aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/products/GeneralMatrixMatrix.h
blob: 3f5ffcf51c77aaa81ec571bbb30bb8c8bb1de205 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_GENERAL_MATRIX_MATRIX_H
#define EIGEN_GENERAL_MATRIX_MATRIX_H

namespace Eigen { 

namespace internal {

template<typename _LhsScalar, typename _RhsScalar> class level3_blocking;

/* Specialization for a row-major destination matrix => simple transposition of the product */
template<
  typename Index,
  typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
  typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor>
{
  typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
  static EIGEN_STRONG_INLINE void run(
    Index rows, Index cols, Index depth,
    const LhsScalar* lhs, Index lhsStride,
    const RhsScalar* rhs, Index rhsStride,
    ResScalar* res, Index resStride,
    ResScalar alpha,
    level3_blocking<RhsScalar,LhsScalar>& blocking,
    GemmParallelInfo<Index>* info = 0)
  {
    // transpose the product such that the result is column major
    general_matrix_matrix_product<Index,
      RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
      LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
      ColMajor>
    ::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking,info);
  }
};

/*  Specialization for a col-major destination matrix
 *    => Blocking algorithm following Goto's paper */
template<
  typename Index,
  typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
  typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor>
{

typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
static void run(Index rows, Index cols, Index depth,
  const LhsScalar* _lhs, Index lhsStride,
  const RhsScalar* _rhs, Index rhsStride,
  ResScalar* res, Index resStride,
  ResScalar alpha,
  level3_blocking<LhsScalar,RhsScalar>& blocking,
  GemmParallelInfo<Index>* info = 0)
{
  const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
  const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);

  typedef gebp_traits<LhsScalar,RhsScalar> Traits;

  Index kc = blocking.kc();                   // cache block size along the K direction
  Index mc = (std::min)(rows,blocking.mc());  // cache block size along the M direction
  //Index nc = blocking.nc(); // cache block size along the N direction

  gemm_pack_lhs<LhsScalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
  gemm_pack_rhs<RhsScalar, Index, Traits::nr, RhsStorageOrder> pack_rhs;
  gebp_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;

#ifdef EIGEN_HAS_OPENMP
  if(info)
  {
    // this is the parallel version!
    Index tid = omp_get_thread_num();
    Index threads = omp_get_num_threads();
    
    std::size_t sizeA = kc*mc;
    std::size_t sizeW = kc*Traits::WorkSpaceFactor;
    ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, 0);
    ei_declare_aligned_stack_constructed_variable(RhsScalar, w, sizeW, 0);
    
    RhsScalar* blockB = blocking.blockB();
    eigen_internal_assert(blockB!=0);

    // For each horizontal panel of the rhs, and corresponding vertical panel of the lhs...
    for(Index k=0; k<depth; k+=kc)
    {
      const Index actual_kc = (std::min)(k+kc,depth)-k; // => rows of B', and cols of the A'

      // In order to reduce the chance that a thread has to wait for the other,
      // let's start by packing A'.
      pack_lhs(blockA, &lhs(0,k), lhsStride, actual_kc, mc);

      // Pack B_k to B' in a parallel fashion:
      // each thread packs the sub block B_k,j to B'_j where j is the thread id.

      // However, before copying to B'_j, we have to make sure that no other thread is still using it,
      // i.e., we test that info[tid].users equals 0.
      // Then, we set info[tid].users to the number of threads to mark that all other threads are going to use it.
      while(info[tid].users!=0) {}
      info[tid].users += threads;

      pack_rhs(blockB+info[tid].rhs_start*actual_kc, &rhs(k,info[tid].rhs_start), rhsStride, actual_kc, info[tid].rhs_length);

      // Notify the other threads that the part B'_j is ready to go.
      info[tid].sync = k;

      // Computes C_i += A' * B' per B'_j
      for(Index shift=0; shift<threads; ++shift)
      {
        Index j = (tid+shift)%threads;

        // At this point we have to make sure that B'_j has been updated by the thread j,
        // we use testAndSetOrdered to mimic a volatile access.
        // However, no need to wait for the B' part which has been updated by the current thread!
        if(shift>0)
          while(info[j].sync!=k) {}

        gebp(res+info[j].rhs_start*resStride, resStride, blockA, blockB+info[j].rhs_start*actual_kc, mc, actual_kc, info[j].rhs_length, alpha, -1,-1,0,0, w);
      }

      // Then keep going as usual with the remaining A'
      for(Index i=mc; i<rows; i+=mc)
      {
        const Index actual_mc = (std::min)(i+mc,rows)-i;

