aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/ProductBase.h
blob: cf74470a9a1527302855c1fe5d9cfeea6ef2d8a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_PRODUCTBASE_H
#define EIGEN_PRODUCTBASE_H

namespace Eigen { 

/** \class ProductBase
  * \ingroup Core_Module
  *
  */

namespace internal {
template<typename Derived, typename _Lhs, typename _Rhs>
struct traits<ProductBase<Derived,_Lhs,_Rhs> >
{
  typedef MatrixXpr XprKind;
  typedef typename remove_all<_Lhs>::type Lhs;
  typedef typename remove_all<_Rhs>::type Rhs;
  typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
  typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
                                           typename traits<Rhs>::StorageKind>::ret StorageKind;
  typedef typename promote_index_type<typename traits<Lhs>::Index,
                                         typename traits<Rhs>::Index>::type Index;
  enum {
    RowsAtCompileTime = traits<Lhs>::RowsAtCompileTime,
    ColsAtCompileTime = traits<Rhs>::ColsAtCompileTime,
    MaxRowsAtCompileTime = traits<Lhs>::MaxRowsAtCompileTime,
    MaxColsAtCompileTime = traits<Rhs>::MaxColsAtCompileTime,
    Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0)
          | EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit,
                  // Note that EvalBeforeNestingBit and NestByRefBit
                  // are not used in practice because nested is overloaded for products
    CoeffReadCost = 0 // FIXME why is it needed ?
  };
};
}

#define EIGEN_PRODUCT_PUBLIC_INTERFACE(Derived) \
  typedef ProductBase<Derived, Lhs, Rhs > Base; \
  EIGEN_DENSE_PUBLIC_INTERFACE(Derived) \
  typedef typename Base::LhsNested LhsNested; \
  typedef typename Base::_LhsNested _LhsNested; \
  typedef typename Base::LhsBlasTraits LhsBlasTraits; \
  typedef typename Base::ActualLhsType ActualLhsType; \
  typedef typename Base::_ActualLhsType _ActualLhsType; \
  typedef typename Base::RhsNested RhsNested; \
  typedef typename Base::_RhsNested _RhsNested; \
  typedef typename Base::RhsBlasTraits RhsBlasTraits; \
  typedef typename Base::ActualRhsType ActualRhsType; \
  typedef typename Base::_ActualRhsType _ActualRhsType; \
  using Base::m_lhs; \
  using Base::m_rhs;

template<typename Derived, typename Lhs, typename Rhs>
class ProductBase : public MatrixBase<Derived>
{
  public:
    typedef MatrixBase<Derived> Base;
    EIGEN_DENSE_PUBLIC_INTERFACE(ProductBase)
    
    typedef typename Lhs::Nested LhsNested;
    typedef typename internal::remove_all<LhsNested>::type _LhsNested;
    typedef internal::blas_traits<_LhsNested> LhsBlasTraits;
    typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
    typedef typename internal::remove_all<ActualLhsType>::type _ActualLhsType;
    typedef typename internal::traits<Lhs>::Scalar LhsScalar;

    typedef typename Rhs::Nested RhsNested;
    typedef typename internal::remove_all<RhsNested>::type _RhsNested;
    typedef internal::blas_traits<_RhsNested> RhsBlasTraits;
    typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
    typedef typename internal::remove_all<ActualRhsType>::type _ActualRhsType;
    typedef typename internal::traits<Rhs>::Scalar RhsScalar;

    // Diagonal of a product: no need to evaluate the arguments because they are going to be evaluated only once
    typedef CoeffBasedProduct<LhsNested, RhsNested, 0> FullyLazyCoeffBaseProductType;

  public:

