aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/arch/NEON/PacketMath.h
blob: a20250f7c657b99760cf1a731bc1ada35ebfb133 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Konstantinos Margaritis <markos@codex.gr>
// Heavily based on Gael's SSE version.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_PACKET_MATH_NEON_H
#define EIGEN_PACKET_MATH_NEON_H

namespace Eigen {

namespace internal {

#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
#endif

// FIXME NEON has 16 quad registers, but since the current register allocator
// is so bad, it is much better to reduce it to 8
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 8
#endif

typedef float32x4_t Packet4f;
typedef int32x4_t   Packet4i;
typedef uint32x4_t  Packet4ui;

#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
  const Packet4f p4f_##NAME = pset1<Packet4f>(X)

#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
  const Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int>(X))

#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
  const Packet4i p4i_##NAME = pset1<Packet4i>(X)

#if defined(__llvm__) && !defined(__clang__)
  //Special treatment for Apple's llvm-gcc, its NEON packet types are unions
  #define EIGEN_INIT_NEON_PACKET2(X, Y)       {{X, Y}}
  #define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {{X, Y, Z, W}}
#else
  //Default initializer for packets
  #define EIGEN_INIT_NEON_PACKET2(X, Y)       {X, Y}
  #define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {X, Y, Z, W}
#endif
    
#ifndef __pld
#define __pld(x) asm volatile ( "   pld [%[addr]]\n" :: [addr] "r" (x) : "cc" );
#endif

template<> struct packet_traits<float>  : default_packet_traits
{
  typedef Packet4f type;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size = 4,
   
    HasDiv  = 1,
    // FIXME check the Has*
    HasSin  = 0,
    HasCos  = 0,
    HasLog  = 0,
    HasExp  = 0,
    HasSqrt = 0
  };
};
template<> struct packet_traits<int>    : default_packet_traits
{
  typedef Packet4i type;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size=4
    // FIXME check the Has*
  };
};

#if EIGEN_GNUC_AT_MOST(4,4) && !defined(__llvm__)
// workaround gcc 4.2, 4.3 and 4.4 compilatin issue
EIGEN_STRONG_INLINE float32x4_t vld1q_f32(const float* x) { return ::vld1q_f32((const float32_t*)x); }
EIGEN_STRONG_INLINE float32x2_t vld1_f32 (const float* x) { return ::vld1_f32 ((const float32_t*)x); }
EIGEN_STRONG_INLINE void        vst1q_f32(float* to, float32x4_t from) { ::vst1q_f32((float32_t*)to,from); }
EIGEN_STRONG_INLINE void        vst1_f32 (float* to, float32x2_t from) { ::vst1_f32 ((float32_t*)to,from); }
#endif

template<> struct unpacket_traits<Packet4f> { typedef float  type; enum {size=4}; };
template<> struct unpacket_traits<Packet4i> { typedef int    type; enum {size=4}; };

template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float&  from) { return vdupq_n_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int&    from)   { return vdupq_n_s32(from); }

template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a)
{
  Packet4f countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
  return vaddq_f32(pset1<Packet4f>(a), countdown);
}
template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a)
{
  Packet4i countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
  return vaddq_s32(pset1<Packet4i>(a), countdown);
}

template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return vaddq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return vaddq_s32(a,b); }

template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return vsubq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return vsubq_s32(a,b); }

template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return vnegq_f32(a); }
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return vnegq_s32(a); }

template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmulq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmulq_s32(a,b); }

template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
{
  Packet4f inv, restep, div;

  // NEON does not offer a divide instruction, we have to do a reciprocal approximation
  // However NEON in contrast to other SIMD engines (AltiVec/SSE), offers
  // a reciprocal estimate AND a reciprocal step -which saves a few instructions
  // vrecpeq_f32() returns an estimate to 1/b, which we will finetune with
  // Newton-Raphson and vrecpsq_f32()
  inv = vrecpeq_f32(b);

  // This returns a differential, by which we will have to multiply inv to get a better
  // approximation of 1/b.
  restep = vrecpsq_f32(b, inv);
  inv = vmulq_f32(restep, inv);

