aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/MathFunctions.h
blob: 05e913f2feca121bc79b306e90b98dd56563ba53 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATHFUNCTIONS_H
#define EIGEN_MATHFUNCTIONS_H

namespace Eigen {

namespace internal {

/** \internal \struct global_math_functions_filtering_base
  *
  * What it does:
  * Defines a typedef 'type' as follows:
  * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then
  *   global_math_functions_filtering_base<T>::type is a typedef for it.
  * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T.
  *
  * How it's used:
  * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions.
  * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know
  * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>.
  * So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization
  * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it.
  *
  * How it's implemented:
  * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace
  * the typename dummy by an integer template parameter, it doesn't work anymore!
  */

template<typename T, typename dummy = void>
struct global_math_functions_filtering_base
{
  typedef T type;
};

template<typename T> struct always_void { typedef void type; };

template<typename T>
struct global_math_functions_filtering_base
  <T,
   typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type
  >
{
  typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
};

#define EIGEN_MATHFUNC_IMPL(func, scalar) func##_impl<typename global_math_functions_filtering_base<scalar>::type>
#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename func##_retval<typename global_math_functions_filtering_base<scalar>::type>::type


/****************************************************************************
* Implementation of real                                                 *
****************************************************************************/

template<typename Scalar>
struct real_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x)
  {
    return x;
  }
};

template<typename RealScalar>
struct real_impl<std::complex<RealScalar> >
{
  static inline RealScalar run(const std::complex<RealScalar>& x)
  {
    using std::real;
    return real(x);
  }
};

template<typename Scalar>
struct real_retval
{
  typedef typename NumTraits<Scalar>::Real type;
};

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
}

/****************************************************************************
* Implementation of imag                                                 *
****************************************************************************/

template<typename Scalar>
struct imag_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar&)
  {
    return RealScalar(0);
  }
};

template<typename RealScalar>
struct imag_impl<std::complex<RealScalar> >
{
  static inline RealScalar run(const std::complex<RealScalar>& x)
  {
    using std::imag;
    return imag(x);
  }
};

template<typename Scalar>
struct imag_retval
{
  typedef typename NumTraits<Scalar>::Real type;
};

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
}

/****************************************************************************
* Implementation of real_ref                                             *
****************************************************************************/

template<typename Scalar>
struct real_ref_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar& run(Scalar& x)
  {
    return reinterpret_cast<RealScalar*>(&x)[0];
  }
  static inline const RealScalar& run(const Scalar& x)
  {
    return reinterpret_cast<const RealScalar*>(&x)[0];
  }
};

template<typename Scalar>
struct real_ref_retval
{
  typedef typename NumTraits<Scalar>::Real & type;
};

template<typename Scalar>
inline typename add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
{
  return real_ref_impl<Scalar>::run(x);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
}

/****************************************************************************
* Implementation of imag_ref                                             *
****************************************************************************/

template<typename Scalar, bool IsComplex>
struct imag_ref_default_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar& run(Scalar& x)
  {
    return reinterpret_cast<RealScalar*>(&x)[1];
  }
  static inline const RealScalar& run(const Scalar& x)
  {
    return reinterpret_cast<RealScalar*>(&x)[1];
  }
};

template<typename Scalar>
struct imag_ref_default_impl<Scalar, false>
{
  static inline Scalar run(Scalar&)
  {
    return Scalar(0);
  }
  static inline const Scalar run(const Scalar&)
  {
    return Scalar(0);
  }
};

template<typename Scalar>
struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};

template<typename Scalar>
struct imag_ref_retval
{
  typedef typename NumTraits<Scalar>::Real & type;
};

template<typename Scalar>
inline typename add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
{
  return imag_ref_impl<Scalar>::run(x);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
}

/****************************************************************************
* Implementation of conj                                                 *
****************************************************************************/

template<typename Scalar>
struct conj_impl
{
  static inline Scalar run(const Scalar& x)
  {
    return x;
  }
};

template<typename RealScalar>
struct conj_impl<std::complex<RealScalar> >
{
  static inline std::complex<RealScalar> run(const std::complex<RealScalar>& x)
  {
    using std::conj;
    return conj(x);
  }
};

template<typename Scalar>
struct conj_retval
{
  typedef Scalar type;
};

