aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/products/GeneralBlockPanelKernel.h
blob: 5eb03c98ccfd91d9f44c81d092137280cf415cd4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_GENERAL_BLOCK_PANEL_H
#define EIGEN_GENERAL_BLOCK_PANEL_H

namespace Eigen { 
  
namespace internal {

template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs=false, bool _ConjRhs=false>
class gebp_traits;


/** \internal \returns b if a<=0, and returns a otherwise. */
inline std::ptrdiff_t manage_caching_sizes_helper(std::ptrdiff_t a, std::ptrdiff_t b)
{
  return a<=0 ? b : a;
}

/** \internal */
inline void manage_caching_sizes(Action action, std::ptrdiff_t* l1=0, std::ptrdiff_t* l2=0)
{
  static std::ptrdiff_t m_l1CacheSize = 0;
  static std::ptrdiff_t m_l2CacheSize = 0;
  if(m_l2CacheSize==0)
  {
    m_l1CacheSize = manage_caching_sizes_helper(queryL1CacheSize(),8 * 1024);
    m_l2CacheSize = manage_caching_sizes_helper(queryTopLevelCacheSize(),1*1024*1024);
  }
  
  if(action==SetAction)
  {
    // set the cpu cache size and cache all block sizes from a global cache size in byte
    eigen_internal_assert(l1!=0 && l2!=0);
    m_l1CacheSize = *l1;
    m_l2CacheSize = *l2;
  }
  else if(action==GetAction)
  {
    eigen_internal_assert(l1!=0 && l2!=0);
    *l1 = m_l1CacheSize;
    *l2 = m_l2CacheSize;
  }
  else
  {
    eigen_internal_assert(false);
  }
}

/** \brief Computes the blocking parameters for a m x k times k x n matrix product
  *
  * \param[in,out] k Input: the third dimension of the product. Output: the blocking size along the same dimension.
  * \param[in,out] m Input: the number of rows of the left hand side. Output: the blocking size along the same dimension.
  * \param[in,out] n Input: the number of columns of the right hand side. Output: the blocking size along the same dimension.
  *
  * Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar,
  * this function computes the blocking size parameters along the respective dimensions
  * for matrix products and related algorithms. The blocking sizes depends on various
  * parameters:
  * - the L1 and L2 cache sizes,
  * - the register level blocking sizes defined by gebp_traits,
  * - the number of scalars that fit into a packet (when vectorization is enabled).
  *
  * \sa setCpuCacheSizes */
template<typename LhsScalar, typename RhsScalar, int KcFactor>
void computeProductBlockingSizes(std::ptrdiff_t& k, std::ptrdiff_t& m, std::ptrdiff_t& n)
{
  EIGEN_UNUSED_VARIABLE(n);
  // Explanations:
  // Let's recall the product algorithms form kc x nc horizontal panels B' on the rhs and
  // mc x kc blocks A' on the lhs. A' has to fit into L2 cache. Moreover, B' is processed
  // per kc x nr vertical small panels where nr is the blocking size along the n dimension
  // at the register level. For vectorization purpose, these small vertical panels are unpacked,
  // e.g., each coefficient is replicated to fit a packet. This small vertical panel has to
  // stay in L1 cache.
  std::ptrdiff_t l1, l2;

  typedef gebp_traits<LhsScalar,RhsScalar> Traits;
  enum {
    kdiv = KcFactor * 2 * Traits::nr
         * Traits::RhsProgress * sizeof(RhsScalar),
    mr = gebp_traits<LhsScalar,RhsScalar>::mr,
    mr_mask = (0xffffffff/mr)*mr
  };

  manage_caching_sizes(GetAction, &l1, &l2);
  k = std::min<std::ptrdiff_t>(k, l1/kdiv);
  std::ptrdiff_t _m = k>0 ? l2/(4 * sizeof(LhsScalar) * k) : 0;
  if(_m<m) m = _m & mr_mask;
}

template<typename LhsScalar, typename RhsScalar>
inline void computeProductBlockingSizes(std::ptrdiff_t& k, std::ptrdiff_t& m, std::ptrdiff_t& n)
{
  computeProductBlockingSizes<LhsScalar,RhsScalar,1>(k, m, n);
}

#ifdef EIGEN_HAS_FUSE_CJMADD
  #define MADD(CJ,A,B,C,T)  C = CJ.pmadd(A,B,C);
#else

  // FIXME (a bit overkill maybe ?)

  template<typename CJ, typename A, typename B, typename C, typename T> struct gebp_madd_selector {
    EIGEN_ALWAYS_INLINE static void run(const CJ& cj, A& a, B& b, C& c, T& /*t*/)
    {
      c = cj.pmadd(a,b,c);
    }
  };

  template<typename CJ, typename T> struct gebp_madd_selector<CJ,T,T,T,T> {
    EIGEN_ALWAYS_INLINE static void run(const CJ& cj, T& a, T& b, T& c, T& t)
    {
      t = b; t = cj.pmul(a,t); c = padd(c,t);
    }
  };

  template<typename CJ, typename A, typename B, typename C, typename T>
  EIGEN_STRONG_INLINE void gebp_madd(const CJ& cj, A& a, B& b, C& c, T& t)
  {
    gebp_madd_selector<CJ,A,B,C,T>::run(cj,a,b,c,t);
  }

  #define MADD(CJ,A,B,C,T)  gebp_madd(CJ,A,B,C,T);
//   #define MADD(CJ,A,B,C,T)  T = B; T = CJ.pmul(A,T); C = padd(C,T);
#endif

/* Vectorization logic
 *  real*real: unpack rhs to constant packets, ...
 * 
 *  cd*cd : unpack rhs to (b_r,b_r), (b_i,b_i), mul to get (a_r b_r,a_i b_r) (a_r b_i,a_i b_i),
 *          storing each res packet into two packets (2x2),
 *          at the end combine them: swap the second and addsub them 
 *  cf*cf : same but with 2x4 blocks
 *  cplx*real : unpack rhs to constant packets, ...
 *  real*cplx : load lhs as (a0,a0,a1,a1), and mul as usual
 */
template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs, bool _ConjRhs>
class gebp_traits
{
public:
  typedef _LhsScalar LhsScalar;
  typedef _RhsScalar RhsScalar;
  typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;

  enum {
    ConjLhs = _ConjLhs,
    ConjRhs = _ConjRhs,
    Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable,
    LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
    RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
    ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
    
    NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,

    // register block size along the N direction (must be either 2 or 4)
    nr = NumberOfRegisters/4,

    // register block size along the M direction (currently, this one cannot be modified)
    mr = 2 * LhsPacketSize,
    
    WorkSpaceFactor = nr * RhsPacketSize,

    LhsProgress = LhsPacketSize,
    RhsProgress = RhsPacketSize
  };

  typedef typename packet_traits<LhsScalar>::type  _LhsPacket;
  typedef typename packet_traits<RhsScalar>::type  _RhsPacket;
  typedef typename packet_traits<ResScalar>::type  _ResPacket;

  typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
  typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
  typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;

  typedef ResPacket AccPacket;
  
  EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
  {
    p = pset1<ResPacket>(ResScalar(0));
  }

  EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const RhsScalar* rhs, RhsScalar* b)
  {
    for(DenseIndex k=0; k<n; k++)
      pstore1<RhsPacket>(&b[k*RhsPacketSize], rhs[k]);
  }

  EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
  {
    dest = pload<RhsPacket>(b);
  }

  EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
  {
    dest = pload<LhsPacket>(a);
  }

  EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, AccPacket& tmp) const
  {
    tmp = b; tmp = pmul(a,tmp); c = padd(c,tmp);
  }

  EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
  {
    r = pmadd(c,alpha,r);
  }

protected:
//   conj_helper<LhsScalar,RhsScalar,ConjLhs,ConjRhs> cj;
//   conj_helper<LhsPacket,RhsPacket,ConjLhs,ConjRhs> pcj;
};

template<typename RealScalar, bool _ConjLhs>
class gebp_traits<std::complex<RealScalar>, RealScalar, _ConjLhs, false>
{
public:
  typedef std::complex<RealScalar> LhsScalar;
  typedef RealScalar RhsScalar;
  typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;

  enum {
    ConjLhs = _ConjLhs,
    ConjRhs = false,
    Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable,
    LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
    RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
    ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
    
    NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
    nr = NumberOfRegisters/4,
    mr = 2 * LhsPacketSize,
    WorkSpaceFactor = nr*RhsPacketSize,

    LhsProgress = LhsPacketSize,
    RhsProgress = RhsPacketSize
  };

  typedef typename packet_traits<LhsScalar>::type  _LhsPacket;
  typedef typename packet_traits<RhsScalar>::type  _RhsPacket;
  typedef typename packet_traits<ResScalar>::type  _ResPacket;

  typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
  typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
  typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;

  typedef ResPacket AccPacket;

  EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
  {
    p = pset1<ResPacket>(ResScalar(0));
  }

  EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const RhsScalar* rhs, RhsScalar* b)
  {
    for(DenseIndex k=0; k<n; k++)
      pstore1<RhsPacket>(&b[k*RhsPacketSize], rhs[k]);
  }

  EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
  {
    dest = pload<RhsPacket>(b);
  }

  EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
  {
    dest = pload<LhsPacket>(a);
  }

  EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
  {
    madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
  }

  EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
  {
    tmp = b; tmp = pmul(a.v,tmp); c.v = padd(c.v,tmp);
  }

  EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const
  {
    c += a * b;
  }

  EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
  {
    r = cj.pmadd(c,alpha,r);
  }

protected:
  conj_helper<ResPacket,ResPacket,ConjLhs,false> cj;
};

template<typename RealScalar, bool _ConjLhs, bool _ConjRhs>
class gebp_traits<std::complex<RealScalar>, std::complex<RealScalar>, _ConjLhs, _ConjRhs >
{
public:
  typedef std::complex<RealScalar>  Scalar;
  typedef std::complex<RealScalar>  LhsScalar;
  typedef std::complex<RealScalar>  RhsScalar;
  typedef std::complex<RealScalar>  ResScalar;
  
  enum {
    ConjLhs = _ConjLhs,
    ConjRhs = _ConjRhs,
    Vectorizable = packet_traits<RealScalar>::Vectorizable
                && packet_traits<Scalar>::Vectorizable,
    RealPacketSize  = Vectorizable ? packet_traits<RealScalar>::size : 1,
    ResPacketSize   = Vectorizable ? packet_traits<ResScalar>::size : 1,
    
    nr = 2,
    mr = 2 * ResPacketSize,
    WorkSpaceFactor = Vectorizable ? 2*nr*RealPacketSize : nr,

    LhsProgress = ResPacketSize,
    RhsProgress = Vectorizable ? 2*ResPacketSize : 1
  };
  
  typedef typename packet_traits<RealScalar>::type RealPacket;
  typedef typename packet_traits<Scalar>::type     ScalarPacket;
  struct DoublePacket
  {
    RealPacket first;
    RealPacket second;
  };

  typedef typename conditional<Vectorizable,RealPacket,  Scalar>::type LhsPacket;
  typedef typename conditional<Vectorizable,DoublePacket,Scalar>::type RhsPacket;
  typedef typename conditional<Vectorizable,ScalarPacket,Scalar>::type ResPacket;
  typedef typename conditional<Vectorizable,DoublePacket,Scalar>::type AccPacket;
  
  EIGEN_STRONG_INLINE void initAcc(Scalar& p) { p = Scalar(0); }

  EIGEN_STRONG_INLINE void initAcc(DoublePacket& p)
  {
    p.first   = pset1<RealPacket>(RealScalar(0));
    p.second  = pset1<RealPacket>(RealScalar(0));
  }

  /* Unpack the rhs coeff such that each complex coefficient is spread into
   * two packects containing respectively the real and imaginary coefficient
   * duplicated as many time as needed: (x+iy) => [x, ..., x] [y, ..., y]
   */
  EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const Scalar* rhs, Scalar* b)
  {
    for(DenseIndex k=0; k<n; k++)
    {
      if(Vectorizable)
      {
        pstore1<RealPacket>((RealScalar*)&b[k*ResPacketSize*2+0],             real(rhs[k]));
        pstore1<RealPacket>((RealScalar*)&b[k*ResPacketSize*2+ResPacketSize], imag(rhs[k]));
      }
      else
        b[k] = rhs[k];
    }
  }

  EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, ResPacket& dest) const { dest = *b; }

  EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, DoublePacket& dest) const
  {
    dest.first  = pload<RealPacket>((const RealScalar*)b);
    dest.second = pload<RealPacket>((const RealScalar*)(b+ResPacketSize));
  }

  // nothing special here
  EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
  {
    dest = pload<LhsPacket>((const typename unpacket_traits<LhsPacket>::type*)(a));
  }

  EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, DoublePacket& c, RhsPacket& /*tmp*/) const
  {
    c.first   = padd(pmul(a,b.first), c.first);
    c.second  = padd(pmul(a,b.second),c.second);
  }

  EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, ResPacket& c, RhsPacket& /*tmp*/) const
  {
    c = cj.pmadd(a,b,c);
  }
  
  EIGEN_STRONG_INLINE void acc(const Scalar& c, const Scalar& alpha, Scalar& r) const { r += alpha * c; }
  
  EIGEN_STRONG_INLINE void acc(const DoublePacket& c, const ResPacket& alpha, ResPacket& r) const
  {
    // assemble c
    ResPacket tmp;
    if((!ConjLhs)&&(!ConjRhs))
    {
      tmp = pcplxflip(pconj(ResPacket(c.second)));
      tmp = padd(ResPacket(c.first),tmp);
    }
    else if((!ConjLhs)&&(ConjRhs))
    {
      tmp = pconj(pcplxflip(ResPacket(c.second)));
      tmp = padd(ResPacket(c.first),tmp);
    }
    else if((ConjLhs)&&(!ConjRhs))
    {
      tmp = pcplxflip(ResPacket(c.second));
      tmp = padd(pconj(ResPacket(c.first)),tmp);
    }
    else if((ConjLhs)&&(ConjRhs))
    {
      tmp = pcplxflip(ResPacket(c.second));
      tmp = psub(pconj(ResPacket(c.first)),tmp);
    }
    
    r = pmadd(tmp,alpha,r);
  }

protected:
  conj_helper<LhsScalar,RhsScalar,ConjLhs,ConjRhs> cj;
};

template<typename RealScalar, bool _ConjRhs>
class gebp_traits<RealScalar, std::complex<RealScalar>, false, _ConjRhs >
{
public:
  typedef std::complex<RealScalar>  Scalar;
  typedef RealScalar  LhsScalar;
  typedef Scalar      RhsScalar;
  typedef Scalar      ResScalar;

  enum {
    ConjLhs = false,
    ConjRhs = _ConjRhs,
    Vectorizable = packet_traits<RealScalar>::Vectorizable
                && packet_traits<Scalar>::Vectorizable,
    LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
    RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
    ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
    
    NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
    nr = 4,
    mr = 2*ResPacketSize,
    WorkSpaceFactor = nr*RhsPacketSize,

    LhsProgress = ResPacketSize,
    RhsProgress = ResPacketSize
  };

  typedef typename packet_traits<LhsScalar>::type  _LhsPacket;
  typedef typename packet_traits<RhsScalar>::type  _RhsPacket;
  typedef typename packet_traits<ResScalar>::type  _ResPacket;

  typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
  typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
  typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;

  typedef ResPacket AccPacket;

  EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
  {
    p = pset1<ResPacket>(ResScalar(0));
  }

  EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const RhsScalar* rhs, RhsScalar* b)
  {
    for(DenseIndex k=0; k<n; k++)
      pstore1<RhsPacket>(&b[k*RhsPacketSize], rhs[k]);
  }

  EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
  {
    dest = pload<RhsPacket>(b);
  }

  EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
  {
    dest = ploaddup<LhsPacket>(a);
  }

  EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
  {
    madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
  }

  EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
  {
    tmp = b; tmp.v = pmul(a,tmp.v); c = padd(c,tmp);
  }

  EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const
  {
    c += a * b;
  }

  EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
  {
    r = cj.pmadd(alpha,c,r);
  }

protected:
  conj_helper<ResPacket,ResPacket,false,ConjRhs> cj;
};

/* optimized GEneral packed Block * packed Panel product kernel
 *
 * Mixing type logic: C += A * B
 *  |  A  |  B  | comments
 *  |real |cplx | no vectorization yet, would require to pack A with duplication
 *  |cplx |real | easy vectorization
 */
template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
struct gebp_kernel
{
  typedef gebp_traits<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> Traits;
  typedef typename Traits::ResScalar ResScalar;
  typedef typename Traits::LhsPacket LhsPacket;
  typedef typename Traits::RhsPacket RhsPacket;
  typedef typename Traits::ResPacket ResPacket;
  typedef typename Traits::AccPacket AccPacket;

  enum {
    Vectorizable  = Traits::Vectorizable,
    LhsProgress   = Traits::LhsProgress,
    RhsProgress   = Traits::RhsProgress,
    ResPacketSize = Traits::ResPacketSize
  };

  EIGEN_DONT_INLINE EIGEN_FLATTEN_ATTRIB
  void operator()(ResScalar* res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index rows, Index depth, Index cols, ResScalar alpha,
                  Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0, RhsScalar* unpackedB = 0)
  {
    Traits traits;
    
    if(strideA==-1) strideA = depth;
    if(strideB==-1) strideB = depth;
    conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
//     conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
    Index packet_cols = (cols/nr) * nr;
    const Index peeled_mc = (rows/mr)*mr;
    // FIXME:
    const Index peeled_mc2 = peeled_mc + (rows-peeled_mc >= LhsProgress ? LhsProgress : 0);
    const Index peeled_kc = (depth/4)*4;

    if(unpackedB==0)
      unpackedB = const_cast<RhsScalar*>(blockB - strideB * nr * RhsProgress);

    // loops on each micro vertical panel of rhs (depth x nr)
    for(Index j2=0; j2<packet_cols; j2+=nr)
    {
      traits.unpackRhs(depth*nr,&blockB[j2*strideB+offsetB*nr],unpackedB); 