        // pack A_i,k to A'
        pack_lhs(blockA, &lhs(i,k), lhsStride, actual_kc, actual_mc);

        // C_i += A' * B'
        gebp(res+i, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1,-1,0,0, w);
      }

      // Release all the sub blocks B'_j of B' for the current thread,
      // i.e., we simply decrement the number of users by 1
      for(Index j=0; j<threads; ++j)
        #pragma omp atomic
        --(info[j].users);
    }
  }
  else
#endif // EIGEN_HAS_OPENMP
  {
    EIGEN_UNUSED_VARIABLE(info);

    // this is the sequential version!
    std::size_t sizeA = kc*mc;
    std::size_t sizeB = kc*cols;
    std::size_t sizeW = kc*Traits::WorkSpaceFactor;

    ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
    ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());
    ei_declare_aligned_stack_constructed_variable(RhsScalar, blockW, sizeW, blocking.blockW());

    // For each horizontal panel of the rhs, and corresponding panel of the lhs...
    // (==GEMM_VAR1)
    for(Index k2=0; k2<depth; k2+=kc)
    {
      const Index actual_kc = (std::min)(k2+kc,depth)-k2;

      // OK, here we have selected one horizontal panel of rhs and one vertical panel of lhs.
      // => Pack rhs's panel into a sequential chunk of memory (L2 caching)
      // Note that this panel will be read as many times as the number of blocks in the lhs's
      // vertical panel which is, in practice, a very low number.
      pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, cols);

      // For each mc x kc block of the lhs's vertical panel...
      // (==GEPP_VAR1)
      for(Index i2=0; i2<rows; i2+=mc)
      {
        const Index actual_mc = (std::min)(i2+mc,rows)-i2;

        // We pack the lhs's block into a sequential chunk of memory (L1 caching)
        // Note that this block will be read a very high number of times, which is equal to the number of
        // micro vertical panel of the large rhs's panel (e.g., cols/4 times).
        pack_lhs(blockA, &lhs(i2,k2), lhsStride, actual_kc, actual_mc);

        // Everything is packed, we can now call the block * panel kernel:
        gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1, -1, 0, 0, blockW);
      }
    }
  }
}

};

/*********************************************************************************
*  Specialization of GeneralProduct<> for "large" GEMM, i.e.,
*  implementation of the high level wrapper to general_matrix_matrix_product
**********************************************************************************/

template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,GemmProduct> >
 : traits<ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs> >
{};

template<typename Scalar, typename Index, typename Gemm, typename Lhs, typename Rhs, typename Dest, typename BlockingType>
struct gemm_functor
{
  gemm_functor(const Lhs& lhs, const Rhs& rhs, Dest& dest, const Scalar& actualAlpha,
                  BlockingType& blocking)
    : m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking)
  {}

  void initParallelSession() const
  {
    m_blocking.allocateB();
  }

  void operator() (Index row, Index rows, Index col=0, Index cols=-1, GemmParallelInfo<Index>* info=0) const
  {
    if(cols==-1)
      cols = m_rhs.cols();

    Gemm::run(rows, cols, m_lhs.cols(),
              /*(const Scalar*)*/&m_lhs.coeffRef(row,0), m_lhs.outerStride(),
              /*(const Scalar*)*/&m_rhs.coeffRef(0,col), m_rhs.outerStride(),
              (Scalar*)&(m_dest.coeffRef(row,col)), m_dest.outerStride(),
              m_actualAlpha, m_blocking, info);
  }

  protected:
    const Lhs& m_lhs;
    const Rhs& m_rhs;
    Dest& m_dest;
    Scalar m_actualAlpha;
    BlockingType& m_blocking;
};

template<int StorageOrder, typename LhsScalar, typename RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor=1,
bool FiniteAtCompileTime = MaxRows!=Dynamic && MaxCols!=Dynamic && MaxDepth != Dynamic> class gemm_blocking_space;

template<typename _LhsScalar, typename _RhsScalar>
class level3_blocking
{
    typedef _LhsScalar LhsScalar;
    typedef _RhsScalar RhsScalar;

  protected:
    LhsScalar* m_blockA;
    RhsScalar* m_blockB;
    RhsScalar* m_blockW;

