aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/arch/NEON/Complex.h
blob: 57e9b431f203df35acd66640ee4bc734962c6d8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Konstantinos Margaritis <markos@freevec.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_COMPLEX_NEON_H
#define EIGEN_COMPLEX_NEON_H

namespace Eigen {

namespace internal {

inline uint32x4_t p4ui_CONJ_XOR() {
// See bug 1325, clang fails to call vld1q_u64.
#if EIGEN_COMP_CLANG
  uint32x4_t ret = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
  return ret;
#else
  static const uint32_t conj_XOR_DATA[] = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
  return vld1q_u32( conj_XOR_DATA );
#endif
}

inline uint32x2_t p2ui_CONJ_XOR() {
  static const uint32_t conj_XOR_DATA[] = { 0x00000000, 0x80000000 };
  return vld1_u32( conj_XOR_DATA );
}

//---------- float ----------
struct Packet2cf
{
  EIGEN_STRONG_INLINE Packet2cf() {}
  EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
  Packet4f  v;
};

template<> struct packet_traits<std::complex<float> >  : default_packet_traits
{
  typedef Packet2cf type;
  typedef Packet2cf half;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size = 2,
    HasHalfPacket = 0,

    HasAdd    = 1,
    HasSub    = 1,
    HasMul    = 1,
    HasDiv    = 1,
    HasNegate = 1,
    HasAbs    = 0,
    HasAbs2   = 0,
    HasMin    = 0,
    HasMax    = 0,
    HasSetLinear = 0
  };
};

template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2, alignment=Aligned16}; typedef Packet2cf half; };

template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>&  from)
{
  float32x2_t r64;
  r64 = vld1_f32((float *)&from);

  return Packet2cf(vcombine_f32(r64, r64));
}

template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(padd<Packet4f>(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(psub<Packet4f>(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate<Packet4f>(a.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
{
  Packet4ui b = vreinterpretq_u32_f32(a.v);
  return Packet2cf(vreinterpretq_f32_u32(veorq_u32(b, p4ui_CONJ_XOR())));
}

template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
  Packet4f v1, v2;

  // Get the real values of a | a1_re | a1_re | a2_re | a2_re |
  v1 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 0), vdup_lane_f32(vget_high_f32(a.v), 0));
  // Get the imag values of a | a1_im | a1_im | a2_im | a2_im |
  v2 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 1), vdup_lane_f32(vget_high_f32(a.v), 1));
  // Multiply the real a with b
  v1 = vmulq_f32(v1, b.v);
  // Multiply the imag a with b
  v2 = vmulq_f32(v2, b.v);
  // Conjugate v2 
  v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR()));
  // Swap real/imag elements in v2.
  v2 = vrev64q_f32(v2);
  // Add and return the result
  return Packet2cf(vaddq_f32(v1, v2));
}

template<> EIGEN_STRONG_INLINE Packet2cf pand   <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
  return Packet2cf(vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf por    <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
  return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf pxor   <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
  return Packet2cf(vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
  return Packet2cf(vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}

template<> EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from)); }
template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from)); }

template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); }

template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> *   to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> *   to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }

template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, Index stride)
{
  Packet4f res = pset1<Packet4f>(0.f);
  res = vsetq_lane_f32(std::real(from[0*stride]), res, 0);
  res = vsetq_lane_f32(std::imag(from[0*stride]), res, 1);
  res = vsetq_lane_f32(std::real(from[1*stride]), res, 2);
  res = vsetq_lane_f32(std::imag(from[1*stride]), res, 3);
  return Packet2cf(res);
}

template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, Index stride)
{
  to[stride*0] = std::complex<float>(vgetq_lane_f32(from.v, 0), vgetq_lane_f32(from.v, 1));
  to[stride*1] = std::complex<float>(vgetq_lane_f32(from.v, 2), vgetq_lane_f32(from.v, 3));
}

template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> *   addr) { EIGEN_ARM_PREFETCH((float *)addr); }

template<> EIGEN_STRONG_INLINE std::complex<float>  pfirst<Packet2cf>(const Packet2cf& a)
{
  std::complex<float> EIGEN_ALIGN16 x[2];
  vst1q_f32((float *)x, a.v);
  return x[0];
}

template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
{
  float32x2_t a_lo, a_hi;
  Packet4f a_r128;

  a_lo = vget_low_f32(a.v);
  a_hi = vget_high_f32(a.v);
  a_r128 = vcombine_f32(a_hi, a_lo);

  return Packet2cf(a_r128);
}

template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& a)
{
  return Packet2cf(vrev64q_f32(a.v));
}

template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
{
  float32x2_t a1, a2;
  std::complex<float> s;

  a1 = vget_low_f32(a.v);
  a2 = vget_high_f32(a.v);
  a2 = vadd_f32(a1, a2);
  vst1_f32((float *)&s, a2);

  return s;
}

template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
{
  Packet4f sum1, sum2, sum;

