aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/arch/AVX/PacketMath.h
blob: 195d40fb4c5d92e31e521b6925dd50fd08e61f10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner (benoit.steiner.goog@gmail.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_PACKET_MATH_AVX_H
#define EIGEN_PACKET_MATH_AVX_H

namespace Eigen {

namespace internal {

#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
#endif

#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*))
#endif

#ifdef __FMA__
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#endif
#endif

typedef __m256  Packet8f;
typedef __m256i Packet8i;
typedef __m256d Packet4d;

template<> struct is_arithmetic<__m256>  { enum { value = true }; };
template<> struct is_arithmetic<__m256i> { enum { value = true }; };
template<> struct is_arithmetic<__m256d> { enum { value = true }; };

#define _EIGEN_DECLARE_CONST_Packet8f(NAME,X) \
  const Packet8f p8f_##NAME = pset1<Packet8f>(X)

#define _EIGEN_DECLARE_CONST_Packet4d(NAME,X) \
  const Packet4d p4d_##NAME = pset1<Packet4d>(X)

#define _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(NAME,X) \
  const Packet8f p8f_##NAME = _mm256_castsi256_ps(pset1<Packet8i>(X))

#define _EIGEN_DECLARE_CONST_Packet8i(NAME,X) \
  const Packet8i p8i_##NAME = pset1<Packet8i>(X)

// Use the packet_traits defined in AVX512/PacketMath.h instead if we're going
// to leverage AVX512 instructions.
#ifndef EIGEN_VECTORIZE_AVX512
template<> struct packet_traits<float>  : default_packet_traits
{
  typedef Packet8f type;
  typedef Packet4f half;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size=8,
    HasHalfPacket = 1,

    HasDiv  = 1,
    HasSin  = EIGEN_FAST_MATH,
    HasCos  = 0,
    HasLog  = 1,
    HasExp  = 1,
    HasSqrt = 1,
    HasRsqrt = 1,
    HasTanh  = EIGEN_FAST_MATH,
    HasBlend = 1,
    HasRound = 1,
    HasFloor = 1,
    HasCeil = 1
  };
};
template<> struct packet_traits<double> : default_packet_traits
{
  typedef Packet4d type;
  typedef Packet2d half;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size=4,
    HasHalfPacket = 1,

    HasDiv  = 1,
    HasExp  = 1,
    HasSqrt = 1,
    HasRsqrt = 1,
    HasBlend = 1,
    HasRound = 1,
    HasFloor = 1,
    HasCeil = 1
  };
};
#endif

template<> struct scalar_div_cost<float,true> { enum { value = 14 }; };
template<> struct scalar_div_cost<double,true> { enum { value = 16 }; };

/* Proper support for integers is only provided by AVX2. In the meantime, we'll
   use SSE instructions and packets to deal with integers.
template<> struct packet_traits<int>    : default_packet_traits
{
  typedef Packet8i type;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size=8
  };
};
*/

template<> struct unpacket_traits<Packet8f> { typedef float  type; typedef Packet4f half; enum {size=8, alignment=Aligned32}; };
template<> struct unpacket_traits<Packet4d> { typedef double type; typedef Packet2d half; enum {size=4, alignment=Aligned32}; };
template<> struct unpacket_traits<Packet8i> { typedef int    type; typedef Packet4i half; enum {size=8, alignment=Aligned32}; };

template<> EIGEN_STRONG_INLINE Packet8f pset1<Packet8f>(const float&  from) { return _mm256_set1_ps(from); }
template<> EIGEN_STRONG_INLINE Packet4d pset1<Packet4d>(const double& from) { return _mm256_set1_pd(from); }
template<> EIGEN_STRONG_INLINE Packet8i pset1<Packet8i>(const int&    from) { return _mm256_set1_epi32(from); }

template<> EIGEN_STRONG_INLINE Packet8f pload1<Packet8f>(const float*  from) { return _mm256_broadcast_ss(from); }
template<> EIGEN_STRONG_INLINE Packet4d pload1<Packet4d>(const double* from) { return _mm256_broadcast_sd(from); }

template<> EIGEN_STRONG_INLINE Packet8f plset<Packet8f>(const float& a) { return _mm256_add_ps(_mm256_set1_ps(a), _mm256_set_ps(7.0,6.0,5.0,4.0,3.0,2.0,1.0,0.0)); }
template<> EIGEN_STRONG_INLINE Packet4d plset<Packet4d>(const double& a) { return _mm256_add_pd(_mm256_set1_pd(a), _mm256_set_pd(3.0,2.0,1.0,0.0)); }

