aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/TriangularMatrix.h
blob: de9540063c20bea8749d6d33fa7e5e6919d12441 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_TRIANGULARMATRIX_H
#define EIGEN_TRIANGULARMATRIX_H

namespace Eigen { 

namespace internal {
  
template<int Side, typename TriangularType, typename Rhs> struct triangular_solve_retval;
  
}

/** \internal
  *
  * \class TriangularBase
  * \ingroup Core_Module
  *
  * \brief Base class for triangular part in a matrix
  */
template<typename Derived> class TriangularBase : public EigenBase<Derived>
{
  public:

    enum {
      Mode = internal::traits<Derived>::Mode,
      CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
      RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
      ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
      MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime
    };
    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef typename internal::traits<Derived>::StorageKind StorageKind;
    typedef typename internal::traits<Derived>::Index Index;
    typedef typename internal::traits<Derived>::DenseMatrixType DenseMatrixType;
    typedef DenseMatrixType DenseType;

    inline TriangularBase() { eigen_assert(!((Mode&UnitDiag) && (Mode&ZeroDiag))); }

    inline Index rows() const { return derived().rows(); }
    inline Index cols() const { return derived().cols(); }
    inline Index outerStride() const { return derived().outerStride(); }
    inline Index innerStride() const { return derived().innerStride(); }

    inline Scalar coeff(Index row, Index col) const  { return derived().coeff(row,col); }
    inline Scalar& coeffRef(Index row, Index col) { return derived().coeffRef(row,col); }

    /** \see MatrixBase::copyCoeff(row,col)
      */
    template<typename Other>
    EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, Other& other)
    {
      derived().coeffRef(row, col) = other.coeff(row, col);
    }

    inline Scalar operator()(Index row, Index col) const
    {
      check_coordinates(row, col);
      return coeff(row,col);
    }
    inline Scalar& operator()(Index row, Index col)
    {
      check_coordinates(row, col);
      return coeffRef(row,col);
    }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
    inline Derived& derived() { return *static_cast<Derived*>(this); }
    #endif // not EIGEN_PARSED_BY_DOXYGEN

    template<typename DenseDerived>
    void evalTo(MatrixBase<DenseDerived> &other) const;
    template<typename DenseDerived>
    void evalToLazy(MatrixBase<DenseDerived> &other) const;

    DenseMatrixType toDenseMatrix() const
    {
      DenseMatrixType res(rows(), cols());
      evalToLazy(res);
      return res;
    }

  protected:

    void check_coordinates(Index row, Index col) const
    {
      EIGEN_ONLY_USED_FOR_DEBUG(row);
      EIGEN_ONLY_USED_FOR_DEBUG(col);
      eigen_assert(col>=0 && col<cols() && row>=0 && row<rows());
      const int mode = int(Mode) & ~SelfAdjoint;
      EIGEN_ONLY_USED_FOR_DEBUG(mode);
      eigen_assert((mode==Upper && col>=row)
                || (mode==Lower && col<=row)
                || ((mode==StrictlyUpper || mode==UnitUpper) && col>row)
                || ((mode==StrictlyLower || mode==UnitLower) && col<row));
    }

    #ifdef EIGEN_INTERNAL_DEBUGGING
    void check_coordinates_internal(Index row, Index col) const
    {
      check_coordinates(row, col);
    }
    #else
    void check_coordinates_internal(Index , Index ) const {}
    #endif

};