  // Finally, multiply a by 1/b and get the wanted result of the division.
  div = vmulq_f32(a, inv);

  return div;
}
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
{ eigen_assert(false && "packet integer division are not supported by NEON");
  return pset1<Packet4i>(0);
}

// for some weird raisons, it has to be overloaded for packet of integers
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vmlaq_f32(c,a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return vmlaq_s32(c,a,b); }

template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vminq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vminq_s32(a,b); }

template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmaxq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmaxq_s32(a,b); }

// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b)
{
  return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
}
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vandq_s32(a,b); }

template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b)
{
  return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
}
template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vorrq_s32(a,b); }

template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b)
{
  return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
}
template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return veorq_s32(a,b); }

template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b)
{
  return vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
}
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vbicq_s32(a,b); }

template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int*   from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); }

template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)   { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s32(from); }

template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float*   from)
{
  float32x2_t lo, hi;
  lo = vdup_n_f32(*from);
  hi = vdup_n_f32(*(from+1));
  return vcombine_f32(lo, hi);
}
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int*     from)
{
  int32x2_t lo, hi;
  lo = vdup_n_s32(*from);
  hi = vdup_n_s32(*(from+1));
  return vcombine_s32(lo, hi);
}

template<> EIGEN_STRONG_INLINE void pstore<float>(float*   to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f32(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<int>(int*       to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_s32(to, from); }

template<> EIGEN_STRONG_INLINE void pstoreu<float>(float*  to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int*      to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); }

template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { __pld(addr); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int*     addr) { __pld(addr); }

// FIXME only store the 2 first elements ?
template<> EIGEN_STRONG_INLINE float  pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vst1q_f32(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE int    pfirst<Packet4i>(const Packet4i& a) { int   EIGEN_ALIGN16 x[4]; vst1q_s32(x, a); return x[0]; }

template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) {
  float32x2_t a_lo, a_hi;
  Packet4f a_r64;

  a_r64 = vrev64q_f32(a);
  a_lo = vget_low_f32(a_r64);
  a_hi = vget_high_f32(a_r64);
  return vcombine_f32(a_hi, a_lo);
}
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) {
  int32x2_t a_lo, a_hi;
  Packet4i a_r64;

  a_r64 = vrev64q_s32(a);
  a_lo = vget_low_s32(a_r64);
  a_hi = vget_high_s32(a_r64);
  return vcombine_s32(a_hi, a_lo);
}
template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vabsq_f32(a); }
template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vabsq_s32(a); }

template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
{
  float32x2_t a_lo, a_hi, sum;
  float s[2];

  a_lo = vget_low_f32(a);
  a_hi = vget_high_f32(a);
  sum = vpadd_f32(a_lo, a_hi);
  sum = vpadd_f32(sum, sum);
  vst1_f32(s, sum);

  return s[0];
}

template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
{
  float32x4x2_t vtrn1, vtrn2, res1, res2;
  Packet4f sum1, sum2, sum;

  // NEON zip performs interleaving of the supplied vectors.
  // We perform two interleaves in a row to acquire the transposed vector
  vtrn1 = vzipq_f32(vecs[0], vecs[2]);
  vtrn2 = vzipq_f32(vecs[1], vecs[3]);
  res1 = vzipq_f32(vtrn1.val[0], vtrn2.val[0]);
  res2 = vzipq_f32(vtrn1.val[1], vtrn2.val[1]);

  // Do the addition of the resulting vectors
  sum1 = vaddq_f32(res1.val[0], res1.val[1]);
  sum2 = vaddq_f32(res2.val[0], res2.val[1]);
  sum = vaddq_f32(sum1, sum2);

  return sum;
}

template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
{
  int32x2_t a_lo, a_hi, sum;
  int32_t s[2];

  a_lo = vget_low_s32(a);
  a_hi = vget_high_s32(a);
  sum = vpadd_s32(a_lo, a_hi);
  sum = vpadd_s32(sum, sum);
  vst1_s32(s, sum);

  return s[0];
}

template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
{
  int32x4x2_t vtrn1, vtrn2, res1, res2;
  Packet4i sum1, sum2, sum;