template<> EIGEN_STRONG_INLINE Packet8f padd<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_add_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d padd<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_add_pd(a,b); }

template<> EIGEN_STRONG_INLINE Packet8f psub<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_sub_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d psub<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_sub_pd(a,b); }

template<> EIGEN_STRONG_INLINE Packet8f pnegate(const Packet8f& a)
{
  return _mm256_sub_ps(_mm256_set1_ps(0.0),a);
}
template<> EIGEN_STRONG_INLINE Packet4d pnegate(const Packet4d& a)
{
  return _mm256_sub_pd(_mm256_set1_pd(0.0),a);
}

template<> EIGEN_STRONG_INLINE Packet8f pconj(const Packet8f& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4d pconj(const Packet4d& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet8i pconj(const Packet8i& a) { return a; }

template<> EIGEN_STRONG_INLINE Packet8f pmul<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_mul_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d pmul<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_mul_pd(a,b); }


template<> EIGEN_STRONG_INLINE Packet8f pdiv<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_div_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d pdiv<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_div_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet8i pdiv<Packet8i>(const Packet8i& /*a*/, const Packet8i& /*b*/)
{ eigen_assert(false && "packet integer division are not supported by AVX");
  return pset1<Packet8i>(0);
}

#ifdef __FMA__
template<> EIGEN_STRONG_INLINE Packet8f pmadd(const Packet8f& a, const Packet8f& b, const Packet8f& c) {
#if ( EIGEN_COMP_GNUC_STRICT || (EIGEN_COMP_CLANG && (EIGEN_COMP_CLANG<308)) )
  // clang stupidly generates a vfmadd213ps instruction plus some vmovaps on registers,
  // and gcc stupidly generates a vfmadd132ps instruction,
  // so let's enforce it to generate a vfmadd231ps instruction since the most common use case is to accumulate
  // the result of the product.
  Packet8f res = c;
  __asm__("vfmadd231ps %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
  return res;
#else
  return _mm256_fmadd_ps(a,b,c);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4d pmadd(const Packet4d& a, const Packet4d& b, const Packet4d& c) {
#if ( EIGEN_COMP_GNUC_STRICT || (EIGEN_COMP_CLANG && (EIGEN_COMP_CLANG<308)) )
  // see above
  Packet4d res = c;
  __asm__("vfmadd231pd %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
  return res;
#else
  return _mm256_fmadd_pd(a,b,c);
#endif
}
#endif

template<> EIGEN_STRONG_INLINE Packet8f pmin<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_min_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d pmin<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_min_pd(a,b); }

template<> EIGEN_STRONG_INLINE Packet8f pmax<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_max_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d pmax<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_max_pd(a,b); }

template<> EIGEN_STRONG_INLINE Packet8f pround<Packet8f>(const Packet8f& a) { return _mm256_round_ps(a, _MM_FROUND_CUR_DIRECTION); }
template<> EIGEN_STRONG_INLINE Packet4d pround<Packet4d>(const Packet4d& a) { return _mm256_round_pd(a, _MM_FROUND_CUR_DIRECTION); }

template<> EIGEN_STRONG_INLINE Packet8f pceil<Packet8f>(const Packet8f& a) { return _mm256_ceil_ps(a); }
template<> EIGEN_STRONG_INLINE Packet4d pceil<Packet4d>(const Packet4d& a) { return _mm256_ceil_pd(a); }

template<> EIGEN_STRONG_INLINE Packet8f pfloor<Packet8f>(const Packet8f& a) { return _mm256_floor_ps(a); }
template<> EIGEN_STRONG_INLINE Packet4d pfloor<Packet4d>(const Packet4d& a) { return _mm256_floor_pd(a); }

template<> EIGEN_STRONG_INLINE Packet8f pand<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_and_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d pand<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_and_pd(a,b); }

template<> EIGEN_STRONG_INLINE Packet8f por<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_or_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d por<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_or_pd(a,b); }

template<> EIGEN_STRONG_INLINE Packet8f pxor<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_xor_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d pxor<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_xor_pd(a,b); }

template<> EIGEN_STRONG_INLINE Packet8f pandnot<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_andnot_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet4d pandnot<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_andnot_pd(a,b); }

template<> EIGEN_STRONG_INLINE Packet8f pload<Packet8f>(const float*   from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_ps(from); }
template<> EIGEN_STRONG_INLINE Packet4d pload<Packet4d>(const double*  from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_pd(from); }
template<> EIGEN_STRONG_INLINE Packet8i pload<Packet8i>(const int*     from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_si256(reinterpret_cast<const __m256i*>(from)); }

template<> EIGEN_STRONG_INLINE Packet8f ploadu<Packet8f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_ps(from); }
template<> EIGEN_STRONG_INLINE Packet4d ploadu<Packet4d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_pd(from); }
template<> EIGEN_STRONG_INLINE Packet8i ploadu<Packet8i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(from)); }