/** \class TriangularView
  * \ingroup Core_Module
  *
  * \brief Base class for triangular part in a matrix
  *
  * \param MatrixType the type of the object in which we are taking the triangular part
  * \param Mode the kind of triangular matrix expression to construct. Can be #Upper,
  *             #Lower, #UnitUpper, #UnitLower, #StrictlyUpper, or #StrictlyLower.
  *             This is in fact a bit field; it must have either #Upper or #Lower, 
  *             and additionnaly it may have #UnitDiag or #ZeroDiag or neither.
  *
  * This class represents a triangular part of a matrix, not necessarily square. Strictly speaking, for rectangular
  * matrices one should speak of "trapezoid" parts. This class is the return type
  * of MatrixBase::triangularView() and most of the time this is the only way it is used.
  *
  * \sa MatrixBase::triangularView()
  */
namespace internal {
template<typename MatrixType, unsigned int _Mode>
struct traits<TriangularView<MatrixType, _Mode> > : traits<MatrixType>
{
  typedef typename nested<MatrixType>::type MatrixTypeNested;
  typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef;
  typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
  typedef MatrixType ExpressionType;
  typedef typename MatrixType::PlainObject DenseMatrixType;
  enum {
    Mode = _Mode,
    Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) | Mode,
    CoeffReadCost = MatrixTypeNestedCleaned::CoeffReadCost
  };
};
}

template<int Mode, bool LhsIsTriangular,
         typename Lhs, bool LhsIsVector,
         typename Rhs, bool RhsIsVector>
struct TriangularProduct;

template<typename _MatrixType, unsigned int _Mode> class TriangularView
  : public TriangularBase<TriangularView<_MatrixType, _Mode> >
{
  public:

    typedef TriangularBase<TriangularView> Base;
    typedef typename internal::traits<TriangularView>::Scalar Scalar;

    typedef _MatrixType MatrixType;
    typedef typename internal::traits<TriangularView>::DenseMatrixType DenseMatrixType;
    typedef DenseMatrixType PlainObject;

  protected:
    typedef typename internal::traits<TriangularView>::MatrixTypeNested MatrixTypeNested;
    typedef typename internal::traits<TriangularView>::MatrixTypeNestedNonRef MatrixTypeNestedNonRef;
    typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;

    typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType;
    
  public:
    using Base::evalToLazy;
  

    typedef typename internal::traits<TriangularView>::StorageKind StorageKind;
    typedef typename internal::traits<TriangularView>::Index Index;

    enum {
      Mode = _Mode,
      TransposeMode = (Mode & Upper ? Lower : 0)
                    | (Mode & Lower ? Upper : 0)
                    | (Mode & (UnitDiag))
                    | (Mode & (ZeroDiag))
    };

    inline TriangularView(const MatrixType& matrix) : m_matrix(matrix)
    {}

    inline Index rows() const { return m_matrix.rows(); }
    inline Index cols() const { return m_matrix.cols(); }
    inline Index outerStride() const { return m_matrix.outerStride(); }
    inline Index innerStride() const { return m_matrix.innerStride(); }

    /** \sa MatrixBase::operator+=() */
    template<typename Other> TriangularView&  operator+=(const DenseBase<Other>& other) { return *this = m_matrix + other.derived(); }
    /** \sa MatrixBase::operator-=() */
    template<typename Other> TriangularView&  operator-=(const DenseBase<Other>& other) { return *this = m_matrix - other.derived(); }
    /** \sa MatrixBase::operator*=() */
    TriangularView&  operator*=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix * other; }
    /** \sa MatrixBase::operator/=() */
    TriangularView&  operator/=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix / other; }

    /** \sa MatrixBase::fill() */
    void fill(const Scalar& value) { setConstant(value); }
    /** \sa MatrixBase::setConstant() */
    TriangularView& setConstant(const Scalar& value)
    { return *this = MatrixType::Constant(rows(), cols(), value); }
    /** \sa MatrixBase::setZero() */
    TriangularView& setZero() { return setConstant(Scalar(0)); }
    /** \sa MatrixBase::setOnes() */
    TriangularView& setOnes() { return setConstant(Scalar(1)); }

    /** \sa MatrixBase::coeff()
      * \warning the coordinates must fit into the referenced triangular part
      */
    inline Scalar coeff(Index row, Index col) const
    {
      Base::check_coordinates_internal(row, col);
      return m_matrix.coeff(row, col);
    }

    /** \sa MatrixBase::coeffRef()
      * \warning the coordinates must fit into the referenced triangular part
      */
    inline Scalar& coeffRef(Index row, Index col)
    {
      Base::check_coordinates_internal(row, col);
      return m_matrix.const_cast_derived().coeffRef(row, col);
    }

    const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
    MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); }

