aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/arch/AVX/MathFunctions.h
blob: 6af67ce2d65062bc58f92228bbcf7108ec2ad97c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATH_FUNCTIONS_AVX_H
#define EIGEN_MATH_FUNCTIONS_AVX_H

/* The sin, cos, exp, and log functions of this file are loosely derived from
 * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
 */

namespace Eigen {

namespace internal {

inline Packet8i pshiftleft(Packet8i v, int n)
{
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_slli_epi32(v, n);
#else
  __m128i lo = _mm_slli_epi32(_mm256_extractf128_si256(v, 0), n);
  __m128i hi = _mm_slli_epi32(_mm256_extractf128_si256(v, 1), n);
  return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
#endif
}

inline Packet8f pshiftright(Packet8f v, int n)
{
#ifdef EIGEN_VECTORIZE_AVX2
  return _mm256_cvtepi32_ps(_mm256_srli_epi32(_mm256_castps_si256(v), n));
#else
  __m128i lo = _mm_srli_epi32(_mm256_extractf128_si256(_mm256_castps_si256(v), 0), n);
  __m128i hi = _mm_srli_epi32(_mm256_extractf128_si256(_mm256_castps_si256(v), 1), n);
  return _mm256_cvtepi32_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1));
#endif
}

// Sine function
// Computes sin(x) by wrapping x to the interval [-Pi/4,3*Pi/4] and
// evaluating interpolants in [-Pi/4,Pi/4] or [Pi/4,3*Pi/4]. The interpolants
// are (anti-)symmetric and thus have only odd/even coefficients
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
psin<Packet8f>(const Packet8f& _x) {
  Packet8f x = _x;

  // Some useful values.
  _EIGEN_DECLARE_CONST_Packet8i(one, 1);
  _EIGEN_DECLARE_CONST_Packet8f(one, 1.0f);
  _EIGEN_DECLARE_CONST_Packet8f(two, 2.0f);
  _EIGEN_DECLARE_CONST_Packet8f(one_over_four, 0.25f);
  _EIGEN_DECLARE_CONST_Packet8f(one_over_pi, 3.183098861837907e-01f);
  _EIGEN_DECLARE_CONST_Packet8f(neg_pi_first, -3.140625000000000e+00f);
  _EIGEN_DECLARE_CONST_Packet8f(neg_pi_second, -9.670257568359375e-04f);
  _EIGEN_DECLARE_CONST_Packet8f(neg_pi_third, -6.278329571784980e-07f);
  _EIGEN_DECLARE_CONST_Packet8f(four_over_pi, 1.273239544735163e+00f);

  // Map x from [-Pi/4,3*Pi/4] to z in [-1,3] and subtract the shifted period.
  Packet8f z = pmul(x, p8f_one_over_pi);
  Packet8f shift = _mm256_floor_ps(padd(z, p8f_one_over_four));
  x = pmadd(shift, p8f_neg_pi_first, x);
  x = pmadd(shift, p8f_neg_pi_second, x);
  x = pmadd(shift, p8f_neg_pi_third, x);
  z = pmul(x, p8f_four_over_pi);

  // Make a mask for the entries that need flipping, i.e. wherever the shift
  // is odd.
  Packet8i shift_ints = _mm256_cvtps_epi32(shift);
  Packet8i shift_isodd = _mm256_castps_si256(_mm256_and_ps(_mm256_castsi256_ps(shift_ints), _mm256_castsi256_ps(p8i_one)));
  Packet8i sign_flip_mask = pshiftleft(shift_isodd, 31);

  // Create a mask for which interpolant to use, i.e. if z > 1, then the mask
  // is set to ones for that entry.
  Packet8f ival_mask = _mm256_cmp_ps(z, p8f_one, _CMP_GT_OQ);

