aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/products/GeneralMatrixMatrix.h
blob: 6440e1d09c74488f80883151b8bbdd74408304f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_GENERAL_MATRIX_MATRIX_H
#define EIGEN_GENERAL_MATRIX_MATRIX_H

namespace Eigen {

namespace internal {

template<typename _LhsScalar, typename _RhsScalar> class level3_blocking;

/* Specialization for a row-major destination matrix => simple transposition of the product */
template<
  typename Index,
  typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
  typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor>
{
  typedef gebp_traits<RhsScalar,LhsScalar> Traits;

  typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
  static EIGEN_STRONG_INLINE void run(
    Index rows, Index cols, Index depth,
    const LhsScalar* lhs, Index lhsStride,
    const RhsScalar* rhs, Index rhsStride,
    ResScalar* res, Index resStride,
    ResScalar alpha,
    level3_blocking<RhsScalar,LhsScalar>& blocking,
    GemmParallelInfo<Index>* info = 0)
  {
    // transpose the product such that the result is column major
    general_matrix_matrix_product<Index,
      RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
      LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
      ColMajor>
    ::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking,info);
  }
};

/*  Specialization for a col-major destination matrix
 *    => Blocking algorithm following Goto's paper */
template<
  typename Index,
  typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
  typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor>
{

typedef gebp_traits<LhsScalar,RhsScalar> Traits;

typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
static void run(Index rows, Index cols, Index depth,
  const LhsScalar* _lhs, Index lhsStride,
  const RhsScalar* _rhs, Index rhsStride,
  ResScalar* _res, Index resStride,
  ResScalar alpha,
  level3_blocking<LhsScalar,RhsScalar>& blocking,
  GemmParallelInfo<Index>* info = 0)
{
  typedef const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> LhsMapper;
  typedef const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> RhsMapper;
  typedef blas_data_mapper<typename Traits::ResScalar, Index, ColMajor> ResMapper;
  LhsMapper lhs(_lhs,lhsStride);
  RhsMapper rhs(_rhs,rhsStride);
  ResMapper res(_res, resStride);

  Index kc = blocking.kc();                   // cache block size along the K direction
  Index mc = (std::min)(rows,blocking.mc());  // cache block size along the M direction
  Index nc = (std::min)(cols,blocking.nc());  // cache block size along the N direction

  gemm_pack_lhs<LhsScalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
  gemm_pack_rhs<RhsScalar, Index, RhsMapper, Traits::nr, RhsStorageOrder> pack_rhs;
  gebp_kernel<LhsScalar, RhsScalar, Index, ResMapper, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;

#ifdef EIGEN_HAS_OPENMP
  if(info)
  {
    // this is the parallel version!
    int tid = omp_get_thread_num();
    int threads = omp_get_num_threads();

    LhsScalar* blockA = blocking.blockA();
    eigen_internal_assert(blockA!=0);

    std::size_t sizeB = kc*nc;
    ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, 0);

    // For each horizontal panel of the rhs, and corresponding vertical panel of the lhs...
    for(Index k=0; k<depth; k+=kc)
    {
      const Index actual_kc = (std::min)(k+kc,depth)-k; // => rows of B', and cols of the A'

      // In order to reduce the chance that a thread has to wait for the other,
      // let's start by packing B'.
      pack_rhs(blockB, rhs.getSubMapper(k,0), actual_kc, nc);

      // Pack A_k to A' in a parallel fashion:
      // each thread packs the sub block A_k,i to A'_i where i is the thread id.