  // Add the first two 64-bit float32x2_t of vecs[0]
  sum1 = vcombine_f32(vget_low_f32(vecs[0].v), vget_low_f32(vecs[1].v));
  sum2 = vcombine_f32(vget_high_f32(vecs[0].v), vget_high_f32(vecs[1].v));
  sum = vaddq_f32(sum1, sum2);

  return Packet2cf(sum);
}

template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
{
  float32x2_t a1, a2, v1, v2, prod;
  std::complex<float> s;

  a1 = vget_low_f32(a.v);
  a2 = vget_high_f32(a.v);
   // Get the real values of a | a1_re | a1_re | a2_re | a2_re |
  v1 = vdup_lane_f32(a1, 0);
  // Get the real values of a | a1_im | a1_im | a2_im | a2_im |
  v2 = vdup_lane_f32(a1, 1);
  // Multiply the real a with b
  v1 = vmul_f32(v1, a2);
  // Multiply the imag a with b
  v2 = vmul_f32(v2, a2);
  // Conjugate v2 
  v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR()));
  // Swap real/imag elements in v2.
  v2 = vrev64_f32(v2);
  // Add v1, v2
  prod = vadd_f32(v1, v2);

  vst1_f32((float *)&s, prod);

  return s;
}

template<int Offset>
struct palign_impl<Offset,Packet2cf>
{
  EIGEN_STRONG_INLINE static void run(Packet2cf& first, const Packet2cf& second)
  {
    if (Offset==1)
    {
      first.v = vextq_f32(first.v, second.v, 2);
    }
  }
};

template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
{
  EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
  { return padd(pmul(x,y),c); }

  EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
  {
    return internal::pmul(a, pconj(b));
  }
};

template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
{
  EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
  { return padd(pmul(x,y),c); }

  EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
  {
    return internal::pmul(pconj(a), b);
  }
};

template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
{
  EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
  { return padd(pmul(x,y),c); }

  EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
  {
    return pconj(internal::pmul(a, b));
  }
};

template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
  // TODO optimize it for NEON
  Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
  Packet4f s, rev_s;

  // this computes the norm
  s = vmulq_f32(b.v, b.v);
  rev_s = vrev64q_f32(s);

  return Packet2cf(pdiv(res.v, vaddq_f32(s,rev_s)));
}

EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet2cf,2>& kernel) {
  Packet4f tmp = vcombine_f32(vget_high_f32(kernel.packet[0].v), vget_high_f32(kernel.packet[1].v));
  kernel.packet[0].v = vcombine_f32(vget_low_f32(kernel.packet[0].v), vget_low_f32(kernel.packet[1].v));
  kernel.packet[1].v = tmp;
}

//---------- double ----------
#if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG

// See bug 1325, clang fails to call vld1q_u64.
#if EIGEN_COMP_CLANG
  static uint64x2_t p2ul_CONJ_XOR = {0x0, 0x8000000000000000};
#else
  const uint64_t  p2ul_conj_XOR_DATA[] = { 0x0, 0x8000000000000000 };
  static uint64x2_t p2ul_CONJ_XOR = vld1q_u64( p2ul_conj_XOR_DATA );
#endif

struct Packet1cd
{
  EIGEN_STRONG_INLINE Packet1cd() {}
  EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {}
  Packet2d v;
};

template<> struct packet_traits<std::complex<double> >  : default_packet_traits
{
  typedef Packet1cd type;
  typedef Packet1cd half;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 0,
    size = 1,
    HasHalfPacket = 0,

    HasAdd    = 1,
    HasSub    = 1,
    HasMul    = 1,
    HasDiv    = 1,
    HasNegate = 1,
    HasAbs    = 0,
    HasAbs2   = 0,
    HasMin    = 0,
    HasMax    = 0,
    HasSetLinear = 0
  };
};

template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1, alignment=Aligned16}; typedef Packet1cd half; };

template<> EIGEN_STRONG_INLINE Packet1cd pload<Packet1cd>(const std::complex<double>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload<Packet2d>((const double*)from)); }
template<> EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu<Packet2d>((const double*)from)); }

template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>&  from)
{ /* here we really have to use unaligned loads :( */ return ploadu<Packet1cd>(&from); }

template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(padd<Packet2d>(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(psub<Packet2d>(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate<Packet2d>(a.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { return Packet1cd(vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a.v), p2ul_CONJ_XOR))); }

template<> EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
  Packet2d v1, v2;