      // loops on each largest micro horizontal panel of lhs (mr x depth)
      // => we select a mr x nr micro block of res which is entirely
      //    stored into mr/packet_size x nr registers.
      for(Index i=0; i<peeled_mc; i+=mr)
      {
        const LhsScalar* blA = &blockA[i*strideA+offsetA*mr];
        prefetch(&blA[0]);

        // gets res block as register
        AccPacket C0, C1, C2, C3, C4, C5, C6, C7;
                  traits.initAcc(C0);
                  traits.initAcc(C1);
        if(nr==4) traits.initAcc(C2);
        if(nr==4) traits.initAcc(C3);
                  traits.initAcc(C4);
                  traits.initAcc(C5);
        if(nr==4) traits.initAcc(C6);
        if(nr==4) traits.initAcc(C7);

        ResScalar* r0 = &res[(j2+0)*resStride + i];
        ResScalar* r1 = r0 + resStride;
        ResScalar* r2 = r1 + resStride;
        ResScalar* r3 = r2 + resStride;

        prefetch(r0+16);
        prefetch(r1+16);
        prefetch(r2+16);
        prefetch(r3+16);

        // performs "inner" product
        // TODO let's check wether the folowing peeled loop could not be
        //      optimized via optimal prefetching from one loop to the other
        const RhsScalar* blB = unpackedB;
        for(Index k=0; k<peeled_kc; k+=4)
        {
          if(nr==2)
          {
            LhsPacket A0, A1;
            RhsPacket B_0;
            RhsPacket T0;
            
EIGEN_ASM_COMMENT("mybegin2");
            traits.loadLhs(&blA[0*LhsProgress], A0);
            traits.loadLhs(&blA[1*LhsProgress], A1);
            traits.loadRhs(&blB[0*RhsProgress], B_0);
            traits.madd(A0,B_0,C0,T0);
            traits.madd(A1,B_0,C4,B_0);
            traits.loadRhs(&blB[1*RhsProgress], B_0);
            traits.madd(A0,B_0,C1,T0);
            traits.madd(A1,B_0,C5,B_0);

            traits.loadLhs(&blA[2*LhsProgress], A0);
            traits.loadLhs(&blA[3*LhsProgress], A1);
            traits.loadRhs(&blB[2*RhsProgress], B_0);
            traits.madd(A0,B_0,C0,T0);
            traits.madd(A1,B_0,C4,B_0);
            traits.loadRhs(&blB[3*RhsProgress], B_0);
            traits.madd(A0,B_0,C1,T0);
            traits.madd(A1,B_0,C5,B_0);

            traits.loadLhs(&blA[4*LhsProgress], A0);
            traits.loadLhs(&blA[5*LhsProgress], A1);
            traits.loadRhs(&blB[4*RhsProgress], B_0);
            traits.madd(A0,B_0,C0,T0);
            traits.madd(A1,B_0,C4,B_0);
            traits.loadRhs(&blB[5*RhsProgress], B_0);
            traits.madd(A0,B_0,C1,T0);
            traits.madd(A1,B_0,C5,B_0);

            traits.loadLhs(&blA[6*LhsProgress], A0);
            traits.loadLhs(&blA[7*LhsProgress], A1);
            traits.loadRhs(&blB[6*RhsProgress], B_0);
            traits.madd(A0,B_0,C0,T0);
            traits.madd(A1,B_0,C4,B_0);
            traits.loadRhs(&blB[7*RhsProgress], B_0);
            traits.madd(A0,B_0,C1,T0);
            traits.madd(A1,B_0,C5,B_0);
EIGEN_ASM_COMMENT("myend");
          }
          else
          {
EIGEN_ASM_COMMENT("mybegin4");
            LhsPacket A0, A1;
            RhsPacket B_0, B1, B2, B3;
            RhsPacket T0;
            
            traits.loadLhs(&blA[0*LhsProgress], A0);
            traits.loadLhs(&blA[1*LhsProgress], A1);
            traits.loadRhs(&blB[0*RhsProgress], B_0);
            traits.loadRhs(&blB[1*RhsProgress], B1);

            traits.madd(A0,B_0,C0,T0);
            traits.loadRhs(&blB[2*RhsProgress], B2);
            traits.madd(A1,B_0,C4,B_0);
            traits.loadRhs(&blB[3*RhsProgress], B3);
            traits.loadRhs(&blB[4*RhsProgress], B_0);
            traits.madd(A0,B1,C1,T0);
            traits.madd(A1,B1,C5,B1);
            traits.loadRhs(&blB[5*RhsProgress], B1);
            traits.madd(A0,B2,C2,T0);
            traits.madd(A1,B2,C6,B2);
            traits.loadRhs(&blB[6*RhsProgress], B2);
            traits.madd(A0,B3,C3,T0);
            traits.loadLhs(&blA[2*LhsProgress], A0);
            traits.madd(A1,B3,C7,B3);
            traits.loadLhs(&blA[3*LhsProgress], A1);
            traits.loadRhs(&blB[7*RhsProgress], B3);
            traits.madd(A0,B_0,C0,T0);
            traits.madd(A1,B_0,C4,B_0);
            traits.loadRhs(&blB[8*RhsProgress], B_0);
            traits.madd(A0,B1,C1,T0);
            traits.madd(A1,B1,C5,B1);
            traits.loadRhs(&blB[9*RhsProgress], B1);
            traits.madd(A0,B2,C2,T0);
            traits.madd(A1,B2,C6,B2);
            traits.loadRhs(&blB[10*RhsProgress], B2);
            traits.madd(A0,B3,C3,T0);
            traits.loadLhs(&blA[4*LhsProgress], A0);
            traits.madd(A1,B3,C7,B3);
            traits.loadLhs(&blA[5*LhsProgress], A1);
            traits.loadRhs(&blB[11*RhsProgress], B3);