    DenseIndex m_mc;
    DenseIndex m_nc;
    DenseIndex m_kc;

  public:

    level3_blocking()
      : m_blockA(0), m_blockB(0), m_blockW(0), m_mc(0), m_nc(0), m_kc(0)
    {}

    inline DenseIndex mc() const { return m_mc; }
    inline DenseIndex nc() const { return m_nc; }
    inline DenseIndex kc() const { return m_kc; }

    inline LhsScalar* blockA() { return m_blockA; }
    inline RhsScalar* blockB() { return m_blockB; }
    inline RhsScalar* blockW() { return m_blockW; }
};

template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, true>
  : public level3_blocking<
      typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
      typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
{
    enum {
      Transpose = StorageOrder==RowMajor,
      ActualRows = Transpose ? MaxCols : MaxRows,
      ActualCols = Transpose ? MaxRows : MaxCols
    };
    typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
    typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
    typedef gebp_traits<LhsScalar,RhsScalar> Traits;
    enum {
      SizeA = ActualRows * MaxDepth,
      SizeB = ActualCols * MaxDepth,
      SizeW = MaxDepth * Traits::WorkSpaceFactor
    };

    EIGEN_ALIGN16 LhsScalar m_staticA[SizeA];
    EIGEN_ALIGN16 RhsScalar m_staticB[SizeB];
    EIGEN_ALIGN16 RhsScalar m_staticW[SizeW];

  public:

    gemm_blocking_space(DenseIndex /*rows*/, DenseIndex /*cols*/, DenseIndex /*depth*/)
    {
      this->m_mc = ActualRows;
      this->m_nc = ActualCols;
      this->m_kc = MaxDepth;
      this->m_blockA = m_staticA;
      this->m_blockB = m_staticB;
      this->m_blockW = m_staticW;
    }

    inline void allocateA() {}
    inline void allocateB() {}
    inline void allocateW() {}
    inline void allocateAll() {}
};

template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, false>
  : public level3_blocking<
      typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
      typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
{
    enum {
      Transpose = StorageOrder==RowMajor
    };
    typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
    typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
    typedef gebp_traits<LhsScalar,RhsScalar> Traits;

    DenseIndex m_sizeA;
    DenseIndex m_sizeB;
    DenseIndex m_sizeW;

  public:

    gemm_blocking_space(DenseIndex rows, DenseIndex cols, DenseIndex depth)
    {
      this->m_mc = Transpose ? cols : rows;
      this->m_nc = Transpose ? rows : cols;
      this->m_kc = depth;

      computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, this->m_nc);
      m_sizeA = this->m_mc * this->m_kc;
      m_sizeB = this->m_kc * this->m_nc;
      m_sizeW = this->m_kc*Traits::WorkSpaceFactor;
    }

    void allocateA()
    {
      if(this->m_blockA==0)
        this->m_blockA = aligned_new<LhsScalar>(m_sizeA);
    }

    void allocateB()
    {
      if(this->m_blockB==0)
        this->m_blockB = aligned_new<RhsScalar>(m_sizeB);
    }

    void allocateW()
    {
      if(this->m_blockW==0)
        this->m_blockW = aligned_new<RhsScalar>(m_sizeW);
    }

    void allocateAll()
    {
      allocateA();
      allocateB();
      allocateW();
    }

    ~gemm_blocking_space()
    {
      aligned_delete(this->m_blockA, m_sizeA);
      aligned_delete(this->m_blockB, m_sizeB);
      aligned_delete(this->m_blockW, m_sizeW);
    }
};

} // end namespace internal

template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, GemmProduct>
  : public ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs>
{
    enum {
      MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime)
    };
  public:
    EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
    
    typedef typename  Lhs::Scalar LhsScalar;
    typedef typename  Rhs::Scalar RhsScalar;
    typedef           Scalar      ResScalar;

    GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
    {
      typedef internal::scalar_product_op<LhsScalar,RhsScalar> BinOp;
      EIGEN_CHECK_BINARY_COMPATIBILIY(BinOp,LhsScalar,RhsScalar);
    }

    template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
    {
      eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());

      typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
      typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);

      Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
                                 * RhsBlasTraits::extractScalarFactor(m_rhs);

      typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar,
              Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;

      typedef internal::gemm_functor<
        Scalar, Index,
        internal::general_matrix_matrix_product<
          Index,
          LhsScalar, (_ActualLhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate),
          RhsScalar, (_ActualRhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate),
          (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>,
        _ActualLhsType, _ActualRhsType, Dest, BlockingType> GemmFunctor;

      BlockingType blocking(dst.rows(), dst.cols(), lhs.cols());

      internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), this->rows(), this->cols(), Dest::Flags&RowMajorBit);
    }
};

} // end namespace Eigen

#endif // EIGEN_GENERAL_MATRIX_MATRIX_H