      // However, before copying to A'_i, we have to make sure that no other thread is still using it,
      // i.e., we test that info[tid].users equals 0.
      // Then, we set info[tid].users to the number of threads to mark that all other threads are going to use it.
      while(info[tid].users!=0) {}
      info[tid].users += threads;

      pack_lhs(blockA+info[tid].lhs_start*actual_kc, lhs.getSubMapper(info[tid].lhs_start,k), actual_kc, info[tid].lhs_length);

      // Notify the other threads that the part A'_i is ready to go.
      info[tid].sync = k;

      // Computes C_i += A' * B' per A'_i
      for(int shift=0; shift<threads; ++shift)
      {
        int i = (tid+shift)%threads;

        // At this point we have to make sure that A'_i has been updated by the thread i,
        // we use testAndSetOrdered to mimic a volatile access.
        // However, no need to wait for the B' part which has been updated by the current thread!
        if (shift>0) {
          while(info[i].sync!=k) {
          }
        }

        gebp(res.getSubMapper(info[i].lhs_start, 0), blockA+info[i].lhs_start*actual_kc, blockB, info[i].lhs_length, actual_kc, nc, alpha);
      }

      // Then keep going as usual with the remaining B'
      for(Index j=nc; j<cols; j+=nc)
      {
        const Index actual_nc = (std::min)(j+nc,cols)-j;

        // pack B_k,j to B'
        pack_rhs(blockB, rhs.getSubMapper(k,j), actual_kc, actual_nc);

        // C_j += A' * B'
        gebp(res.getSubMapper(0, j), blockA, blockB, rows, actual_kc, actual_nc, alpha);
      }

      // Release all the sub blocks A'_i of A' for the current thread,
      // i.e., we simply decrement the number of users by 1
      for(Index i=0; i<threads; ++i)
        #pragma omp atomic
        info[i].users -= 1;
    }
  }
  else
#endif // EIGEN_HAS_OPENMP
  {
    EIGEN_UNUSED_VARIABLE(info);

    // this is the sequential version!
    std::size_t sizeA = kc*mc;
    std::size_t sizeB = kc*nc;

    ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
    ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());

    const bool pack_rhs_once = mc!=rows && kc==depth && nc==cols;

    // For each horizontal panel of the rhs, and corresponding panel of the lhs...
    for(Index i2=0; i2<rows; i2+=mc)
    {
      const Index actual_mc = (std::min)(i2+mc,rows)-i2;

      for(Index k2=0; k2<depth; k2+=kc)
      {
        const Index actual_kc = (std::min)(k2+kc,depth)-k2;

        // OK, here we have selected one horizontal panel of rhs and one vertical panel of lhs.
        // => Pack lhs's panel into a sequential chunk of memory (L2/L3 caching)
        // Note that this panel will be read as many times as the number of blocks in the rhs's
        // horizontal panel which is, in practice, a very low number.
        pack_lhs(blockA, lhs.getSubMapper(i2,k2), actual_kc, actual_mc);

        // For each kc x nc block of the rhs's horizontal panel...
        for(Index j2=0; j2<cols; j2+=nc)
        {
          const Index actual_nc = (std::min)(j2+nc,cols)-j2;

          // We pack the rhs's block into a sequential chunk of memory (L2 caching)
          // Note that this block will be read a very high number of times, which is equal to the number of
          // micro horizontal panel of the large rhs's panel (e.g., rows/12 times).
          if((!pack_rhs_once) || i2==0)
            pack_rhs(blockB, rhs.getSubMapper(k2,j2), actual_kc, actual_nc);

          // Everything is packed, we can now call the panel * block kernel:
          gebp(res.getSubMapper(i2, j2), blockA, blockB, actual_mc, actual_kc, actual_nc, alpha);
        }
      }
    }
  }
}

};

/*********************************************************************************
*  Specialization of generic_product_impl for "large" GEMM, i.e.,
*  implementation of the high level wrapper to general_matrix_matrix_product
**********************************************************************************/

template<typename Scalar, typename Index, typename Gemm, typename Lhs, typename Rhs, typename Dest, typename BlockingType>
struct gemm_functor
{
  gemm_functor(const Lhs& lhs, const Rhs& rhs, Dest& dest, const Scalar& actualAlpha, BlockingType& blocking)
    : m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking)
  {}

  void initParallelSession(Index num_threads) const
  {
    m_blocking.initParallel(m_lhs.rows(), m_rhs.cols(), m_lhs.cols(), num_threads);
    m_blocking.allocateA();
  }

  void operator() (Index row, Index rows, Index col=0, Index cols=-1, GemmParallelInfo<Index>* info=0) const
  {
    if(cols==-1)
      cols = m_rhs.cols();