  // Evaluate the polynomial for the interval [1,3] in z.
  _EIGEN_DECLARE_CONST_Packet8f(coeff_right_0, 9.999999724233232e-01f);
  _EIGEN_DECLARE_CONST_Packet8f(coeff_right_2, -3.084242535619928e-01f);
  _EIGEN_DECLARE_CONST_Packet8f(coeff_right_4, 1.584991525700324e-02f);
  _EIGEN_DECLARE_CONST_Packet8f(coeff_right_6, -3.188805084631342e-04f);
  Packet8f z_minus_two = psub(z, p8f_two);
  Packet8f z_minus_two2 = pmul(z_minus_two, z_minus_two);
  Packet8f right = pmadd(p8f_coeff_right_6, z_minus_two2, p8f_coeff_right_4);
  right = pmadd(right, z_minus_two2, p8f_coeff_right_2);
  right = pmadd(right, z_minus_two2, p8f_coeff_right_0);

  // Evaluate the polynomial for the interval [-1,1] in z.
  _EIGEN_DECLARE_CONST_Packet8f(coeff_left_1, 7.853981525427295e-01f);
  _EIGEN_DECLARE_CONST_Packet8f(coeff_left_3, -8.074536727092352e-02f);
  _EIGEN_DECLARE_CONST_Packet8f(coeff_left_5, 2.489871967827018e-03f);
  _EIGEN_DECLARE_CONST_Packet8f(coeff_left_7, -3.587725841214251e-05f);
  Packet8f z2 = pmul(z, z);
  Packet8f left = pmadd(p8f_coeff_left_7, z2, p8f_coeff_left_5);
  left = pmadd(left, z2, p8f_coeff_left_3);
  left = pmadd(left, z2, p8f_coeff_left_1);
  left = pmul(left, z);

  // Assemble the results, i.e. select the left and right polynomials.
  left = _mm256_andnot_ps(ival_mask, left);
  right = _mm256_and_ps(ival_mask, right);
  Packet8f res = _mm256_or_ps(left, right);

  // Flip the sign on the odd intervals and return the result.
  res = _mm256_xor_ps(res, _mm256_castsi256_ps(sign_flip_mask));
  return res;
}

// Natural logarithm
// Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2)
// and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can
// be easily approximated by a polynomial centered on m=1 for stability.
// TODO(gonnet): Further reduce the interval allowing for lower-degree
//               polynomial interpolants -> ... -> profit!
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
plog<Packet8f>(const Packet8f& _x) {
  Packet8f x = _x;
  _EIGEN_DECLARE_CONST_Packet8f(1, 1.0f);
  _EIGEN_DECLARE_CONST_Packet8f(half, 0.5f);
  _EIGEN_DECLARE_CONST_Packet8f(126f, 126.0f);

  _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inv_mant_mask, ~0x7f800000);

  // The smallest non denormalized float number.
  _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(min_norm_pos, 0x00800000);
  _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(minus_inf, 0xff800000);

  // Polynomial coefficients.
  _EIGEN_DECLARE_CONST_Packet8f(cephes_SQRTHF, 0.707106781186547524f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p0, 7.0376836292E-2f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p1, -1.1514610310E-1f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p2, 1.1676998740E-1f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p3, -1.2420140846E-1f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p4, +1.4249322787E-1f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p5, -1.6668057665E-1f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p6, +2.0000714765E-1f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p7, -2.4999993993E-1f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p8, +3.3333331174E-1f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_log_q1, -2.12194440e-4f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_log_q2, 0.693359375f);

  Packet8f invalid_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_NGE_UQ); // not greater equal is true if x is NaN
  Packet8f iszero_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_EQ_OQ);

  // Truncate input values to the minimum positive normal.
  x = pmax(x, p8f_min_norm_pos);

  Packet8f emm0 = pshiftright(x,23);
  Packet8f e = _mm256_sub_ps(emm0, p8f_126f);

  // Set the exponents to -1, i.e. x are in the range [0.5,1).
  x = _mm256_and_ps(x, p8f_inv_mant_mask);
  x = _mm256_or_ps(x, p8f_half);

  // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
  // and shift by -1. The values are then centered around 0, which improves
  // the stability of the polynomial evaluation.
  //   if( x < SQRTHF ) {
  //     e -= 1;
  //     x = x + x - 1.0;
  //   } else { x = x - 1.0; }
  Packet8f mask = _mm256_cmp_ps(x, p8f_cephes_SQRTHF, _CMP_LT_OQ);
  Packet8f tmp = _mm256_and_ps(x, mask);
  x = psub(x, p8f_1);
  e = psub(e, _mm256_and_ps(p8f_1, mask));
  x = padd(x, tmp);

  Packet8f x2 = pmul(x, x);
  Packet8f x3 = pmul(x2, x);

  // Evaluate the polynomial approximant of degree 8 in three parts, probably
  // to improve instruction-level parallelism.
  Packet8f y, y1, y2;
  y = pmadd(p8f_cephes_log_p0, x, p8f_cephes_log_p1);
  y1 = pmadd(p8f_cephes_log_p3, x, p8f_cephes_log_p4);
  y2 = pmadd(p8f_cephes_log_p6, x, p8f_cephes_log_p7);
  y = pmadd(y, x, p8f_cephes_log_p2);
  y1 = pmadd(y1, x, p8f_cephes_log_p5);
  y2 = pmadd(y2, x, p8f_cephes_log_p8);
  y = pmadd(y, x3, y1);
  y = pmadd(y, x3, y2);
  y = pmul(y, x3);

  // Add the logarithm of the exponent back to the result of the interpolation.
  y1 = pmul(e, p8f_cephes_log_q1);
  tmp = pmul(x2, p8f_half);
  y = padd(y, y1);
  x = psub(x, tmp);
  y2 = pmul(e, p8f_cephes_log_q2);
  x = padd(x, y);
  x = padd(x, y2);

  // Filter out invalid inputs, i.e. negative arg will be NAN, 0 will be -INF.
  return _mm256_or_ps(
      _mm256_andnot_ps(iszero_mask, _mm256_or_ps(x, invalid_mask)),
      _mm256_and_ps(iszero_mask, p8f_minus_inf));
}

// Exponential function. Works by writing "x = m*log(2) + r" where
// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
pexp<Packet8f>(const Packet8f& _x) {
  _EIGEN_DECLARE_CONST_Packet8f(1, 1.0f);
  _EIGEN_DECLARE_CONST_Packet8f(half, 0.5f);
  _EIGEN_DECLARE_CONST_Packet8f(127, 127.0f);

  _EIGEN_DECLARE_CONST_Packet8f(exp_hi, 88.3762626647950f);
  _EIGEN_DECLARE_CONST_Packet8f(exp_lo, -88.3762626647949f);

  _EIGEN_DECLARE_CONST_Packet8f(cephes_LOG2EF, 1.44269504088896341f);

  _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p0, 1.9875691500E-4f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p1, 1.3981999507E-3f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p2, 8.3334519073E-3f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p3, 4.1665795894E-2f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p4, 1.6666665459E-1f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p5, 5.0000001201E-1f);

  // Clamp x.
  Packet8f x = pmax(pmin(_x, p8f_exp_hi), p8f_exp_lo);

  // Express exp(x) as exp(m*ln(2) + r), start by extracting
  // m = floor(x/ln(2) + 0.5).
  Packet8f m = _mm256_floor_ps(pmadd(x, p8f_cephes_LOG2EF, p8f_half));

// Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is
// subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating
// truncation errors. Note that we don't use the "pmadd" function here to
// ensure that a precision-preserving FMA instruction is used.
#ifdef EIGEN_VECTORIZE_FMA
  _EIGEN_DECLARE_CONST_Packet8f(nln2, -0.6931471805599453f);
  Packet8f r = _mm256_fmadd_ps(m, p8f_nln2, x);
#else
  _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_C1, 0.693359375f);
  _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_C2, -2.12194440e-4f);
  Packet8f r = psub(x, pmul(m, p8f_cephes_exp_C1));
  r = psub(r, pmul(m, p8f_cephes_exp_C2));
#endif

  Packet8f r2 = pmul(r, r);