            traits.madd(A0,B_0,C0,T0);
            traits.madd(A1,B_0,C4,B_0);
            traits.loadRhs(&blB[12*RhsProgress], B_0);
            traits.madd(A0,B1,C1,T0);
            traits.madd(A1,B1,C5,B1);
            traits.loadRhs(&blB[13*RhsProgress], B1);
            traits.madd(A0,B2,C2,T0);
            traits.madd(A1,B2,C6,B2);
            traits.loadRhs(&blB[14*RhsProgress], B2);
            traits.madd(A0,B3,C3,T0);
            traits.loadLhs(&blA[6*LhsProgress], A0);
            traits.madd(A1,B3,C7,B3);
            traits.loadLhs(&blA[7*LhsProgress], A1);
            traits.loadRhs(&blB[15*RhsProgress], B3);
            traits.madd(A0,B_0,C0,T0);
            traits.madd(A1,B_0,C4,B_0);
            traits.madd(A0,B1,C1,T0);
            traits.madd(A1,B1,C5,B1);
            traits.madd(A0,B2,C2,T0);
            traits.madd(A1,B2,C6,B2);
            traits.madd(A0,B3,C3,T0);
            traits.madd(A1,B3,C7,B3);
          }

          blB += 4*nr*RhsProgress;
          blA += 4*mr;
        }
        // process remaining peeled loop
        for(Index k=peeled_kc; k<depth; k++)
        {
          if(nr==2)
          {
            LhsPacket A0, A1;
            RhsPacket B_0;
            RhsPacket T0;

            traits.loadLhs(&blA[0*LhsProgress], A0);
            traits.loadLhs(&blA[1*LhsProgress], A1);
            traits.loadRhs(&blB[0*RhsProgress], B_0);
            traits.madd(A0,B_0,C0,T0);
            traits.madd(A1,B_0,C4,B_0);
            traits.loadRhs(&blB[1*RhsProgress], B_0);
            traits.madd(A0,B_0,C1,T0);
            traits.madd(A1,B_0,C5,B_0);
          }
          else
          {
            LhsPacket A0, A1;
            RhsPacket B_0, B1, B2, B3;
            RhsPacket T0;

            traits.loadLhs(&blA[0*LhsProgress], A0);
            traits.loadLhs(&blA[1*LhsProgress], A1);
            traits.loadRhs(&blB[0*RhsProgress], B_0);
            traits.loadRhs(&blB[1*RhsProgress], B1);

            traits.madd(A0,B_0,C0,T0);
            traits.loadRhs(&blB[2*RhsProgress], B2);
            traits.madd(A1,B_0,C4,B_0);
            traits.loadRhs(&blB[3*RhsProgress], B3);
            traits.madd(A0,B1,C1,T0);
            traits.madd(A1,B1,C5,B1);
            traits.madd(A0,B2,C2,T0);
            traits.madd(A1,B2,C6,B2);
            traits.madd(A0,B3,C3,T0);
            traits.madd(A1,B3,C7,B3);
          }

          blB += nr*RhsProgress;
          blA += mr;
        }

        if(nr==4)
        {
          ResPacket R0, R1, R2, R3, R4, R5, R6;
          ResPacket alphav = pset1<ResPacket>(alpha);

          R0 = ploadu<ResPacket>(r0);
          R1 = ploadu<ResPacket>(r1);
          R2 = ploadu<ResPacket>(r2);
          R3 = ploadu<ResPacket>(r3);
          R4 = ploadu<ResPacket>(r0 + ResPacketSize);
          R5 = ploadu<ResPacket>(r1 + ResPacketSize);
          R6 = ploadu<ResPacket>(r2 + ResPacketSize);
          traits.acc(C0, alphav, R0);
          pstoreu(r0, R0);
          R0 = ploadu<ResPacket>(r3 + ResPacketSize);

          traits.acc(C1, alphav, R1);
          traits.acc(C2, alphav, R2);
          traits.acc(C3, alphav, R3);
          traits.acc(C4, alphav, R4);
          traits.acc(C5, alphav, R5);
          traits.acc(C6, alphav, R6);
          traits.acc(C7, alphav, R0);
          
          pstoreu(r1, R1);
          pstoreu(r2, R2);
          pstoreu(r3, R3);
          pstoreu(r0 + ResPacketSize, R4);
          pstoreu(r1 + ResPacketSize, R5);
          pstoreu(r2 + ResPacketSize, R6);
          pstoreu(r3 + ResPacketSize, R0);
        }
        else
        {
          ResPacket R0, R1, R4;
          ResPacket alphav = pset1<ResPacket>(alpha);

          R0 = ploadu<ResPacket>(r0);
          R1 = ploadu<ResPacket>(r1);
          R4 = ploadu<ResPacket>(r0 + ResPacketSize);
          traits.acc(C0, alphav, R0);
          pstoreu(r0, R0);
          R0 = ploadu<ResPacket>(r1 + ResPacketSize);
          traits.acc(C1, alphav, R1);
          traits.acc(C4, alphav, R4);
          traits.acc(C5, alphav, R0);
          pstoreu(r1, R1);
          pstoreu(r0 + ResPacketSize, R4);
          pstoreu(r1 + ResPacketSize, R0);
        }
        
      }
      
      if(rows-peeled_mc>=LhsProgress)
      {
        Index i = peeled_mc;
        const LhsScalar* blA = &blockA[i*strideA+offsetA*LhsProgress];
        prefetch(&blA[0]);

        // gets res block as register
        AccPacket C0, C1, C2, C3;
                  traits.initAcc(C0);
                  traits.initAcc(C1);
        if(nr==4) traits.initAcc(C2);
        if(nr==4) traits.initAcc(C3);

        // performs "inner" product
        const RhsScalar* blB = unpackedB;
        for(Index k=0; k<peeled_kc; k+=4)
        {
          if(nr==2)
          {
            LhsPacket A0;
            RhsPacket B_0, B1;

            traits.loadLhs(&blA[0*LhsProgress], A0);
            traits.loadRhs(&blB[0*RhsProgress], B_0);
            traits.loadRhs(&blB[1*RhsProgress], B1);
            traits.madd(A0,B_0,C0,B_0);
            traits.loadRhs(&blB[2*RhsProgress], B_0);
            traits.madd(A0,B1,C1,B1);
            traits.loadLhs(&blA[1*LhsProgress], A0);
            traits.loadRhs(&blB[3*RhsProgress], B1);
            traits.madd(A0,B_0,C0,B_0);
            traits.loadRhs(&blB[4*RhsProgress], B_0);
            traits.madd(A0,B1,C1,B1);
            traits.loadLhs(&blA[2*LhsProgress], A0);
            traits.loadRhs(&blB[5*RhsProgress], B1);
            traits.madd(A0,B_0,C0,B_0);
            traits.loadRhs(&blB[6*RhsProgress], B_0);
            traits.madd(A0,B1,C1,B1);
            traits.loadLhs(&blA[3*LhsProgress], A0);
            traits.loadRhs(&blB[7*RhsProgress], B1);
            traits.madd(A0,B_0,C0,B_0);
            traits.madd(A0,B1,C1,B1);
          }
          else
          {
            LhsPacket A0;
            RhsPacket B_0, B1, B2, B3;

