERIFY_IS_APPROX(vec3(2), sqrtf(15.0)); + VERIFY_IS_APPROX(vec3(3), sqrtf(16.0)); + VERIFY_IS_APPROX(vec3(4), sqrtf(23.0)); + VERIFY_IS_APPROX(vec3(5), sqrtf(42.0)); + + VERIFY_IS_APPROX(vec4(0), sqrtf(0.0)); + VERIFY_IS_APPROX(vec4(1), sqrtf(1.0)); + VERIFY_IS_APPROX(vec4(2), sqrtf(2.0)); + VERIFY_IS_APPROX(vec4(3), sqrtf(3.0)); + VERIFY_IS_APPROX(vec4(4), sqrtf(4.0)); + VERIFY_IS_APPROX(vec4(5), sqrtf(5.0)); + + vec3 = vec1 + vec2; + VERIFY_IS_APPROX(vec3(0), 4.0f + 0.0f); + VERIFY_IS_APPROX(vec3(1), 8.0f + 1.0f); + VERIFY_IS_APPROX(vec3(2), 15.0f + 2.0f); + VERIFY_IS_APPROX(vec3(3), 16.0f + 3.0f); + VERIFY_IS_APPROX(vec3(4), 23.0f + 4.0f); + VERIFY_IS_APPROX(vec3(5), 42.0f + 5.0f); +} + +static void test_tensor_map() +{ + TensorFixedSize > vec1; + TensorFixedSize, RowMajor> vec2; + + vec1(0) = 4.0; vec2(0) = 0.0; + vec1(1) = 8.0; vec2(1) = 1.0; + vec1(2) = 15.0; vec2(2) = 2.0; + vec1(3) = 16.0; vec2(3) = 3.0; + vec1(4) = 23.0; vec2(4) = 4.0; + vec1(5) = 42.0; vec2(5) = 5.0; + + float data3[6]; + TensorMap > > vec3(data3, 6); + vec3 = vec1.sqrt() + vec2; + + VERIFY_IS_APPROX(vec3(0), sqrtf(4.0)); + VERIFY_IS_APPROX(vec3(1), sqrtf(8.0) + 1.0f); + VERIFY_IS_APPROX(vec3(2), sqrtf(15.0) + 2.0f); + VERIFY_IS_APPROX(vec3(3), sqrtf(16.0) + 3.0f); + VERIFY_IS_APPROX(vec3(4), sqrtf(23.0) + 4.0f); + VERIFY_IS_APPROX(vec3(5), sqrtf(42.0) + 5.0f); +} + +static void test_2d() +{ + float data1[6]; + TensorMap > > mat1(data1,2,3); + float data2[6]; + TensorMap, RowMajor> > mat2(data2,2,3); + + VERIFY_IS_EQUAL((mat1.size()), 2*3); + VERIFY_IS_EQUAL(mat1.rank(), 2); + // VERIFY_IS_EQUAL((mat1.dimension(0)), 2); + // VERIFY_IS_EQUAL((mat1.dimension(1)), 3); + + mat1(0,0) = 0.0; + mat1(0,1) = 1.0; + mat1(0,2) = 2.0; + mat1(1,0) = 3.0; + mat1(1,1) = 4.0; + mat1(1,2) = 5.0; + + mat2(0,0) = -0.0; + mat2(0,1) = -1.0; + mat2(0,2) = -2.0; + mat2(1,0) = -3.0; + mat2(1,1) = -4.0; + mat2(1,2) = -5.0; + + TensorFixedSize > mat3; + TensorFixedSize, RowMajor> mat4; + mat3 = mat1.abs(); + mat4 = mat2.abs(); + + VERIFY_IS_EQUAL((mat3.size()), 2*3); + // VERIFY_IS_EQUAL((mat3.dimension(0)), 2); + // VERIFY_IS_EQUAL((mat3.dimension(1)), 3); + + VERIFY_IS_APPROX(mat3(0,0), 0.0f); + VERIFY_IS_APPROX(mat3(0,1), 1.0f); + VERIFY_IS_APPROX(mat3(0,2), 2.0f); + VERIFY_IS_APPROX(mat3(1,0), 3.0f); + VERIFY_IS_APPROX(mat3(1,1), 4.0f); + VERIFY_IS_APPROX(mat3(1,2), 5.0f); + + VERIFY_IS_APPROX(mat4(0,0), 0.0f); + VERIFY_IS_APPROX(mat4(0,1), 1.0f); + VERIFY_IS_APPROX(mat4(0,2), 2.0f); + VERIFY_IS_APPROX(mat4(1,0), 3.0f); + VERIFY_IS_APPROX(mat4(1,1), 4.0f); + VERIFY_IS_APPROX(mat4(1,2), 5.0f); +} + +static void test_3d() +{ + TensorFixedSize > mat1; + TensorFixedSize, RowMajor> mat2; + + VERIFY_IS_EQUAL((mat1.size()), 2*3*7); + VERIFY_IS_EQUAL(mat1.rank(), 3); + // VERIFY_IS_EQUAL((mat1.dimension(0)), 2); + // VERIFY_IS_EQUAL((mat1.dimension(1)), 3); + // VERIFY_IS_EQUAL((mat1.dimension(2)), 7); + + float val = 0.0f; + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 3; ++j) { + for (int k = 0; k < 7; ++k) { + mat1(i,j,k) = val; + mat2(i,j,k) = val; + val += 1.0f; + } + } + } + + TensorFixedSize > mat3; + mat3 = mat1.sqrt(); + TensorFixedSize, RowMajor> mat4; + mat4 = mat2.sqrt(); + + VERIFY_IS_EQUAL((mat3.size()), 2*3*7); + // VERIFY_IS_EQUAL((mat3.dimension(0)), 2); + // VERIFY_IS_EQUAL((mat3.dimension(1)), 3); + // VERIFY_IS_EQUAL((mat3.dimension(2)), 7); + + + val = 0.0f; + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 3; ++j) { + for (int k = 0; k < 7; ++k) { + VERIFY_IS_APPROX(mat3(i,j,k), sqrtf(val)); + VERIFY_IS_APPROX(mat4(i,j,k), sqrtf(val)); + val += 1.0f; + } + } + } +} + + +static void test_array() +{ + TensorFixedSize > mat1; + float val = 0.0f; + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 3; ++j) { + for (int k = 0; k < 7; ++k) { + mat1(i,j,k) = val; + val += 1.0f; + } + } + } + + TensorFixedSize > mat3; + mat3 = mat1.pow(3.5f); + + val = 0.0f; + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 3; ++j) { + for (int k = 0; k < 7; ++k) { + VERIFY_IS_APPROX(mat3(i,j,k), powf(val, 3.5f)); + val += 1.0f; + } + } + } +} + +void test_cxx11_tensor_fixed_size() +{ + CALL_SUBTEST(test_0d()); + CALL_SUBTEST(test_1d()); + CALL_SUBTEST(test_tensor_map()); + CALL_SUBTEST(test_2d()); + CALL_SUBTEST(test_3d()); + CALL_SUBTEST(test_array()); +} -- cgit v1.2.3