    Gemm::run(rows, cols, m_lhs.cols(),
              &m_lhs.coeffRef(row,0), m_lhs.outerStride(),
              &m_rhs.coeffRef(0,col), m_rhs.outerStride(),
              (Scalar*)&(m_dest.coeffRef(row,col)), m_dest.outerStride(),
              m_actualAlpha, m_blocking, info);
  }

  typedef typename Gemm::Traits Traits;

  protected:
    const Lhs& m_lhs;
    const Rhs& m_rhs;
    Dest& m_dest;
    Scalar m_actualAlpha;
    BlockingType& m_blocking;
};

template<int StorageOrder, typename LhsScalar, typename RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor=1,
bool FiniteAtCompileTime = MaxRows!=Dynamic && MaxCols!=Dynamic && MaxDepth != Dynamic> class gemm_blocking_space;

template<typename _LhsScalar, typename _RhsScalar>
class level3_blocking
{
    typedef _LhsScalar LhsScalar;
    typedef _RhsScalar RhsScalar;

  protected:
    LhsScalar* m_blockA;
    RhsScalar* m_blockB;

    Index m_mc;
    Index m_nc;
    Index m_kc;

  public:

    level3_blocking()
      : m_blockA(0), m_blockB(0), m_mc(0), m_nc(0), m_kc(0)
    {}

    inline Index mc() const { return m_mc; }
    inline Index nc() const { return m_nc; }
    inline Index kc() const { return m_kc; }

    inline LhsScalar* blockA() { return m_blockA; }
    inline RhsScalar* blockB() { return m_blockB; }
};

template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, true /* == FiniteAtCompileTime */>
  : public level3_blocking<
      typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
      typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
{
    enum {
      Transpose = StorageOrder==RowMajor,
      ActualRows = Transpose ? MaxCols : MaxRows,
      ActualCols = Transpose ? MaxRows : MaxCols
    };
    typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
    typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
    typedef gebp_traits<LhsScalar,RhsScalar> Traits;
    enum {
      SizeA = ActualRows * MaxDepth,
      SizeB = ActualCols * MaxDepth
    };

#if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES
    EIGEN_ALIGN_MAX LhsScalar m_staticA[SizeA];
    EIGEN_ALIGN_MAX RhsScalar m_staticB[SizeB];
#else
    EIGEN_ALIGN_MAX char m_staticA[SizeA * sizeof(LhsScalar) + EIGEN_DEFAULT_ALIGN_BYTES-1];
    EIGEN_ALIGN_MAX char m_staticB[SizeB * sizeof(RhsScalar) + EIGEN_DEFAULT_ALIGN_BYTES-1];
#endif

  public:

    gemm_blocking_space(Index /*rows*/, Index /*cols*/, Index /*depth*/, Index /*num_threads*/, bool /*full_rows = false*/)
    {
      this->m_mc = ActualRows;
      this->m_nc = ActualCols;
      this->m_kc = MaxDepth;
#if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES
      this->m_blockA = m_staticA;
      this->m_blockB = m_staticB;
#else
      this->m_blockA = reinterpret_cast<LhsScalar*>((internal::UIntPtr(m_staticA) + (EIGEN_DEFAULT_ALIGN_BYTES-1)) & ~std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1));
      this->m_blockB = reinterpret_cast<RhsScalar*>((internal::UIntPtr(m_staticB) + (EIGEN_DEFAULT_ALIGN_BYTES-1)) & ~std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1));
#endif
    }

    void initParallel(Index, Index, Index, Index)
    {}

    inline void allocateA() {}
    inline void allocateB() {}
    inline void allocateAll() {}
};

template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, false>
  : public level3_blocking<
      typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
      typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
{
    enum {
      Transpose = StorageOrder==RowMajor
    };
    typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
    typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
    typedef gebp_traits<LhsScalar,RhsScalar> Traits;