  // Get the real values of a 
  v1 = vdupq_lane_f64(vget_low_f64(a.v), 0);
  // Get the imag values of a
  v2 = vdupq_lane_f64(vget_high_f64(a.v), 0);
  // Multiply the real a with b
  v1 = vmulq_f64(v1, b.v);
  // Multiply the imag a with b
  v2 = vmulq_f64(v2, b.v);
  // Conjugate v2 
  v2 = vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(v2), p2ul_CONJ_XOR));
  // Swap real/imag elements in v2.
  v2 = preverse<Packet2d>(v2);
  // Add and return the result
  return Packet1cd(vaddq_f64(v1, v2));
}

template<> EIGEN_STRONG_INLINE Packet1cd pand   <Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
  return Packet1cd(vreinterpretq_f64_u64(vandq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet1cd por    <Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
  return Packet1cd(vreinterpretq_f64_u64(vorrq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet1cd pxor   <Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
  return Packet1cd(vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
  return Packet1cd(vreinterpretq_f64_u64(vbicq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v))));
}

template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from) { return pset1<Packet1cd>(*from); }

template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> *   to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> *   to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }

template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> *   addr) { EIGEN_ARM_PREFETCH((double *)addr); }

template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather<std::complex<double>, Packet1cd>(const std::complex<double>* from, Index stride)
{
  Packet2d res = pset1<Packet2d>(0.0);
  res = vsetq_lane_f64(std::real(from[0*stride]), res, 0);
  res = vsetq_lane_f64(std::imag(from[0*stride]), res, 1);
  return Packet1cd(res);
}

template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet1cd>(std::complex<double>* to, const Packet1cd& from, Index stride)
{
  to[stride*0] = std::complex<double>(vgetq_lane_f64(from.v, 0), vgetq_lane_f64(from.v, 1));
}


template<> EIGEN_STRONG_INLINE std::complex<double>  pfirst<Packet1cd>(const Packet1cd& a)
{
  std::complex<double> EIGEN_ALIGN16 res;
  pstore<std::complex<double> >(&res, a);

  return res;
}

template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; }

template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a) { return pfirst(a); }

template<> EIGEN_STRONG_INLINE Packet1cd preduxp<Packet1cd>(const Packet1cd* vecs) { return vecs[0]; }

template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a) { return pfirst(a); }

template<int Offset>
struct palign_impl<Offset,Packet1cd>
{
  static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/)
  {
    // FIXME is it sure we never have to align a Packet1cd?
    // Even though a std::complex<double> has 16 bytes, it is not necessarily aligned on a 16 bytes boundary...
  }
};

template<> struct conj_helper<Packet1cd, Packet1cd, false,true>
{
  EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
  { return padd(pmul(x,y),c); }

  EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
  {
    return internal::pmul(a, pconj(b));
  }
};

template<> struct conj_helper<Packet1cd, Packet1cd, true,false>
{
  EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
  { return padd(pmul(x,y),c); }

  EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
  {
    return internal::pmul(pconj(a), b);
  }
};

template<> struct conj_helper<Packet1cd, Packet1cd, true,true>
{
  EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
  { return padd(pmul(x,y),c); }

  EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
  {
    return pconj(internal::pmul(a, b));
  }
};

template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
  // TODO optimize it for NEON
  Packet1cd res = conj_helper<Packet1cd,Packet1cd,false,true>().pmul(a,b);
  Packet2d s = pmul<Packet2d>(b.v, b.v);
  Packet2d rev_s = preverse<Packet2d>(s);

  return Packet1cd(pdiv(res.v, padd<Packet2d>(s,rev_s)));
}

EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x)
{
  return Packet1cd(preverse(Packet2d(x.v)));
}

EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet1cd,2>& kernel)
{
  Packet2d tmp = vcombine_f64(vget_high_f64(kernel.packet[0].v), vget_high_f64(kernel.packet[1].v));
  kernel.packet[0].v = vcombine_f64(vget_low_f64(kernel.packet[0].v), vget_low_f64(kernel.packet[1].v));
  kernel.packet[1].v = tmp;
}
#endif // EIGEN_ARCH_ARM64

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_COMPLEX_NEON_H