    /** Assigns a triangular matrix to a triangular part of a dense matrix */
    template<typename OtherDerived>
    TriangularView& operator=(const TriangularBase<OtherDerived>& other);

    template<typename OtherDerived>
    TriangularView& operator=(const MatrixBase<OtherDerived>& other);

    TriangularView& operator=(const TriangularView& other)
    { return *this = other.nestedExpression(); }

    template<typename OtherDerived>
    void lazyAssign(const TriangularBase<OtherDerived>& other);

    template<typename OtherDerived>
    void lazyAssign(const MatrixBase<OtherDerived>& other);

    /** \sa MatrixBase::conjugate() */
    inline TriangularView<MatrixConjugateReturnType,Mode> conjugate()
    { return m_matrix.conjugate(); }
    /** \sa MatrixBase::conjugate() const */
    inline const TriangularView<MatrixConjugateReturnType,Mode> conjugate() const
    { return m_matrix.conjugate(); }

    /** \sa MatrixBase::adjoint() const */
    inline const TriangularView<const typename MatrixType::AdjointReturnType,TransposeMode> adjoint() const
    { return m_matrix.adjoint(); }

    /** \sa MatrixBase::transpose() */
    inline TriangularView<Transpose<MatrixType>,TransposeMode> transpose()
    {
      EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
      return m_matrix.const_cast_derived().transpose();
    }
    /** \sa MatrixBase::transpose() const */
    inline const TriangularView<Transpose<MatrixType>,TransposeMode> transpose() const
    {
      return m_matrix.transpose();
    }

    /** Efficient triangular matrix times vector/matrix product */
    template<typename OtherDerived>
    TriangularProduct<Mode,true,MatrixType,false,OtherDerived, OtherDerived::IsVectorAtCompileTime>
    operator*(const MatrixBase<OtherDerived>& rhs) const
    {
      return TriangularProduct
              <Mode,true,MatrixType,false,OtherDerived,OtherDerived::IsVectorAtCompileTime>
              (m_matrix, rhs.derived());
    }

    /** Efficient vector/matrix times triangular matrix product */
    template<typename OtherDerived> friend
    TriangularProduct<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
    operator*(const MatrixBase<OtherDerived>& lhs, const TriangularView& rhs)
    {
      return TriangularProduct
              <Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
              (lhs.derived(),rhs.m_matrix);
    }

    #ifdef EIGEN2_SUPPORT
    template<typename OtherDerived>
    struct eigen2_product_return_type
    {
      typedef typename TriangularView<MatrixType,Mode>::DenseMatrixType DenseMatrixType;
      typedef typename OtherDerived::PlainObject::DenseType OtherPlainObject;
      typedef typename ProductReturnType<DenseMatrixType, OtherPlainObject>::Type ProdRetType;
      typedef typename ProdRetType::PlainObject type;
    };
    template<typename OtherDerived>
    const typename eigen2_product_return_type<OtherDerived>::type
    operator*(const EigenBase<OtherDerived>& rhs) const
    {
      typename OtherDerived::PlainObject::DenseType rhsPlainObject;
      rhs.evalTo(rhsPlainObject);
      return this->toDenseMatrix() * rhsPlainObject;
    }
    template<typename OtherMatrixType>
    bool isApprox(const TriangularView<OtherMatrixType, Mode>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
    {
      return this->toDenseMatrix().isApprox(other.toDenseMatrix(), precision);
    }
    template<typename OtherDerived>
    bool isApprox(const MatrixBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
    {
      return this->toDenseMatrix().isApprox(other, precision);
    }
    #endif // EIGEN2_SUPPORT

    template<int Side, typename Other>
    inline const internal::triangular_solve_retval<Side,TriangularView, Other>
    solve(const MatrixBase<Other>& other) const;

    template<int Side, typename OtherDerived>
    void solveInPlace(const MatrixBase<OtherDerived>& other) const;