  // NEON zip performs interleaving of the supplied vectors.
  // We perform two interleaves in a row to acquire the transposed vector
  vtrn1 = vzipq_s32(vecs[0], vecs[2]);
  vtrn2 = vzipq_s32(vecs[1], vecs[3]);
  res1 = vzipq_s32(vtrn1.val[0], vtrn2.val[0]);
  res2 = vzipq_s32(vtrn1.val[1], vtrn2.val[1]);

  // Do the addition of the resulting vectors
  sum1 = vaddq_s32(res1.val[0], res1.val[1]);
  sum2 = vaddq_s32(res2.val[0], res2.val[1]);
  sum = vaddq_s32(sum1, sum2);

  return sum;
}

// Other reduction functions:
// mul
template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
{
  float32x2_t a_lo, a_hi, prod;
  float s[2];

  // Get a_lo = |a1|a2| and a_hi = |a3|a4|
  a_lo = vget_low_f32(a);
  a_hi = vget_high_f32(a);
  // Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
  prod = vmul_f32(a_lo, a_hi);
  // Multiply prod with its swapped value |a2*a4|a1*a3|
  prod = vmul_f32(prod, vrev64_f32(prod));
  vst1_f32(s, prod);

  return s[0];
}
template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
{
  int32x2_t a_lo, a_hi, prod;
  int32_t s[2];

  // Get a_lo = |a1|a2| and a_hi = |a3|a4|
  a_lo = vget_low_s32(a);
  a_hi = vget_high_s32(a);
  // Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
  prod = vmul_s32(a_lo, a_hi);
  // Multiply prod with its swapped value |a2*a4|a1*a3|
  prod = vmul_s32(prod, vrev64_s32(prod));
  vst1_s32(s, prod);

  return s[0];
}

// min
template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
{
  float32x2_t a_lo, a_hi, min;
  float s[2];

  a_lo = vget_low_f32(a);
  a_hi = vget_high_f32(a);
  min = vpmin_f32(a_lo, a_hi);
  min = vpmin_f32(min, min);
  vst1_f32(s, min);

  return s[0];
}
template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
{
  int32x2_t a_lo, a_hi, min;
  int32_t s[2];

  a_lo = vget_low_s32(a);
  a_hi = vget_high_s32(a);
  min = vpmin_s32(a_lo, a_hi);
  min = vpmin_s32(min, min);
  vst1_s32(s, min);

  return s[0];
}

// max
template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
{
  float32x2_t a_lo, a_hi, max;
  float s[2];

  a_lo = vget_low_f32(a);
  a_hi = vget_high_f32(a);
  max = vpmax_f32(a_lo, a_hi);
  max = vpmax_f32(max, max);
  vst1_f32(s, max);

  return s[0];
}
template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
{
  int32x2_t a_lo, a_hi, max;
  int32_t s[2];

  a_lo = vget_low_s32(a);
  a_hi = vget_high_s32(a);
  max = vpmax_s32(a_lo, a_hi);
  max = vpmax_s32(max, max);
  vst1_s32(s, max);

  return s[0];
}

// this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors,
// see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074
#define PALIGN_NEON(Offset,Type,Command) \
template<>\
struct palign_impl<Offset,Type>\
{\
    EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\
    {\
        if (Offset!=0)\
            first = Command(first, second, Offset);\
    }\
};\

PALIGN_NEON(0,Packet4f,vextq_f32)
PALIGN_NEON(1,Packet4f,vextq_f32)
PALIGN_NEON(2,Packet4f,vextq_f32)
PALIGN_NEON(3,Packet4f,vextq_f32)
PALIGN_NEON(0,Packet4i,vextq_s32)
PALIGN_NEON(1,Packet4i,vextq_s32)
PALIGN_NEON(2,Packet4i,vextq_s32)
PALIGN_NEON(3,Packet4i,vextq_s32)
    
#undef PALIGN_NEON

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_PACKET_MATH_NEON_H