#ifndef EIGEN_NO_MALLOC
    typedef typename Base::PlainObject BasePlainObject;
    typedef Matrix<Scalar,RowsAtCompileTime==1?1:Dynamic,ColsAtCompileTime==1?1:Dynamic,BasePlainObject::Options> DynPlainObject;
    typedef typename internal::conditional<(BasePlainObject::SizeAtCompileTime==Dynamic) || (BasePlainObject::SizeAtCompileTime*int(sizeof(Scalar)) < int(EIGEN_STACK_ALLOCATION_LIMIT)),
                                           BasePlainObject, DynPlainObject>::type PlainObject;
#else
    typedef typename Base::PlainObject PlainObject;
#endif

    ProductBase(const Lhs& a_lhs, const Rhs& a_rhs)
      : m_lhs(a_lhs), m_rhs(a_rhs)
    {
      eigen_assert(a_lhs.cols() == a_rhs.rows()
        && "invalid matrix product"
        && "if you wanted a coeff-wise or a dot product use the respective explicit functions");
    }

    inline Index rows() const { return m_lhs.rows(); }
    inline Index cols() const { return m_rhs.cols(); }

    template<typename Dest>
    inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst,Scalar(1)); }

    template<typename Dest>
    inline void addTo(Dest& dst) const { scaleAndAddTo(dst,Scalar(1)); }

    template<typename Dest>
    inline void subTo(Dest& dst) const { scaleAndAddTo(dst,Scalar(-1)); }

    template<typename Dest>
    inline void scaleAndAddTo(Dest& dst, const Scalar& alpha) const { derived().scaleAndAddTo(dst,alpha); }

    const _LhsNested& lhs() const { return m_lhs; }
    const _RhsNested& rhs() const { return m_rhs; }

    // Implicit conversion to the nested type (trigger the evaluation of the product)
    operator const PlainObject& () const
    {
      m_result.resize(m_lhs.rows(), m_rhs.cols());
      derived().evalTo(m_result);
      return m_result;
    }

    const Diagonal<const FullyLazyCoeffBaseProductType,0> diagonal() const
    { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); }

    template<int Index>
    const Diagonal<FullyLazyCoeffBaseProductType,Index> diagonal() const
    { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); }

    const Diagonal<FullyLazyCoeffBaseProductType,Dynamic> diagonal(Index index) const
    { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs).diagonal(index); }

    // restrict coeff accessors to 1x1 expressions. No need to care about mutators here since this isnt a Lvalue expression
    typename Base::CoeffReturnType coeff(Index row, Index col) const
    {
#ifdef EIGEN2_SUPPORT
      return lhs().row(row).cwiseProduct(rhs().col(col).transpose()).sum();
#else
      EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
      eigen_assert(this->rows() == 1 && this->cols() == 1);
      Matrix<Scalar,1,1> result = *this;
      return result.coeff(row,col);
#endif
    }

    typename Base::CoeffReturnType coeff(Index i) const
    {
      EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
      eigen_assert(this->rows() == 1 && this->cols() == 1);
      Matrix<Scalar,1,1> result = *this;
      return result.coeff(i);
    }

    const Scalar& coeffRef(Index row, Index col) const
    {
      EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
      eigen_assert(this->rows() == 1 && this->cols() == 1);
      return derived().coeffRef(row,col);
    }

    const Scalar& coeffRef(Index i) const
    {
      EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
      eigen_assert(this->rows() == 1 && this->cols() == 1);
      return derived().coeffRef(i);
    }

  protected:

    LhsNested m_lhs;
    RhsNested m_rhs;

    mutable PlainObject m_result;
};

// here we need to overload the nested rule for products
// such that the nested type is a const reference to a plain matrix
namespace internal {
template<typename Lhs, typename Rhs, int Mode, int N, typename PlainObject>
struct nested<GeneralProduct<Lhs,Rhs,Mode>, N, PlainObject>
{
  typedef typename GeneralProduct<Lhs,Rhs,Mode>::PlainObject const& type;
};
template<typename Lhs, typename Rhs, int Mode, int N, typename PlainObject>
struct nested<const GeneralProduct<Lhs,Rhs,Mode>, N, PlainObject>
{
  typedef typename GeneralProduct<Lhs,Rhs,Mode>::PlainObject const& type;
};
}

template<typename NestedProduct>
class ScaledProduct;