    template<typename Other>
    inline const internal::triangular_solve_retval<OnTheLeft,TriangularView, Other> 
    solve(const MatrixBase<Other>& other) const
    { return solve<OnTheLeft>(other); }

    template<typename OtherDerived>
    void solveInPlace(const MatrixBase<OtherDerived>& other) const
    { return solveInPlace<OnTheLeft>(other); }

    const SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView() const
    {
      EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
      return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
    }
    SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView()
    {
      EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
      return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
    }

    template<typename OtherDerived>
    void swap(TriangularBase<OtherDerived> const & other)
    {
      TriangularView<SwapWrapper<MatrixType>,Mode>(const_cast<MatrixType&>(m_matrix)).lazyAssign(other.derived());
    }

    template<typename OtherDerived>
    void swap(MatrixBase<OtherDerived> const & other)
    {
      SwapWrapper<MatrixType> swaper(const_cast<MatrixType&>(m_matrix));
      TriangularView<SwapWrapper<MatrixType>,Mode>(swaper).lazyAssign(other.derived());
    }

    Scalar determinant() const
    {
      if (Mode & UnitDiag)
        return 1;
      else if (Mode & ZeroDiag)
        return 0;
      else
        return m_matrix.diagonal().prod();
    }
    
    // TODO simplify the following:
    template<typename ProductDerived, typename Lhs, typename Rhs>
    EIGEN_STRONG_INLINE TriangularView& operator=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
    {
      setZero();
      return assignProduct(other,1);
    }
    
    template<typename ProductDerived, typename Lhs, typename Rhs>
    EIGEN_STRONG_INLINE TriangularView& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
    {
      return assignProduct(other,1);
    }
    
    template<typename ProductDerived, typename Lhs, typename Rhs>
    EIGEN_STRONG_INLINE TriangularView& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
    {
      return assignProduct(other,-1);
    }
    
    
    template<typename ProductDerived>
    EIGEN_STRONG_INLINE TriangularView& operator=(const ScaledProduct<ProductDerived>& other)
    {
      setZero();
      return assignProduct(other,other.alpha());
    }
    
    template<typename ProductDerived>
    EIGEN_STRONG_INLINE TriangularView& operator+=(const ScaledProduct<ProductDerived>& other)
    {
      return assignProduct(other,other.alpha());
    }
    
    template<typename ProductDerived>
    EIGEN_STRONG_INLINE TriangularView& operator-=(const ScaledProduct<ProductDerived>& other)
    {
      return assignProduct(other,-other.alpha());
    }
    
  protected:
    
    template<typename ProductDerived, typename Lhs, typename Rhs>
    EIGEN_STRONG_INLINE TriangularView& assignProduct(const ProductBase<ProductDerived, Lhs,Rhs>& prod, const Scalar& alpha);

    MatrixTypeNested m_matrix;
};

/***************************************************************************
* Implementation of triangular evaluation/assignment
***************************************************************************/

namespace internal {

template<typename Derived1, typename Derived2, unsigned int Mode, int UnrollCount, bool ClearOpposite>
struct triangular_assignment_selector
{
  enum {
    col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
    row = (UnrollCount-1) % Derived1::RowsAtCompileTime
  };
  
  typedef typename Derived1::Scalar Scalar;

  static inline void run(Derived1 &dst, const Derived2 &src)
  {
    triangular_assignment_selector<Derived1, Derived2, Mode, UnrollCount-1, ClearOpposite>::run(dst, src);

    eigen_assert( Mode == Upper || Mode == Lower
            || Mode == StrictlyUpper || Mode == StrictlyLower
            || Mode == UnitUpper || Mode == UnitLower);
    if((Mode == Upper && row <= col)
    || (Mode == Lower && row >= col)
    || (Mode == StrictlyUpper && row < col)
    || (Mode == StrictlyLower && row > col)
    || (Mode == UnitUpper && row < col)
    || (Mode == UnitLower && row > col))
      dst.copyCoeff(row, col, src);
    else if(ClearOpposite)
    {
      if (Mode&UnitDiag && row==col)
        dst.coeffRef(row, col) = Scalar(1);
      else
        dst.coeffRef(row, col) = Scalar(0);
    }
  }
};