  // TODO(gonnet): Split into odd/even polynomials and try to exploit
  //               instruction-level parallelism.
  Packet8f y = p8f_cephes_exp_p0;
  y = pmadd(y, r, p8f_cephes_exp_p1);
  y = pmadd(y, r, p8f_cephes_exp_p2);
  y = pmadd(y, r, p8f_cephes_exp_p3);
  y = pmadd(y, r, p8f_cephes_exp_p4);
  y = pmadd(y, r, p8f_cephes_exp_p5);
  y = pmadd(y, r2, r);
  y = padd(y, p8f_1);

  // Build emm0 = 2^m.
  Packet8i emm0 = _mm256_cvttps_epi32(padd(m, p8f_127));
  emm0 = pshiftleft(emm0, 23);

  // Return 2^m * exp(r).
  return pmax(pmul(y, _mm256_castsi256_ps(emm0)), _x);
}

// Hyperbolic Tangent function.
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
ptanh<Packet8f>(const Packet8f& x) {
  return internal::generic_fast_tanh_float(x);
}

template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
pexp<Packet4d>(const Packet4d& _x) {
  Packet4d x = _x;

  _EIGEN_DECLARE_CONST_Packet4d(1, 1.0);
  _EIGEN_DECLARE_CONST_Packet4d(2, 2.0);
  _EIGEN_DECLARE_CONST_Packet4d(half, 0.5);

  _EIGEN_DECLARE_CONST_Packet4d(exp_hi, 709.437);
  _EIGEN_DECLARE_CONST_Packet4d(exp_lo, -709.436139303);

  _EIGEN_DECLARE_CONST_Packet4d(cephes_LOG2EF, 1.4426950408889634073599);

  _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p0, 1.26177193074810590878e-4);
  _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p1, 3.02994407707441961300e-2);
  _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p2, 9.99999999999999999910e-1);

  _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q0, 3.00198505138664455042e-6);
  _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q1, 2.52448340349684104192e-3);
  _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q2, 2.27265548208155028766e-1);
  _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q3, 2.00000000000000000009e0);

  _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_C1, 0.693145751953125);
  _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_C2, 1.42860682030941723212e-6);
  _EIGEN_DECLARE_CONST_Packet4i(1023, 1023);

  Packet4d tmp, fx;

  // clamp x
  x = pmax(pmin(x, p4d_exp_hi), p4d_exp_lo);
  // Express exp(x) as exp(g + n*log(2)).
  fx = pmadd(p4d_cephes_LOG2EF, x, p4d_half);

  // Get the integer modulus of log(2), i.e. the "n" described above.
  fx = _mm256_floor_pd(fx);

  // Get the remainder modulo log(2), i.e. the "g" described above. Subtract
  // n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last
  // digits right.
  tmp = pmul(fx, p4d_cephes_exp_C1);
  Packet4d z = pmul(fx, p4d_cephes_exp_C2);
  x = psub(x, tmp);
  x = psub(x, z);

  Packet4d x2 = pmul(x, x);

  // Evaluate the numerator polynomial of the rational interpolant.
  Packet4d px = p4d_cephes_exp_p0;
  px = pmadd(px, x2, p4d_cephes_exp_p1);
  px = pmadd(px, x2, p4d_cephes_exp_p2);
  px = pmul(px, x);

  // Evaluate the denominator polynomial of the rational interpolant.
  Packet4d qx = p4d_cephes_exp_q0;
  qx = pmadd(qx, x2, p4d_cephes_exp_q1);
  qx = pmadd(qx, x2, p4d_cephes_exp_q2);
  qx = pmadd(qx, x2, p4d_cephes_exp_q3);

  // I don't really get this bit, copied from the SSE2 routines, so...
  // TODO(gonnet): Figure out what is going on here, perhaps find a better
  // rational interpolant?
  x = _mm256_div_pd(px, psub(qx, px));
  x = pmadd(p4d_2, x, p4d_1);