    Index m_sizeA;
    Index m_sizeB;

  public:

    gemm_blocking_space(Index rows, Index cols, Index depth, Index num_threads, bool l3_blocking)
    {
      this->m_mc = Transpose ? cols : rows;
      this->m_nc = Transpose ? rows : cols;
      this->m_kc = depth;

      if(l3_blocking)
      {
        computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, this->m_nc, num_threads);
      }
      else  // no l3 blocking
      {
        Index n = this->m_nc;
        computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, n, num_threads);
      }

      m_sizeA = this->m_mc * this->m_kc;
      m_sizeB = this->m_kc * this->m_nc;
    }

    void initParallel(Index rows, Index cols, Index depth, Index num_threads)
    {
      this->m_mc = Transpose ? cols : rows;
      this->m_nc = Transpose ? rows : cols;
      this->m_kc = depth;

      eigen_internal_assert(this->m_blockA==0 && this->m_blockB==0);
      Index m = this->m_mc;
      computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, m, this->m_nc, num_threads);
      m_sizeA = this->m_mc * this->m_kc;
      m_sizeB = this->m_kc * this->m_nc;
    }

    void allocateA()
    {
      if(this->m_blockA==0)
        this->m_blockA = aligned_new<LhsScalar>(m_sizeA);
    }

    void allocateB()
    {
      if(this->m_blockB==0)
        this->m_blockB = aligned_new<RhsScalar>(m_sizeB);
    }

    void allocateAll()
    {
      allocateA();
      allocateB();
    }

    ~gemm_blocking_space()
    {
      aligned_delete(this->m_blockA, m_sizeA);
      aligned_delete(this->m_blockB, m_sizeB);
    }
};

} // end namespace internal

namespace internal {

template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct>
  : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct> >
{
  typedef typename Product<Lhs,Rhs>::Scalar Scalar;
  typedef typename Lhs::Scalar LhsScalar;
  typedef typename Rhs::Scalar RhsScalar;

  typedef internal::blas_traits<Lhs> LhsBlasTraits;
  typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
  typedef typename internal::remove_all<ActualLhsType>::type ActualLhsTypeCleaned;

  typedef internal::blas_traits<Rhs> RhsBlasTraits;
  typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
  typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;

  enum {
    MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime)
  };

  typedef generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> lazyproduct;

  template<typename Dst>
  static void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
  {
    if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
      lazyproduct::evalTo(dst, lhs, rhs);
    else
    {
      dst.setZero();
      scaleAndAddTo(dst, lhs, rhs, Scalar(1));
    }
  }

  template<typename Dst>
  static void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
  {
    if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
      lazyproduct::addTo(dst, lhs, rhs);
    else
      scaleAndAddTo(dst,lhs, rhs, Scalar(1));
  }

  template<typename Dst>
  static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
  {
    if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
      lazyproduct::subTo(dst, lhs, rhs);
    else
      scaleAndAddTo(dst, lhs, rhs, Scalar(-1));
  }

  template<typename Dest>
  static void scaleAndAddTo(Dest& dst, const Lhs& a_lhs, const Rhs& a_rhs, const Scalar& alpha)
  {
    eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols());
    if(a_lhs.cols()==0 || a_lhs.rows()==0 || a_rhs.cols()==0)
      return;

    typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
    typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);

    Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
                               * RhsBlasTraits::extractScalarFactor(a_rhs);

    typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar,
            Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;

    typedef internal::gemm_functor<
      Scalar, Index,
      internal::general_matrix_matrix_product<
        Index,
        LhsScalar, (ActualLhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate),
        RhsScalar, (ActualRhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate),
        (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>,
      ActualLhsTypeCleaned, ActualRhsTypeCleaned, Dest, BlockingType> GemmFunctor;

    BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), 1, true);
    internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>
        (GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), a_lhs.cols(), Dest::Flags&RowMajorBit);
  }
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_GENERAL_MATRIX_MATRIX_H