// prevent buggy user code from causing an infinite recursion
template<typename Derived1, typename Derived2, unsigned int Mode, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, Mode, 0, ClearOpposite>
{
  static inline void run(Derived1 &, const Derived2 &) {}
};

template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, Upper, Dynamic, ClearOpposite>
{
  typedef typename Derived1::Index Index;
  typedef typename Derived1::Scalar Scalar;
  static inline void run(Derived1 &dst, const Derived2 &src)
  {
    for(Index j = 0; j < dst.cols(); ++j)
    {
      Index maxi = (std::min)(j, dst.rows()-1);
      for(Index i = 0; i <= maxi; ++i)
        dst.copyCoeff(i, j, src);
      if (ClearOpposite)
        for(Index i = maxi+1; i < dst.rows(); ++i)
          dst.coeffRef(i, j) = Scalar(0);
    }
  }
};

template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, Lower, Dynamic, ClearOpposite>
{
  typedef typename Derived1::Index Index;
  static inline void run(Derived1 &dst, const Derived2 &src)
  {
    for(Index j = 0; j < dst.cols(); ++j)
    {
      for(Index i = j; i < dst.rows(); ++i)
        dst.copyCoeff(i, j, src);
      Index maxi = (std::min)(j, dst.rows());
      if (ClearOpposite)
        for(Index i = 0; i < maxi; ++i)
          dst.coeffRef(i, j) = static_cast<typename Derived1::Scalar>(0);
    }
  }
};

template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, StrictlyUpper, Dynamic, ClearOpposite>
{
  typedef typename Derived1::Index Index;
  static inline void run(Derived1 &dst, const Derived2 &src)
  {
    for(Index j = 0; j < dst.cols(); ++j)
    {
      Index maxi = (std::min)(j, dst.rows());
      for(Index i = 0; i < maxi; ++i)
        dst.copyCoeff(i, j, src);
      if (ClearOpposite)
        for(Index i = maxi; i < dst.rows(); ++i)
          dst.coeffRef(i, j) = 0;
    }
  }
};

template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, StrictlyLower, Dynamic, ClearOpposite>
{
  typedef typename Derived1::Index Index;
  static inline void run(Derived1 &dst, const Derived2 &src)
  {
    for(Index j = 0; j < dst.cols(); ++j)
    {
      for(Index i = j+1; i < dst.rows(); ++i)
        dst.copyCoeff(i, j, src);
      Index maxi = (std::min)(j, dst.rows()-1);
      if (ClearOpposite)
        for(Index i = 0; i <= maxi; ++i)
          dst.coeffRef(i, j) = static_cast<typename Derived1::Scalar>(0);
    }
  }
};

template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, UnitUpper, Dynamic, ClearOpposite>
{
  typedef typename Derived1::Index Index;
  static inline void run(Derived1 &dst, const Derived2 &src)
  {
    for(Index j = 0; j < dst.cols(); ++j)
    {
      Index maxi = (std::min)(j, dst.rows());
      for(Index i = 0; i < maxi; ++i)
        dst.copyCoeff(i, j, src);
      if (ClearOpposite)
      {
        for(Index i = maxi+1; i < dst.rows(); ++i)
          dst.coeffRef(i, j) = 0;
      }
    }
    dst.diagonal().setOnes();
  }
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, UnitLower, Dynamic, ClearOpposite>
{
  typedef typename Derived1::Index Index;
  static inline void run(Derived1 &dst, const Derived2 &src)
  {
    for(Index j = 0; j < dst.cols(); ++j)
    {
      Index maxi = (std::min)(j, dst.rows());
      for(Index i = maxi+1; i < dst.rows(); ++i)
        dst.copyCoeff(i, j, src);
      if (ClearOpposite)
      {
        for(Index i = 0; i < maxi; ++i)
          dst.coeffRef(i, j) = 0;
      }
    }
    dst.diagonal().setOnes();
  }
};