  // Build e=2^n by constructing the exponents in a 128-bit vector and
  // shifting them to where they belong in double-precision values.
  __m128i emm0 = _mm256_cvtpd_epi32(fx);
  emm0 = _mm_add_epi32(emm0, p4i_1023);
  emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(3, 1, 2, 0));
  __m128i lo = _mm_slli_epi64(emm0, 52);
  __m128i hi = _mm_slli_epi64(_mm_srli_epi64(emm0, 32), 52);
  __m256i e = _mm256_insertf128_si256(_mm256_setzero_si256(), lo, 0);
  e = _mm256_insertf128_si256(e, hi, 1);

  // Construct the result 2^n * exp(g) = e * x. The max is used to catch
  // non-finite values in the input.
  return pmax(pmul(x, _mm256_castsi256_pd(e)), _x);
}

// Functions for sqrt.
// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
// exact solution. It does not handle +inf, or denormalized numbers correctly.
// The main advantage of this approach is not just speed, but also the fact that
// it can be inlined and pipelined with other computations, further reducing its
// effective latency. This is similar to Quake3's fast inverse square root.
// For detail see here: http://www.beyond3d.com/content/articles/8/
#if EIGEN_FAST_MATH
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
psqrt<Packet8f>(const Packet8f& _x) {
  Packet8f half = pmul(_x, pset1<Packet8f>(.5f));
  Packet8f denormal_mask = _mm256_and_ps(
      _mm256_cmp_ps(_x, pset1<Packet8f>((std::numeric_limits<float>::min)()),
                    _CMP_LT_OQ),
      _mm256_cmp_ps(_x, _mm256_setzero_ps(), _CMP_GE_OQ));

  // Compute approximate reciprocal sqrt.
  Packet8f x = _mm256_rsqrt_ps(_x);
  // Do a single step of Newton's iteration.
  x = pmul(x, psub(pset1<Packet8f>(1.5f), pmul(half, pmul(x,x))));
  // Flush results for denormals to zero.
  return _mm256_andnot_ps(denormal_mask, pmul(_x,x));
}
#else
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet8f psqrt<Packet8f>(const Packet8f& x) {
  return _mm256_sqrt_ps(x);
}
#endif
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4d psqrt<Packet4d>(const Packet4d& x) {
  return _mm256_sqrt_pd(x);
}
#if EIGEN_FAST_MATH

template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet8f prsqrt<Packet8f>(const Packet8f& _x) {
  _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inf, 0x7f800000);
  _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(nan, 0x7fc00000);
  _EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f);
  _EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f);
  _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000);

  Packet8f neg_half = pmul(_x, p8f_minus_half);

  // select only the inverse sqrt of positive normal inputs (denormals are
  // flushed to zero and cause infs as well).
  Packet8f le_zero_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_LT_OQ);
  Packet8f x = _mm256_andnot_ps(le_zero_mask, _mm256_rsqrt_ps(_x));

  // Fill in NaNs and Infs for the negative/zero entries.
  Packet8f neg_mask = _mm256_cmp_ps(_x, _mm256_setzero_ps(), _CMP_LT_OQ);
  Packet8f zero_mask = _mm256_andnot_ps(neg_mask, le_zero_mask);
  Packet8f infs_and_nans = _mm256_or_ps(_mm256_and_ps(neg_mask, p8f_nan),
                                        _mm256_and_ps(zero_mask, p8f_inf));

  // Do a single step of Newton's iteration.
  x = pmul(x, pmadd(neg_half, pmul(x, x), p8f_one_point_five));

  // Insert NaNs and Infs in all the right places.
  return _mm256_or_ps(x, infs_and_nans);
}

#else
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet8f prsqrt<Packet8f>(const Packet8f& x) {
  _EIGEN_DECLARE_CONST_Packet8f(one, 1.0f);
  return _mm256_div_ps(p8f_one, _mm256_sqrt_ps(x));
}
#endif

template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4d prsqrt<Packet4d>(const Packet4d& x) {
  _EIGEN_DECLARE_CONST_Packet4d(one, 1.0);
  return _mm256_div_pd(p4d_one, _mm256_sqrt_pd(x));
}


}  // end namespace internal

}  // end namespace Eigen

#endif  // EIGEN_MATH_FUNCTIONS_AVX_H