            traits.loadLhs(&blA[0*LhsProgress], A0);
            traits.loadRhs(&blB[0*RhsProgress], B_0);
            traits.loadRhs(&blB[1*RhsProgress], B1);

            traits.madd(A0,B_0,C0,B_0);
            traits.loadRhs(&blB[2*RhsProgress], B2);
            traits.loadRhs(&blB[3*RhsProgress], B3);
            traits.loadRhs(&blB[4*RhsProgress], B_0);
            traits.madd(A0,B1,C1,B1);
            traits.loadRhs(&blB[5*RhsProgress], B1);
            traits.madd(A0,B2,C2,B2);
            traits.loadRhs(&blB[6*RhsProgress], B2);
            traits.madd(A0,B3,C3,B3);
            traits.loadLhs(&blA[1*LhsProgress], A0);
            traits.loadRhs(&blB[7*RhsProgress], B3);
            traits.madd(A0,B_0,C0,B_0);
            traits.loadRhs(&blB[8*RhsProgress], B_0);
            traits.madd(A0,B1,C1,B1);
            traits.loadRhs(&blB[9*RhsProgress], B1);
            traits.madd(A0,B2,C2,B2);
            traits.loadRhs(&blB[10*RhsProgress], B2);
            traits.madd(A0,B3,C3,B3);
            traits.loadLhs(&blA[2*LhsProgress], A0);
            traits.loadRhs(&blB[11*RhsProgress], B3);

            traits.madd(A0,B_0,C0,B_0);
            traits.loadRhs(&blB[12*RhsProgress], B_0);
            traits.madd(A0,B1,C1,B1);
            traits.loadRhs(&blB[13*RhsProgress], B1);
            traits.madd(A0,B2,C2,B2);
            traits.loadRhs(&blB[14*RhsProgress], B2);
            traits.madd(A0,B3,C3,B3);

            traits.loadLhs(&blA[3*LhsProgress], A0);
            traits.loadRhs(&blB[15*RhsProgress], B3);
            traits.madd(A0,B_0,C0,B_0);
            traits.madd(A0,B1,C1,B1);
            traits.madd(A0,B2,C2,B2);
            traits.madd(A0,B3,C3,B3);
          }

          blB += nr*4*RhsProgress;
          blA += 4*LhsProgress;
        }
        // process remaining peeled loop
        for(Index k=peeled_kc; k<depth; k++)
        {
          if(nr==2)
          {
            LhsPacket A0;
            RhsPacket B_0, B1;

            traits.loadLhs(&blA[0*LhsProgress], A0);
            traits.loadRhs(&blB[0*RhsProgress], B_0);
            traits.loadRhs(&blB[1*RhsProgress], B1);
            traits.madd(A0,B_0,C0,B_0);
            traits.madd(A0,B1,C1,B1);
          }
          else
          {
            LhsPacket A0;
            RhsPacket B_0, B1, B2, B3;

            traits.loadLhs(&blA[0*LhsProgress], A0);
            traits.loadRhs(&blB[0*RhsProgress], B_0);
            traits.loadRhs(&blB[1*RhsProgress], B1);
            traits.loadRhs(&blB[2*RhsProgress], B2);
            traits.loadRhs(&blB[3*RhsProgress], B3);

            traits.madd(A0,B_0,C0,B_0);
            traits.madd(A0,B1,C1,B1);
            traits.madd(A0,B2,C2,B2);
            traits.madd(A0,B3,C3,B3);
          }

          blB += nr*RhsProgress;
          blA += LhsProgress;
        }

        ResPacket R0, R1, R2, R3;
        ResPacket alphav = pset1<ResPacket>(alpha);

        ResScalar* r0 = &res[(j2+0)*resStride + i];
        ResScalar* r1 = r0 + resStride;
        ResScalar* r2 = r1 + resStride;
        ResScalar* r3 = r2 + resStride;

                  R0 = ploadu<ResPacket>(r0);
                  R1 = ploadu<ResPacket>(r1);
        if(nr==4) R2 = ploadu<ResPacket>(r2);
        if(nr==4) R3 = ploadu<ResPacket>(r3);

                  traits.acc(C0, alphav, R0);
                  traits.acc(C1, alphav, R1);
        if(nr==4) traits.acc(C2, alphav, R2);
        if(nr==4) traits.acc(C3, alphav, R3);

                  pstoreu(r0, R0);
                  pstoreu(r1, R1);
        if(nr==4) pstoreu(r2, R2);
        if(nr==4) pstoreu(r3, R3);
      }
      for(Index i=peeled_mc2; i<rows; i++)
      {
        const LhsScalar* blA = &blockA[i*strideA+offsetA];
        prefetch(&blA[0]);

        // gets a 1 x nr res block as registers
        ResScalar C0(0), C1(0), C2(0), C3(0);
        // TODO directly use blockB ???
        const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
        for(Index k=0; k<depth; k++)
        {
          if(nr==2)
          {
            LhsScalar A0;
            RhsScalar B_0, B1;

            A0 = blA[k];
            B_0 = blB[0];
            B1 = blB[1];
            MADD(cj,A0,B_0,C0,B_0);
            MADD(cj,A0,B1,C1,B1);
          }
          else
          {
            LhsScalar A0;
            RhsScalar B_0, B1, B2, B3;

            A0 = blA[k];
            B_0 = blB[0];
            B1 = blB[1];
            B2 = blB[2];
            B3 = blB[3];

