// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" // workaround aggressive optimization in ICC template EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; } template bool isFinite(const T& x) { return isNotNaN(sub(x,x)); } template EIGEN_DONT_INLINE T copy(const T& x) { return x; } template void stable_norm(const MatrixType& m) { /* this test covers the following files: StableNorm.h */ using std::sqrt; using std::abs; typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; // Check the basic machine-dependent constants. { int ibeta, it, iemin, iemax; ibeta = std::numeric_limits::radix; // base for floating-point numbers it = std::numeric_limits::digits; // number of base-beta digits in mantissa iemin = std::numeric_limits::min_exponent; // minimum exponent iemax = std::numeric_limits::max_exponent; // maximum exponent VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2)) && "the stable norm algorithm cannot be guaranteed on this computer"); } Index rows = m.rows(); Index cols = m.cols(); // get a non-zero random factor Scalar factor = internal::random(); while(numext::abs2(factor)(); Scalar big = factor * ((std::numeric_limits::max)() * RealScalar(1e-4)); factor = internal::random(); while(numext::abs2(factor)(); Scalar small = factor * ((std::numeric_limits::min)() * RealScalar(1e4)); MatrixType vzero = MatrixType::Zero(rows, cols), vrand = MatrixType::Random(rows, cols), vbig(rows, cols), vsmall(rows,cols); vbig.fill(big); vsmall.fill(small); VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast(1)); VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm()); VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm()); VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm()); RealScalar size = static_cast(m.size()); // test isFinite VERIFY(!isFinite( std::numeric_limits::infinity())); VERIFY(!isFinite(sqrt(-abs(big)))); // test overflow VERIFY(isFinite(sqrt(size)*abs(big))); VERIFY_IS_NOT_APPROX(sqrt(copy(vbig.squaredNorm())), abs(sqrt(size)*big)); // here the default norm must fail VERIFY_IS_APPROX(vbig.stableNorm(), sqrt(size)*abs(big)); VERIFY_IS_APPROX(vbig.blueNorm(), sqrt(size)*abs(big)); VERIFY_IS_APPROX(vbig.hypotNorm(), sqrt(size)*abs(big)); // test underflow VERIFY(isFinite(sqrt(size)*abs(small))); VERIFY_IS_NOT_APPROX(sqrt(copy(vsmall.squaredNorm())), abs(sqrt(size)*small)); // here the default norm must fail VERIFY_IS_APPROX(vsmall.stableNorm(), sqrt(size)*abs(small)); VERIFY_IS_APPROX(vsmall.blueNorm(), sqrt(size)*abs(small)); VERIFY_IS_APPROX(vsmall.hypotNorm(), sqrt(size)*abs(small)); // Test compilation of cwise() version VERIFY_IS_APPROX(vrand.colwise().stableNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.colwise().blueNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.colwise().hypotNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm()); } void test_stable_norm() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( stable_norm(Matrix()) ); CALL_SUBTEST_2( stable_norm(Vector4d()) ); CALL_SUBTEST_3( stable_norm(VectorXd(internal::random(10,2000))) ); CALL_SUBTEST_4( stable_norm(VectorXf(internal::random(10,2000))) ); CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random(10,2000))) ); } }