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
}

/****************************************************************************
* Implementation of abs                                                  *
****************************************************************************/

template<typename Scalar>
struct abs_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x)
  {
    using std::abs;
    return abs(x);
  }
};

template<typename Scalar>
struct abs_retval
{
  typedef typename NumTraits<Scalar>::Real type;
};

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(abs, Scalar) abs(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(abs, Scalar)::run(x);
}

/****************************************************************************
* Implementation of abs2                                                 *
****************************************************************************/

template<typename Scalar>
struct abs2_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x)
  {
    return x*x;
  }
};

template<typename RealScalar>
struct abs2_impl<std::complex<RealScalar> >
{
  static inline RealScalar run(const std::complex<RealScalar>& x)
  {
    return real(x)*real(x) + imag(x)*imag(x);
  }
};

template<typename Scalar>
struct abs2_retval
{
  typedef typename NumTraits<Scalar>::Real type;
};

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
}

/****************************************************************************
* Implementation of norm1                                                *
****************************************************************************/

template<typename Scalar, bool IsComplex>
struct norm1_default_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x)
  {
    return abs(real(x)) + abs(imag(x));
  }
};

template<typename Scalar>
struct norm1_default_impl<Scalar, false>
{
  static inline Scalar run(const Scalar& x)
  {
    return abs(x);
  }
};

template<typename Scalar>
struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};

template<typename Scalar>
struct norm1_retval
{
  typedef typename NumTraits<Scalar>::Real type;
};

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
}

/****************************************************************************
* Implementation of hypot                                                *
****************************************************************************/

template<typename Scalar>
struct hypot_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x, const Scalar& y)
  {
    using std::max;
    using std::min;
    RealScalar _x = abs(x);
    RealScalar _y = abs(y);
    RealScalar p = (max)(_x, _y);
    RealScalar q = (min)(_x, _y);
    RealScalar qp = q/p;
    return p * sqrt(RealScalar(1) + qp*qp);
  }
};

template<typename Scalar>
struct hypot_retval
{
  typedef typename NumTraits<Scalar>::Real type;
};

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
{
  return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
}

/****************************************************************************
* Implementation of cast                                                 *
****************************************************************************/

template<typename OldType, typename NewType>
struct cast_impl
{
  static inline NewType run(const OldType& x)
  {
    return static_cast<NewType>(x);
  }
};

// here, for once, we're plainly returning NewType: we don't want cast to do weird things.

template<typename OldType, typename NewType>
inline NewType cast(const OldType& x)
{
  return cast_impl<OldType, NewType>::run(x);
}

/****************************************************************************
* Implementation of sqrt                                                 *
****************************************************************************/

template<typename Scalar, bool IsInteger>
struct sqrt_default_impl
{
  static inline Scalar run(const Scalar& x)
  {
    using std::sqrt;
    return sqrt(x);
  }
};

template<typename Scalar>
struct sqrt_default_impl<Scalar, true>
{
  static inline Scalar run(const Scalar&)
  {
#ifdef EIGEN2_SUPPORT
    eigen_assert(!NumTraits<Scalar>::IsInteger);
#else
    EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
#endif
    return Scalar(0);
  }
};

template<typename Scalar>
struct sqrt_impl : sqrt_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};

template<typename Scalar>
struct sqrt_retval
{
  typedef Scalar type;
};

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(sqrt, Scalar) sqrt(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(sqrt, Scalar)::run(x);
}

/****************************************************************************
* Implementation of standard unary real functions (exp, log, sin, cos, ...  *
****************************************************************************/