            MADD(cj,A0,B_0,C0,B_0);
            MADD(cj,A0,B1,C1,B1);
            MADD(cj,A0,B2,C2,B2);
            MADD(cj,A0,B3,C3,B3);
          }

          blB += nr;
        }
                  res[(j2+0)*resStride + i] += alpha*C0;
                  res[(j2+1)*resStride + i] += alpha*C1;
        if(nr==4) res[(j2+2)*resStride + i] += alpha*C2;
        if(nr==4) res[(j2+3)*resStride + i] += alpha*C3;
      }
    }
    // process remaining rhs/res columns one at a time
    // => do the same but with nr==1
    for(Index j2=packet_cols; j2<cols; j2++)
    {
      // unpack B
      traits.unpackRhs(depth, &blockB[j2*strideB+offsetB], unpackedB);

      for(Index i=0; i<peeled_mc; i+=mr)
      {
        const LhsScalar* blA = &blockA[i*strideA+offsetA*mr];
        prefetch(&blA[0]);

        // TODO move the res loads to the stores

        // get res block as registers
        AccPacket C0, C4;
        traits.initAcc(C0);
        traits.initAcc(C4);

        const RhsScalar* blB = unpackedB;
        for(Index k=0; k<depth; k++)
        {
          LhsPacket A0, A1;
          RhsPacket B_0;
          RhsPacket T0;

          traits.loadLhs(&blA[0*LhsProgress], A0);
          traits.loadLhs(&blA[1*LhsProgress], A1);
          traits.loadRhs(&blB[0*RhsProgress], B_0);
          traits.madd(A0,B_0,C0,T0);
          traits.madd(A1,B_0,C4,B_0);

          blB += RhsProgress;
          blA += 2*LhsProgress;
        }
        ResPacket R0, R4;
        ResPacket alphav = pset1<ResPacket>(alpha);

        ResScalar* r0 = &res[(j2+0)*resStride + i];

        R0 = ploadu<ResPacket>(r0);
        R4 = ploadu<ResPacket>(r0+ResPacketSize);

        traits.acc(C0, alphav, R0);
        traits.acc(C4, alphav, R4);

        pstoreu(r0,               R0);
        pstoreu(r0+ResPacketSize, R4);
      }
      if(rows-peeled_mc>=LhsProgress)
      {
        Index i = peeled_mc;
        const LhsScalar* blA = &blockA[i*strideA+offsetA*LhsProgress];
        prefetch(&blA[0]);

        AccPacket C0;
        traits.initAcc(C0);

        const RhsScalar* blB = unpackedB;
        for(Index k=0; k<depth; k++)
        {
          LhsPacket A0;
          RhsPacket B_0;
          traits.loadLhs(blA, A0);
          traits.loadRhs(blB, B_0);
          traits.madd(A0, B_0, C0, B_0);
          blB += RhsProgress;
          blA += LhsProgress;
        }

        ResPacket alphav = pset1<ResPacket>(alpha);
        ResPacket R0 = ploadu<ResPacket>(&res[(j2+0)*resStride + i]);
        traits.acc(C0, alphav, R0);
        pstoreu(&res[(j2+0)*resStride + i], R0);
      }
      for(Index i=peeled_mc2; i<rows; i++)
      {
        const LhsScalar* blA = &blockA[i*strideA+offsetA];
        prefetch(&blA[0]);

        // gets a 1 x 1 res block as registers
        ResScalar C0(0);
        // FIXME directly use blockB ??
        const RhsScalar* blB = &blockB[j2*strideB+offsetB];
        for(Index k=0; k<depth; k++)
        {
          LhsScalar A0 = blA[k];
          RhsScalar B_0 = blB[k];
          MADD(cj, A0, B_0, C0, B_0);
        }
        res[(j2+0)*resStride + i] += alpha*C0;
      }
    }
  }
};

#undef CJMADD

// pack a block of the lhs
// The traversal is as follow (mr==4):
//   0  4  8 12 ...
//   1  5  9 13 ...
//   2  6 10 14 ...
//   3  7 11 15 ...
//
//  16 20 24 28 ...
//  17 21 25 29 ...
//  18 22 26 30 ...
//  19 23 27 31 ...
//
//  32 33 34 35 ...
//  36 36 38 39 ...
template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder, bool Conjugate, bool PanelMode>
struct gemm_pack_lhs
{
  EIGEN_DONT_INLINE void operator()(Scalar* blockA, const Scalar* EIGEN_RESTRICT _lhs, Index lhsStride, Index depth, Index rows,
                  Index stride=0, Index offset=0)
  {
    typedef typename packet_traits<Scalar>::type Packet;
    enum { PacketSize = packet_traits<Scalar>::size };

    EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS");
    eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
    eigen_assert( (StorageOrder==RowMajor) || ((Pack1%PacketSize)==0 && Pack1<=4*PacketSize) );
    conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
    const_blas_data_mapper<Scalar, Index, StorageOrder> lhs(_lhs,lhsStride);
    Index count = 0;
    Index peeled_mc = (rows/Pack1)*Pack1;
    for(Index i=0; i<peeled_mc; i+=Pack1)
    {
      if(PanelMode) count += Pack1 * offset;