} // end namespace internal

// FIXME should we keep that possibility
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
inline TriangularView<MatrixType, Mode>&
TriangularView<MatrixType, Mode>::operator=(const MatrixBase<OtherDerived>& other)
{
  if(OtherDerived::Flags & EvalBeforeAssigningBit)
  {
    typename internal::plain_matrix_type<OtherDerived>::type other_evaluated(other.rows(), other.cols());
    other_evaluated.template triangularView<Mode>().lazyAssign(other.derived());
    lazyAssign(other_evaluated);
  }
  else
    lazyAssign(other.derived());
  return *this;
}

// FIXME should we keep that possibility
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
void TriangularView<MatrixType, Mode>::lazyAssign(const MatrixBase<OtherDerived>& other)
{
  enum {
    unroll = MatrixType::SizeAtCompileTime != Dynamic
          && internal::traits<OtherDerived>::CoeffReadCost != Dynamic
          && MatrixType::SizeAtCompileTime*internal::traits<OtherDerived>::CoeffReadCost/2 <= EIGEN_UNROLLING_LIMIT
  };
  eigen_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());

  internal::triangular_assignment_selector
    <MatrixType, OtherDerived, int(Mode),
    unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic,
    false // do not change the opposite triangular part
    >::run(m_matrix.const_cast_derived(), other.derived());
}



template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
inline TriangularView<MatrixType, Mode>&
TriangularView<MatrixType, Mode>::operator=(const TriangularBase<OtherDerived>& other)
{
  eigen_assert(Mode == int(OtherDerived::Mode));
  if(internal::traits<OtherDerived>::Flags & EvalBeforeAssigningBit)
  {
    typename OtherDerived::DenseMatrixType other_evaluated(other.rows(), other.cols());
    other_evaluated.template triangularView<Mode>().lazyAssign(other.derived().nestedExpression());
    lazyAssign(other_evaluated);
  }
  else
    lazyAssign(other.derived().nestedExpression());
  return *this;
}

template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
void TriangularView<MatrixType, Mode>::lazyAssign(const TriangularBase<OtherDerived>& other)
{
  enum {
    unroll = MatrixType::SizeAtCompileTime != Dynamic
                   && internal::traits<OtherDerived>::CoeffReadCost != Dynamic
                   && MatrixType::SizeAtCompileTime * internal::traits<OtherDerived>::CoeffReadCost / 2
                        <= EIGEN_UNROLLING_LIMIT
  };
  eigen_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());

  internal::triangular_assignment_selector
    <MatrixType, OtherDerived, int(Mode),
    unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic,
    false // preserve the opposite triangular part
    >::run(m_matrix.const_cast_derived(), other.derived().nestedExpression());
}

/***************************************************************************
* Implementation of TriangularBase methods
***************************************************************************/

/** Assigns a triangular or selfadjoint matrix to a dense matrix.
  * If the matrix is triangular, the opposite part is set to zero. */
template<typename Derived>
template<typename DenseDerived>
void TriangularBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
{
  if(internal::traits<Derived>::Flags & EvalBeforeAssigningBit)
  {
    typename internal::plain_matrix_type<Derived>::type other_evaluated(rows(), cols());
    evalToLazy(other_evaluated);
    other.derived().swap(other_evaluated);
  }
  else
    evalToLazy(other.derived());
}

/** Assigns a triangular or selfadjoint matrix to a dense matrix.
  * If the matrix is triangular, the opposite part is set to zero. */
template<typename Derived>
template<typename DenseDerived>
void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const
{
  enum {
    unroll = DenseDerived::SizeAtCompileTime != Dynamic
                   && internal::traits<Derived>::CoeffReadCost != Dynamic
                   && DenseDerived::SizeAtCompileTime * internal::traits<Derived>::CoeffReadCost / 2
                        <= EIGEN_UNROLLING_LIMIT
  };
  other.derived().resize(this->rows(), this->cols());

  internal::triangular_assignment_selector
    <DenseDerived, typename internal::traits<Derived>::MatrixTypeNestedCleaned, Derived::Mode,
    unroll ? int(DenseDerived::SizeAtCompileTime) : Dynamic,
    true // clear the opposite triangular part
    >::run(other.derived(), derived().nestedExpression());
}