// Loads 4 floats from memory a returns the packet {a0, a0  a1, a1, a2, a2, a3, a3}
template<> EIGEN_STRONG_INLINE Packet8f ploaddup<Packet8f>(const float* from)
{
  // TODO try to find a way to avoid the need of a temporary register
//   Packet8f tmp  = _mm256_castps128_ps256(_mm_loadu_ps(from));
//   tmp = _mm256_insertf128_ps(tmp, _mm_movehl_ps(_mm256_castps256_ps128(tmp),_mm256_castps256_ps128(tmp)), 1);
//   return _mm256_unpacklo_ps(tmp,tmp);
  
  // _mm256_insertf128_ps is very slow on Haswell, thus:
  Packet8f tmp = _mm256_broadcast_ps((const __m128*)(const void*)from);
  // mimic an "inplace" permutation of the lower 128bits using a blend
  tmp = _mm256_blend_ps(tmp,_mm256_castps128_ps256(_mm_permute_ps( _mm256_castps256_ps128(tmp), _MM_SHUFFLE(1,0,1,0))), 15);
  // then we can perform a consistent permutation on the global register to get everything in shape:
  return  _mm256_permute_ps(tmp, _MM_SHUFFLE(3,3,2,2));
}
// Loads 2 doubles from memory a returns the packet {a0, a0  a1, a1}
template<> EIGEN_STRONG_INLINE Packet4d ploaddup<Packet4d>(const double* from)
{
  Packet4d tmp = _mm256_broadcast_pd((const __m128d*)(const void*)from);
  return  _mm256_permute_pd(tmp, 3<<2);
}

// Loads 2 floats from memory a returns the packet {a0, a0  a0, a0, a1, a1, a1, a1}
template<> EIGEN_STRONG_INLINE Packet8f ploadquad<Packet8f>(const float* from)
{
  Packet8f tmp = _mm256_castps128_ps256(_mm_broadcast_ss(from));
  return _mm256_insertf128_ps(tmp, _mm_broadcast_ss(from+1), 1);
}

template<> EIGEN_STRONG_INLINE void pstore<float>(float*   to, const Packet8f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_ps(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet4d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_pd(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<int>(int*       to, const Packet8i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); }

template<> EIGEN_STRONG_INLINE void pstoreu<float>(float*   to, const Packet8f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_ps(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet4d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_pd(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int*       to, const Packet8i& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); }

// NOTE: leverage _mm256_i32gather_ps and _mm256_i32gather_pd if AVX2 instructions are available
// NOTE: for the record the following seems to be slower: return _mm256_i32gather_ps(from, _mm256_set1_epi32(stride), 4);
template<> EIGEN_DEVICE_FUNC inline Packet8f pgather<float, Packet8f>(const float* from, Index stride)
{
  return _mm256_set_ps(from[7*stride], from[6*stride], from[5*stride], from[4*stride],
                       from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}
template<> EIGEN_DEVICE_FUNC inline Packet4d pgather<double, Packet4d>(const double* from, Index stride)
{
  return _mm256_set_pd(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}

template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet8f>(float* to, const Packet8f& from, Index stride)
{
  __m128 low = _mm256_extractf128_ps(from, 0);
  to[stride*0] = _mm_cvtss_f32(low);
  to[stride*1] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 1));
  to[stride*2] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 2));
  to[stride*3] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 3));