      if(StorageOrder==ColMajor)
      {
        for(Index k=0; k<depth; k++)
        {
          Packet A, B, C, D;
          if(Pack1>=1*PacketSize) A = ploadu<Packet>(&lhs(i+0*PacketSize, k));
          if(Pack1>=2*PacketSize) B = ploadu<Packet>(&lhs(i+1*PacketSize, k));
          if(Pack1>=3*PacketSize) C = ploadu<Packet>(&lhs(i+2*PacketSize, k));
          if(Pack1>=4*PacketSize) D = ploadu<Packet>(&lhs(i+3*PacketSize, k));
          if(Pack1>=1*PacketSize) { pstore(blockA+count, cj.pconj(A)); count+=PacketSize; }
          if(Pack1>=2*PacketSize) { pstore(blockA+count, cj.pconj(B)); count+=PacketSize; }
          if(Pack1>=3*PacketSize) { pstore(blockA+count, cj.pconj(C)); count+=PacketSize; }
          if(Pack1>=4*PacketSize) { pstore(blockA+count, cj.pconj(D)); count+=PacketSize; }
        }
      }
      else
      {
        for(Index k=0; k<depth; k++)
        {
          // TODO add a vectorized transpose here
          Index w=0;
          for(; w<Pack1-3; w+=4)
          {
            Scalar a(cj(lhs(i+w+0, k))),
                   b(cj(lhs(i+w+1, k))),
                   c(cj(lhs(i+w+2, k))),
                   d(cj(lhs(i+w+3, k)));
            blockA[count++] = a;
            blockA[count++] = b;
            blockA[count++] = c;
            blockA[count++] = d;
          }
          if(Pack1%4)
            for(;w<Pack1;++w)
              blockA[count++] = cj(lhs(i+w, k));
        }
      }
      if(PanelMode) count += Pack1 * (stride-offset-depth);
    }
    if(rows-peeled_mc>=Pack2)
    {
      if(PanelMode) count += Pack2*offset;
      for(Index k=0; k<depth; k++)
        for(Index w=0; w<Pack2; w++)
          blockA[count++] = cj(lhs(peeled_mc+w, k));
      if(PanelMode) count += Pack2 * (stride-offset-depth);
      peeled_mc += Pack2;
    }
    for(Index i=peeled_mc; i<rows; i++)
    {
      if(PanelMode) count += offset;
      for(Index k=0; k<depth; k++)
        blockA[count++] = cj(lhs(i, k));
      if(PanelMode) count += (stride-offset-depth);
    }
  }
};

// copy a complete panel of the rhs
// this version is optimized for column major matrices
// The traversal order is as follow: (nr==4):
//  0  1  2  3   12 13 14 15   24 27
//  4  5  6  7   16 17 18 19   25 28
//  8  9 10 11   20 21 22 23   26 29
//  .  .  .  .    .  .  .  .    .  .
template<typename Scalar, typename Index, int nr, bool Conjugate, bool PanelMode>
struct gemm_pack_rhs<Scalar, Index, nr, ColMajor, Conjugate, PanelMode>
{
  typedef typename packet_traits<Scalar>::type Packet;
  enum { PacketSize = packet_traits<Scalar>::size };
  EIGEN_DONT_INLINE void operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols,
                  Index stride=0, Index offset=0)
  {
    EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS COLMAJOR");
    eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
    conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
    Index packet_cols = (cols/nr) * nr;
    Index count = 0;
    for(Index j2=0; j2<packet_cols; j2+=nr)
    {
      // skip what we have before
      if(PanelMode) count += nr * offset;
      const Scalar* b0 = &rhs[(j2+0)*rhsStride];
      const Scalar* b1 = &rhs[(j2+1)*rhsStride];
      const Scalar* b2 = &rhs[(j2+2)*rhsStride];
      const Scalar* b3 = &rhs[(j2+3)*rhsStride];
      for(Index k=0; k<depth; k++)
      {
                  blockB[count+0] = cj(b0[k]);
                  blockB[count+1] = cj(b1[k]);
        if(nr==4) blockB[count+2] = cj(b2[k]);
        if(nr==4) blockB[count+3] = cj(b3[k]);
        count += nr;
      }
      // skip what we have after
      if(PanelMode) count += nr * (stride-offset-depth);
    }

    // copy the remaining columns one at a time (nr==1)
    for(Index j2=packet_cols; j2<cols; ++j2)
    {
      if(PanelMode) count += offset;
      const Scalar* b0 = &rhs[(j2+0)*rhsStride];
      for(Index k=0; k<depth; k++)
      {
        blockB[count] = cj(b0[k]);
        count += 1;
      }
      if(PanelMode) count += (stride-offset-depth);
    }
  }
};

// this version is optimized for row major matrices
template<typename Scalar, typename Index, int nr, bool Conjugate, bool PanelMode>
struct gemm_pack_rhs<Scalar, Index, nr, RowMajor, Conjugate, PanelMode>
{
  enum { PacketSize = packet_traits<Scalar>::size };
  EIGEN_DONT_INLINE void operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols,
                  Index stride=0, Index offset=0)
  {
    EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS ROWMAJOR");
    eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
    conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
    Index packet_cols = (cols/nr) * nr;
    Index count = 0;
    for(Index j2=0; j2<packet_cols; j2+=nr)
    {
      // skip what we have before
      if(PanelMode) count += nr * offset;
      for(Index k=0; k<depth; k++)
      {
        const Scalar* b0 = &rhs[k*rhsStride + j2];
                  blockB[count+0] = cj(b0[0]);
                  blockB[count+1] = cj(b0[1]);
        if(nr==4) blockB[count+2] = cj(b0[2]);
        if(nr==4) blockB[count+3] = cj(b0[3]);
        count += nr;
      }
      // skip what we have after
      if(PanelMode) count += nr * (stride-offset-depth);
    }
    // copy the remaining columns one at a time (nr==1)
    for(Index j2=packet_cols; j2<cols; ++j2)
    {
      if(PanelMode) count += offset;
      const Scalar* b0 = &rhs[j2];
      for(Index k=0; k<depth; k++)
      {
        blockB[count] = cj(b0[k*rhsStride]);
        count += 1;
      }
      if(PanelMode) count += stride-offset-depth;
    }
  }
};

} // end namespace internal

/** \returns the currently set level 1 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
  * \sa setCpuCacheSize */
inline std::ptrdiff_t l1CacheSize()
{
  std::ptrdiff_t l1, l2;
  internal::manage_caching_sizes(GetAction, &l1, &l2);
  return l1;
}

/** \returns the currently set level 2 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
  * \sa setCpuCacheSize */
inline std::ptrdiff_t l2CacheSize()
{
  std::ptrdiff_t l1, l2;
  internal::manage_caching_sizes(GetAction, &l1, &l2);
  return l2;
}

/** Set the cpu L1 and L2 cache sizes (in bytes).
  * These values are use to adjust the size of the blocks
  * for the algorithms working per blocks.
  *
  * \sa computeProductBlockingSizes */
inline void setCpuCacheSizes(std::ptrdiff_t l1, std::ptrdiff_t l2)
{
  internal::manage_caching_sizes(SetAction, &l1, &l2);
}

} // end namespace Eigen

#endif // EIGEN_GENERAL_BLOCK_PANEL_H