// This macro instanciate all the necessary template mechanism which is common to all unary real functions.
#define EIGEN_MATHFUNC_STANDARD_REAL_UNARY(NAME) \
  template<typename Scalar, bool IsInteger> struct NAME##_default_impl {            \
    static inline Scalar run(const Scalar& x) { using std::NAME; return NAME(x); }  \
  };                                                                                \
  template<typename Scalar> struct NAME##_default_impl<Scalar, true> {              \
    static inline Scalar run(const Scalar&) {                                       \
      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)                                       \
      return Scalar(0);                                                             \
    }                                                                               \
  };                                                                                \
  template<typename Scalar> struct NAME##_impl                                      \
    : NAME##_default_impl<Scalar, NumTraits<Scalar>::IsInteger>                     \
  {};                                                                               \
  template<typename Scalar> struct NAME##_retval { typedef Scalar type; };          \
  template<typename Scalar>                                                         \
  inline EIGEN_MATHFUNC_RETVAL(NAME, Scalar) NAME(const Scalar& x) {                \
    return EIGEN_MATHFUNC_IMPL(NAME, Scalar)::run(x);                               \
  }

EIGEN_MATHFUNC_STANDARD_REAL_UNARY(exp)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(log)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(sin)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(cos)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(tan)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(asin)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(acos)

/****************************************************************************
* Implementation of atan2                                                *
****************************************************************************/

template<typename Scalar, bool IsInteger>
struct atan2_default_impl
{
  typedef Scalar retval;
  static inline Scalar run(const Scalar& x, const Scalar& y)
  {
    using std::atan2;
    return atan2(x, y);
  }
};

template<typename Scalar>
struct atan2_default_impl<Scalar, true>
{
  static inline Scalar run(const Scalar&, const Scalar&)
  {
    EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
    return Scalar(0);
  }
};

template<typename Scalar>
struct atan2_impl : atan2_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};

template<typename Scalar>
struct atan2_retval
{
  typedef Scalar type;
};

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(atan2, Scalar) atan2(const Scalar& x, const Scalar& y)
{
  return EIGEN_MATHFUNC_IMPL(atan2, Scalar)::run(x, y);
}

/****************************************************************************
* Implementation of pow                                                  *
****************************************************************************/

template<typename Scalar, bool IsInteger>
struct pow_default_impl
{
  typedef Scalar retval;
  static inline Scalar run(const Scalar& x, const Scalar& y)
  {
    using std::pow;
    return pow(x, y);
  }
};

template<typename Scalar>
struct pow_default_impl<Scalar, true>
{
  static inline Scalar run(Scalar x, Scalar y)
  {
    Scalar res(1);
    eigen_assert(!NumTraits<Scalar>::IsSigned || y >= 0);
    if(y & 1) res *= x;
    y >>= 1;
    while(y)
    {
      x *= x;
      if(y&1) res *= x;
      y >>= 1;
    }
    return res;
  }
};

template<typename Scalar>
struct pow_impl : pow_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};

template<typename Scalar>
struct pow_retval
{
  typedef Scalar type;
};

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y)
{
  return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y);
}

/****************************************************************************
* Implementation of random                                               *
****************************************************************************/

template<typename Scalar,
         bool IsComplex,
         bool IsInteger>
struct random_default_impl {};

template<typename Scalar>
struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};

template<typename Scalar>
struct random_retval
{
  typedef Scalar type;
};

template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();

template<typename Scalar>
struct random_default_impl<Scalar, false, false>
{
  static inline Scalar run(const Scalar& x, const Scalar& y)
  {
    return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX);
  }
  static inline Scalar run()
  {
    return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
  }
};

enum {
  floor_log2_terminate,
  floor_log2_move_up,
  floor_log2_move_down,
  floor_log2_bogus
};

template<unsigned int n, int lower, int upper> struct floor_log2_selector
{
  enum { middle = (lower + upper) / 2,
         value = (upper <= lower + 1) ? int(floor_log2_terminate)
               : (n < (1 << middle)) ? int(floor_log2_move_down)
               : (n==0) ? int(floor_log2_bogus)
               : int(floor_log2_move_up)
  };
};

template<unsigned int n,
         int lower = 0,
         int upper = sizeof(unsigned int) * CHAR_BIT - 1,
         int selector = floor_log2_selector<n, lower, upper>::value>
struct floor_log2 {};