  __m128 high = _mm256_extractf128_ps(from, 1);
  to[stride*4] = _mm_cvtss_f32(high);
  to[stride*5] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 1));
  to[stride*6] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 2));
  to[stride*7] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3));
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet4d>(double* to, const Packet4d& from, Index stride)
{
  __m128d low = _mm256_extractf128_pd(from, 0);
  to[stride*0] = _mm_cvtsd_f64(low);
  to[stride*1] = _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1));
  __m128d high = _mm256_extractf128_pd(from, 1);
  to[stride*2] = _mm_cvtsd_f64(high);
  to[stride*3] = _mm_cvtsd_f64(_mm_shuffle_pd(high, high, 1));
}

template<> EIGEN_STRONG_INLINE void pstore1<Packet8f>(float* to, const float& a)
{
  Packet8f pa = pset1<Packet8f>(a);
  pstore(to, pa);
}
template<> EIGEN_STRONG_INLINE void pstore1<Packet4d>(double* to, const double& a)
{
  Packet4d pa = pset1<Packet4d>(a);
  pstore(to, pa);
}
template<> EIGEN_STRONG_INLINE void pstore1<Packet8i>(int* to, const int& a)
{
  Packet8i pa = pset1<Packet8i>(a);
  pstore(to, pa);
}

#ifndef EIGEN_VECTORIZE_AVX512
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float*   addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int*       addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
#endif

template<> EIGEN_STRONG_INLINE float  pfirst<Packet8f>(const Packet8f& a) {
  return _mm_cvtss_f32(_mm256_castps256_ps128(a));
}
template<> EIGEN_STRONG_INLINE double pfirst<Packet4d>(const Packet4d& a) {
  return _mm_cvtsd_f64(_mm256_castpd256_pd128(a));
}
template<> EIGEN_STRONG_INLINE int    pfirst<Packet8i>(const Packet8i& a) {
  return _mm_cvtsi128_si32(_mm256_castsi256_si128(a));
}


template<> EIGEN_STRONG_INLINE Packet8f preverse(const Packet8f& a)
{
  __m256 tmp = _mm256_shuffle_ps(a,a,0x1b);
  return _mm256_permute2f128_ps(tmp, tmp, 1);
}
template<> EIGEN_STRONG_INLINE Packet4d preverse(const Packet4d& a)
{
   __m256d tmp = _mm256_shuffle_pd(a,a,5);
  return _mm256_permute2f128_pd(tmp, tmp, 1);

  __m256d swap_halves = _mm256_permute2f128_pd(a,a,1);
    return _mm256_permute_pd(swap_halves,5);
}

// pabs should be ok
template<> EIGEN_STRONG_INLINE Packet8f pabs(const Packet8f& a)
{
  const Packet8f mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF));
  return _mm256_and_ps(a,mask);
}
template<> EIGEN_STRONG_INLINE Packet4d pabs(const Packet4d& a)
{
  const Packet4d mask = _mm256_castsi256_pd(_mm256_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF));
  return _mm256_and_pd(a,mask);
}

// preduxp should be ok
// FIXME: why is this ok? why isn't the simply implementation working as expected?
template<> EIGEN_STRONG_INLINE Packet8f preduxp<Packet8f>(const Packet8f* vecs)
{
    __m256 hsum1 = _mm256_hadd_ps(vecs[0], vecs[1]);
    __m256 hsum2 = _mm256_hadd_ps(vecs[2], vecs[3]);
    __m256 hsum3 = _mm256_hadd_ps(vecs[4], vecs[5]);
    __m256 hsum4 = _mm256_hadd_ps(vecs[6], vecs[7]);

    __m256 hsum5 = _mm256_hadd_ps(hsum1, hsum1);
    __m256 hsum6 = _mm256_hadd_ps(hsum2, hsum2);
    __m256 hsum7 = _mm256_hadd_ps(hsum3, hsum3);
    __m256 hsum8 = _mm256_hadd_ps(hsum4, hsum4);

    __m256 perm1 =  _mm256_permute2f128_ps(hsum5, hsum5, 0x23);
    __m256 perm2 =  _mm256_permute2f128_ps(hsum6, hsum6, 0x23);
    __m256 perm3 =  _mm256_permute2f128_ps(hsum7, hsum7, 0x23);
    __m256 perm4 =  _mm256_permute2f128_ps(hsum8, hsum8, 0x23);

    __m256 sum1 = _mm256_add_ps(perm1, hsum5);
    __m256 sum2 = _mm256_add_ps(perm2, hsum6);
    __m256 sum3 = _mm256_add_ps(perm3, hsum7);
    __m256 sum4 = _mm256_add_ps(perm4, hsum8);