/***************************************************************************
* Implementation of TriangularView methods
***************************************************************************/

/***************************************************************************
* Implementation of MatrixBase methods
***************************************************************************/

#ifdef EIGEN2_SUPPORT

// implementation of part<>(), including the SelfAdjoint case.

namespace internal {
template<typename MatrixType, unsigned int Mode>
struct eigen2_part_return_type
{
  typedef TriangularView<MatrixType, Mode> type;
};

template<typename MatrixType>
struct eigen2_part_return_type<MatrixType, SelfAdjoint>
{
  typedef SelfAdjointView<MatrixType, Upper> type;
};
}

/** \deprecated use MatrixBase::triangularView() */
template<typename Derived>
template<unsigned int Mode>
const typename internal::eigen2_part_return_type<Derived, Mode>::type MatrixBase<Derived>::part() const
{
  return derived();
}

/** \deprecated use MatrixBase::triangularView() */
template<typename Derived>
template<unsigned int Mode>
typename internal::eigen2_part_return_type<Derived, Mode>::type MatrixBase<Derived>::part()
{
  return derived();
}
#endif

/**
  * \returns an expression of a triangular view extracted from the current matrix
  *
  * The parameter \a Mode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper,
  * \c #Lower, \c #StrictlyLower, \c #UnitLower.
  *
  * Example: \include MatrixBase_extract.cpp
  * Output: \verbinclude MatrixBase_extract.out
  *
  * \sa class TriangularView
  */
template<typename Derived>
template<unsigned int Mode>
typename MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type
MatrixBase<Derived>::triangularView()
{
  return derived();
}

/** This is the const version of MatrixBase::triangularView() */
template<typename Derived>
template<unsigned int Mode>
typename MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type
MatrixBase<Derived>::triangularView() const
{
  return derived();
}

/** \returns true if *this is approximately equal to an upper triangular matrix,
  *          within the precision given by \a prec.
  *
  * \sa isLowerTriangular()
  */
template<typename Derived>
bool MatrixBase<Derived>::isUpperTriangular(RealScalar prec) const
{
  RealScalar maxAbsOnUpperPart = static_cast<RealScalar>(-1);
  for(Index j = 0; j < cols(); ++j)
  {
    Index maxi = (std::min)(j, rows()-1);
    for(Index i = 0; i <= maxi; ++i)
    {
      RealScalar absValue = internal::abs(coeff(i,j));
      if(absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue;
    }
  }
  RealScalar threshold = maxAbsOnUpperPart * prec;
  for(Index j = 0; j < cols(); ++j)
    for(Index i = j+1; i < rows(); ++i)
      if(internal::abs(coeff(i, j)) > threshold) return false;
  return true;
}

/** \returns true if *this is approximately equal to a lower triangular matrix,
  *          within the precision given by \a prec.
  *
  * \sa isUpperTriangular()
  */
template<typename Derived>
bool MatrixBase<Derived>::isLowerTriangular(RealScalar prec) const
{
  RealScalar maxAbsOnLowerPart = static_cast<RealScalar>(-1);
  for(Index j = 0; j < cols(); ++j)
    for(Index i = j; i < rows(); ++i)
    {
      RealScalar absValue = internal::abs(coeff(i,j));
      if(absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue;
    }
  RealScalar threshold = maxAbsOnLowerPart * prec;
  for(Index j = 1; j < cols(); ++j)
  {
    Index maxi = (std::min)(j, rows()-1);
    for(Index i = 0; i < maxi; ++i)
      if(internal::abs(coeff(i, j)) > threshold) return false;
  }
  return true;
}

} // end namespace Eigen

#endif // EIGEN_TRIANGULARMATRIX_H