template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_move_down>
{
  enum { value = floor_log2<n, lower, floor_log2_selector<n, lower, upper>::middle>::value };
};

template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_move_up>
{
  enum { value = floor_log2<n, floor_log2_selector<n, lower, upper>::middle, upper>::value };
};

template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_terminate>
{
  enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
};

template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_bogus>
{
  // no value, error at compile time
};

template<typename Scalar>
struct random_default_impl<Scalar, false, true>
{
  typedef typename NumTraits<Scalar>::NonInteger NonInteger;

  static inline Scalar run(const Scalar& x, const Scalar& y)
  {
    return x + Scalar((NonInteger(y)-x+1) * std::rand() / (RAND_MAX + NonInteger(1)));
  }

  static inline Scalar run()
  {
#ifdef EIGEN_MAKING_DOCS
    return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
#else
    enum { rand_bits = floor_log2<(unsigned int)(RAND_MAX)+1>::value,
           scalar_bits = sizeof(Scalar) * CHAR_BIT,
           shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits))
    };
    Scalar x = Scalar(std::rand() >> shift);
    Scalar offset = NumTraits<Scalar>::IsSigned ? Scalar(1 << (rand_bits-1)) : Scalar(0);
    return x - offset;
#endif
  }
};

template<typename Scalar>
struct random_default_impl<Scalar, true, false>
{
  static inline Scalar run(const Scalar& x, const Scalar& y)
  {
    return Scalar(random(real(x), real(y)),
                  random(imag(x), imag(y)));
  }
  static inline Scalar run()
  {
    typedef typename NumTraits<Scalar>::Real RealScalar;
    return Scalar(random<RealScalar>(), random<RealScalar>());
  }
};

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y)
{
  return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
{
  return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
}

/****************************************************************************
* Implementation of fuzzy comparisons                                       *
****************************************************************************/

template<typename Scalar,
         bool IsComplex,
         bool IsInteger>
struct scalar_fuzzy_default_impl {};

template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, false>
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  template<typename OtherScalar>
  static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
  {
    return abs(x) <= abs(y) * prec;
  }
  static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
  {
    using std::min;
    return abs(x - y) <= (min)(abs(x), abs(y)) * prec;
  }
  static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
  {
    return x <= y || isApprox(x, y, prec);
  }
};

template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, true>
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  template<typename OtherScalar>
  static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
  {
    return x == Scalar(0);
  }
  static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
  {
    return x == y;
  }
  static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
  {
    return x <= y;
  }
};

template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, true, false>
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  template<typename OtherScalar>
  static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
  {
    return abs2(x) <= abs2(y) * prec * prec;
  }
  static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
  {
    using std::min;
    return abs2(x - y) <= (min)(abs2(x), abs2(y)) * prec * prec;
  }
};

template<typename Scalar>
struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};

template<typename Scalar, typename OtherScalar>
inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
                                   typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
{
  return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
}

template<typename Scalar>
inline bool isApprox(const Scalar& x, const Scalar& y,
                          typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
{
  return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
}

template<typename Scalar>
inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
                                    typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
{
  return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
}

/******************************************
***  The special case of the  bool type ***
******************************************/

template<> struct random_impl<bool>
{
  static inline bool run()
  {
    return random<int>(0,1)==0 ? false : true;
  }
};

template<> struct scalar_fuzzy_impl<bool>
{
  typedef bool RealScalar;
  
  template<typename OtherScalar>
  static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
  {
    return !x;
  }
  
  static inline bool isApprox(bool x, bool y, bool)
  {
    return x == y;
  }

  static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
  {
    return (!x) || y;
  }
  
};

/****************************************************************************
* Special functions                                                          *
****************************************************************************/

// std::isfinite is non standard, so let's define our own version,
// even though it is not very efficient.
template<typename T> bool (isfinite)(const T& x)
{
  return x<NumTraits<T>::highest() && x>NumTraits<T>::lowest();
}

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_MATHFUNCTIONS_H