    __m256 blend1 = _mm256_blend_ps(sum1, sum2, 0xcc);
    __m256 blend2 = _mm256_blend_ps(sum3, sum4, 0xcc);

    __m256 final = _mm256_blend_ps(blend1, blend2, 0xf0);
    return final;
}
template<> EIGEN_STRONG_INLINE Packet4d preduxp<Packet4d>(const Packet4d* vecs)
{
 Packet4d tmp0, tmp1;

  tmp0 = _mm256_hadd_pd(vecs[0], vecs[1]);
  tmp0 = _mm256_add_pd(tmp0, _mm256_permute2f128_pd(tmp0, tmp0, 1));

  tmp1 = _mm256_hadd_pd(vecs[2], vecs[3]);
  tmp1 = _mm256_add_pd(tmp1, _mm256_permute2f128_pd(tmp1, tmp1, 1));

  return _mm256_blend_pd(tmp0, tmp1, 0xC);
}

template<> EIGEN_STRONG_INLINE float predux<Packet8f>(const Packet8f& a)
{
  return predux(Packet4f(_mm_add_ps(_mm256_castps256_ps128(a),_mm256_extractf128_ps(a,1))));
}
template<> EIGEN_STRONG_INLINE double predux<Packet4d>(const Packet4d& a)
{
  return predux(Packet2d(_mm_add_pd(_mm256_castpd256_pd128(a),_mm256_extractf128_pd(a,1))));
}

template<> EIGEN_STRONG_INLINE Packet4f predux_downto4<Packet8f>(const Packet8f& a)
{
  return _mm_add_ps(_mm256_castps256_ps128(a),_mm256_extractf128_ps(a,1));
}

template<> EIGEN_STRONG_INLINE float predux_mul<Packet8f>(const Packet8f& a)
{
  Packet8f tmp;
  tmp = _mm256_mul_ps(a, _mm256_permute2f128_ps(a,a,1));
  tmp = _mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2)));
  return pfirst(_mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1)));
}
template<> EIGEN_STRONG_INLINE double predux_mul<Packet4d>(const Packet4d& a)
{
  Packet4d tmp;
  tmp = _mm256_mul_pd(a, _mm256_permute2f128_pd(a,a,1));
  return pfirst(_mm256_mul_pd(tmp, _mm256_shuffle_pd(tmp,tmp,1)));
}

template<> EIGEN_STRONG_INLINE float predux_min<Packet8f>(const Packet8f& a)
{
  Packet8f tmp = _mm256_min_ps(a, _mm256_permute2f128_ps(a,a,1));
  tmp = _mm256_min_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2)));
  return pfirst(_mm256_min_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1)));
}
template<> EIGEN_STRONG_INLINE double predux_min<Packet4d>(const Packet4d& a)
{
  Packet4d tmp = _mm256_min_pd(a, _mm256_permute2f128_pd(a,a,1));
  return pfirst(_mm256_min_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1)));
}

template<> EIGEN_STRONG_INLINE float predux_max<Packet8f>(const Packet8f& a)
{
  Packet8f tmp = _mm256_max_ps(a, _mm256_permute2f128_ps(a,a,1));
  tmp = _mm256_max_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2)));
  return pfirst(_mm256_max_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1)));
}

template<> EIGEN_STRONG_INLINE double predux_max<Packet4d>(const Packet4d& a)
{
  Packet4d tmp = _mm256_max_pd(a, _mm256_permute2f128_pd(a,a,1));
  return pfirst(_mm256_max_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1)));
}