// Note that these two operator* functions are not defined as member
// functions of ProductBase, because, otherwise we would have to
// define all overloads defined in MatrixBase. Furthermore, Using
// "using Base::operator*" would not work with MSVC.
//
// Also note that here we accept any compatible scalar types
template<typename Derived,typename Lhs,typename Rhs>
const ScaledProduct<Derived>
operator*(const ProductBase<Derived,Lhs,Rhs>& prod, const typename Derived::Scalar& x)
{ return ScaledProduct<Derived>(prod.derived(), x); }

template<typename Derived,typename Lhs,typename Rhs>
typename internal::enable_if<!internal::is_same<typename Derived::Scalar,typename Derived::RealScalar>::value,
                      const ScaledProduct<Derived> >::type
operator*(const ProductBase<Derived,Lhs,Rhs>& prod, const typename Derived::RealScalar& x)
{ return ScaledProduct<Derived>(prod.derived(), x); }


template<typename Derived,typename Lhs,typename Rhs>
const ScaledProduct<Derived>
operator*(const typename Derived::Scalar& x,const ProductBase<Derived,Lhs,Rhs>& prod)
{ return ScaledProduct<Derived>(prod.derived(), x); }

template<typename Derived,typename Lhs,typename Rhs>
typename internal::enable_if<!internal::is_same<typename Derived::Scalar,typename Derived::RealScalar>::value,
                      const ScaledProduct<Derived> >::type
operator*(const typename Derived::RealScalar& x,const ProductBase<Derived,Lhs,Rhs>& prod)
{ return ScaledProduct<Derived>(prod.derived(), x); }

namespace internal {
template<typename NestedProduct>
struct traits<ScaledProduct<NestedProduct> >
 : traits<ProductBase<ScaledProduct<NestedProduct>,
                         typename NestedProduct::_LhsNested,
                         typename NestedProduct::_RhsNested> >
{
  typedef typename traits<NestedProduct>::StorageKind StorageKind;
};
}

template<typename NestedProduct>
class ScaledProduct
  : public ProductBase<ScaledProduct<NestedProduct>,
                       typename NestedProduct::_LhsNested,
                       typename NestedProduct::_RhsNested>
{
  public:
    typedef ProductBase<ScaledProduct<NestedProduct>,
                       typename NestedProduct::_LhsNested,
                       typename NestedProduct::_RhsNested> Base;
    typedef typename Base::Scalar Scalar;
    typedef typename Base::PlainObject PlainObject;
//     EIGEN_PRODUCT_PUBLIC_INTERFACE(ScaledProduct)

    ScaledProduct(const NestedProduct& prod, const Scalar& x)
    : Base(prod.lhs(),prod.rhs()), m_prod(prod), m_alpha(x) {}

    template<typename Dest>
    inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst, Scalar(1)); }

    template<typename Dest>
    inline void addTo(Dest& dst) const { scaleAndAddTo(dst, Scalar(1)); }

    template<typename Dest>
    inline void subTo(Dest& dst) const { scaleAndAddTo(dst, Scalar(-1)); }

    template<typename Dest>
    inline void scaleAndAddTo(Dest& dst, const Scalar& a_alpha) const { m_prod.derived().scaleAndAddTo(dst,a_alpha * m_alpha); }

    const Scalar& alpha() const { return m_alpha; }
    
  protected:
    const NestedProduct& m_prod;
    Scalar m_alpha;
};

/** \internal
  * Overloaded to perform an efficient C = (A*B).lazy() */
template<typename Derived>
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& MatrixBase<Derived>::lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other)
{
  other.derived().evalTo(derived());
  return derived();
}

} // end namespace Eigen

#endif // EIGEN_PRODUCTBASE_H