template<int Offset>
struct palign_impl<Offset,Packet8f>
{
  static EIGEN_STRONG_INLINE void run(Packet8f& first, const Packet8f& second)
  {
    if (Offset==1)
    {
      first = _mm256_blend_ps(first, second, 1);
      Packet8f tmp1 = _mm256_permute_ps (first, _MM_SHUFFLE(0,3,2,1));
      Packet8f tmp2 = _mm256_permute2f128_ps (tmp1, tmp1, 1);
      first = _mm256_blend_ps(tmp1, tmp2, 0x88);
    }
    else if (Offset==2)
    {
      first = _mm256_blend_ps(first, second, 3);
      Packet8f tmp1 = _mm256_permute_ps (first, _MM_SHUFFLE(1,0,3,2));
      Packet8f tmp2 = _mm256_permute2f128_ps (tmp1, tmp1, 1);
      first = _mm256_blend_ps(tmp1, tmp2, 0xcc);
    }
    else if (Offset==3)
    {
      first = _mm256_blend_ps(first, second, 7);
      Packet8f tmp1 = _mm256_permute_ps (first, _MM_SHUFFLE(2,1,0,3));
      Packet8f tmp2 = _mm256_permute2f128_ps (tmp1, tmp1, 1);
      first = _mm256_blend_ps(tmp1, tmp2, 0xee);
    }
    else if (Offset==4)
    {
      first = _mm256_blend_ps(first, second, 15);
      Packet8f tmp1 = _mm256_permute_ps (first, _MM_SHUFFLE(3,2,1,0));
      Packet8f tmp2 = _mm256_permute2f128_ps (tmp1, tmp1, 1);
      first = _mm256_permute_ps(tmp2, _MM_SHUFFLE(3,2,1,0));
    }
    else if (Offset==5)
    {
      first = _mm256_blend_ps(first, second, 31);
      first = _mm256_permute2f128_ps(first, first, 1);
      Packet8f tmp = _mm256_permute_ps (first, _MM_SHUFFLE(0,3,2,1));
      first = _mm256_permute2f128_ps(tmp, tmp, 1);
      first = _mm256_blend_ps(tmp, first, 0x88);
    }
    else if (Offset==6)
    {
      first = _mm256_blend_ps(first, second, 63);
      first = _mm256_permute2f128_ps(first, first, 1);
      Packet8f tmp = _mm256_permute_ps (first, _MM_SHUFFLE(1,0,3,2));
      first = _mm256_permute2f128_ps(tmp, tmp, 1);
      first = _mm256_blend_ps(tmp, first, 0xcc);
    }
    else if (Offset==7)
    {
      first = _mm256_blend_ps(first, second, 127);
      first = _mm256_permute2f128_ps(first, first, 1);
      Packet8f tmp = _mm256_permute_ps (first, _MM_SHUFFLE(2,1,0,3));
      first = _mm256_permute2f128_ps(tmp, tmp, 1);
      first = _mm256_blend_ps(tmp, first, 0xee);
    }
  }
};

template<int Offset>
struct palign_impl<Offset,Packet4d>
{
  static EIGEN_STRONG_INLINE void run(Packet4d& first, const Packet4d& second)
  {
    if (Offset==1)
    {
      first = _mm256_blend_pd(first, second, 1);
      __m256d tmp = _mm256_permute_pd(first, 5);
      first = _mm256_permute2f128_pd(tmp, tmp, 1);
      first = _mm256_blend_pd(tmp, first, 0xA);
    }
    else if (Offset==2)
    {
      first = _mm256_blend_pd(first, second, 3);
      first = _mm256_permute2f128_pd(first, first, 1);
    }
    else if (Offset==3)
    {
      first = _mm256_blend_pd(first, second, 7);
      __m256d tmp = _mm256_permute_pd(first, 5);
      first = _mm256_permute2f128_pd(tmp, tmp, 1);
      first = _mm256_blend_pd(tmp, first, 5);
    }
  }
};

EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet8f,8>& kernel) {
  __m256 T0 = _mm256_unpacklo_ps(kernel.packet[0], kernel.packet[1]);
  __m256 T1 = _mm256_unpackhi_ps(kernel.packet[0], kernel.packet[1]);
  __m256 T2 = _mm256_unpacklo_ps(kernel.packet[2], kernel.packet[3]);
  __m256 T3 = _mm256_unpackhi_ps(kernel.packet[2], kernel.packet[3]);
  __m256 T4 = _mm256_unpacklo_ps(kernel.packet[4], kernel.packet[5]);
  __m256 T5 = _mm256_unpackhi_ps(kernel.packet[4], kernel.packet[5]);
  __m256 T6 = _mm256_unpacklo_ps(kernel.packet[6], kernel.packet[7]);
  __m256 T7 = _mm256_unpackhi_ps(kernel.packet[6], kernel.packet[7]);
  __m256 S0 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(1,0,1,0));
  __m256 S1 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(3,2,3,2));
  __m256 S2 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(1,0,1,0));
  __m256 S3 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(3,2,3,2));
  __m256 S4 = _mm256_shuffle_ps(T4,T6,_MM_SHUFFLE(1,0,1,0));
  __m256 S5 = _mm256_shuffle_ps(T4,T6,_MM_SHUFFLE(3,2,3,2));
  __m256 S6 = _mm256_shuffle_ps(T5,T7,_MM_SHUFFLE(1,0,1,0));
  __m256 S7 = _mm256_shuffle_ps(T5,T7,_MM_SHUFFLE(3,2,3,2));
  kernel.packet[0] = _mm256_permute2f128_ps(S0, S4, 0x20);
  kernel.packet[1] = _mm256_permute2f128_ps(S1, S5, 0x20);
  kernel.packet[2] = _mm256_permute2f128_ps(S2, S6, 0x20);
  kernel.packet[3] = _mm256_permute2f128_ps(S3, S7, 0x20);
  kernel.packet[4] = _mm256_permute2f128_ps(S0, S4, 0x31);
  kernel.packet[5] = _mm256_permute2f128_ps(S1, S5, 0x31);
  kernel.packet[6] = _mm256_permute2f128_ps(S2, S6, 0x31);
  kernel.packet[7] = _mm256_permute2f128_ps(S3, S7, 0x31);
}

EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet8f,4>& kernel) {
  __m256 T0 = _mm256_unpacklo_ps(kernel.packet[0], kernel.packet[1]);
  __m256 T1 = _mm256_unpackhi_ps(kernel.packet[0], kernel.packet[1]);
  __m256 T2 = _mm256_unpacklo_ps(kernel.packet[2], kernel.packet[3]);
  __m256 T3 = _mm256_unpackhi_ps(kernel.packet[2], kernel.packet[3]);

  __m256 S0 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(1,0,1,0));
  __m256 S1 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(3,2,3,2));
  __m256 S2 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(1,0,1,0));
  __m256 S3 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(3,2,3,2));

  kernel.packet[0] = _mm256_permute2f128_ps(S0, S1, 0x20);
  kernel.packet[1] = _mm256_permute2f128_ps(S2, S3, 0x20);
  kernel.packet[2] = _mm256_permute2f128_ps(S0, S1, 0x31);
  kernel.packet[3] = _mm256_permute2f128_ps(S2, S3, 0x31);
}

EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4d,4>& kernel) {
  __m256d T0 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 15);
  __m256d T1 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 0);
  __m256d T2 = _mm256_shuffle_pd(kernel.packet[2], kernel.packet[3], 15);
  __m256d T3 = _mm256_shuffle_pd(kernel.packet[2], kernel.packet[3], 0);

  kernel.packet[1] = _mm256_permute2f128_pd(T0, T2, 32);
  kernel.packet[3] = _mm256_permute2f128_pd(T0, T2, 49);
  kernel.packet[0] = _mm256_permute2f128_pd(T1, T3, 32);
  kernel.packet[2] = _mm256_permute2f128_pd(T1, T3, 49);
}

template<> EIGEN_STRONG_INLINE Packet8f pblend(const Selector<8>& ifPacket, const Packet8f& thenPacket, const Packet8f& elsePacket) {
  const __m256 zero = _mm256_setzero_ps();
  const __m256 select = _mm256_set_ps(ifPacket.select[7], ifPacket.select[6], ifPacket.select[5], ifPacket.select[4], ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
  __m256 false_mask = _mm256_cmp_ps(select, zero, _CMP_EQ_UQ);
  return _mm256_blendv_ps(thenPacket, elsePacket, false_mask);
}
template<> EIGEN_STRONG_INLINE Packet4d pblend(const Selector<4>& ifPacket, const Packet4d& thenPacket, const Packet4d& elsePacket) {
  const __m256d zero = _mm256_setzero_pd();
  const __m256d select = _mm256_set_pd(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
  __m256d false_mask = _mm256_cmp_pd(select, zero, _CMP_EQ_UQ);
  return _mm256_blendv_pd(thenPacket, elsePacket, false_mask);
}

template<> EIGEN_STRONG_INLINE Packet8f pinsertfirst(const Packet8f& a, float b)
{
  return _mm256_blend_ps(a,pset1<Packet8f>(b),1);
}

template<> EIGEN_STRONG_INLINE Packet4d pinsertfirst(const Packet4d& a, double b)
{
  return _mm256_blend_pd(a,pset1<Packet4d>(b),1);
}

template<> EIGEN_STRONG_INLINE Packet8f pinsertlast(const Packet8f& a, float b)
{
  return _mm256_blend_ps(a,pset1<Packet8f>(b),(1<<7));
}

template<> EIGEN_STRONG_INLINE Packet4d pinsertlast(const Packet4d& a, double b)
{
  return _mm256_blend_pd(a,pset1<Packet4d>(b),(1<<3));
}

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_PACKET_MATH_AVX_H