aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h
blob: 7122efa605c8f7fbedc116df22082b16d5136744 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
#define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H

namespace Eigen { 

template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjLhs, bool ConjRhs>
struct selfadjoint_rank1_update;

namespace internal {

/**********************************************************************
* This file implements a general A * B product while
* evaluating only one triangular part of the product.
* This is a more general version of self adjoint product (C += A A^T)
* as the level 3 SYRK Blas routine.
**********************************************************************/

// forward declarations (defined at the end of this file)
template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
struct tribb_kernel;
  
/* Optimized matrix-matrix product evaluating only one triangular half */
template <typename Index,
          typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
          typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
                              int ResStorageOrder, int  UpLo, int Version = Specialized>
struct general_matrix_matrix_triangular_product;

// as usual if the result is row major => we transpose the product
template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
                          typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int  UpLo, int Version>
struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor,UpLo,Version>
{
  typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
  static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* lhs, Index lhsStride,
                                      const RhsScalar* rhs, Index rhsStride, ResScalar* res, Index resStride,
                                      const ResScalar& alpha, level3_blocking<RhsScalar,LhsScalar>& blocking)
  {
    general_matrix_matrix_triangular_product<Index,
        RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
        LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
        ColMajor, UpLo==Lower?Upper:Lower>
      ::run(size,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking);
  }
};

template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
                          typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int  UpLo, int Version>
struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor,UpLo,Version>
{
  typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
  static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* _lhs, Index lhsStride,
                                      const RhsScalar* _rhs, Index rhsStride, ResScalar* _res, Index resStride,
                                      const ResScalar& alpha, level3_blocking<LhsScalar,RhsScalar>& blocking)
  {
    typedef gebp_traits<LhsScalar,RhsScalar> Traits;

    typedef const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> LhsMapper;
    typedef const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> RhsMapper;
    typedef blas_data_mapper<typename Traits::ResScalar, Index, ColMajor> ResMapper;
    LhsMapper lhs(_lhs,lhsStride);
    RhsMapper rhs(_rhs,rhsStride);
    ResMapper res(_res, resStride);

    Index kc = blocking.kc();
    Index mc = (std::min)(size,blocking.mc());

    // !!! mc must be a multiple of nr:
    if(mc > Traits::nr)
      mc = (mc/Traits::nr)*Traits::nr;

    std::size_t sizeA = kc*mc;
    std::size_t sizeB = kc*size;

    ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
    ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());

    gemm_pack_lhs<LhsScalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
    gemm_pack_rhs<RhsScalar, Index, RhsMapper, Traits::nr, RhsStorageOrder> pack_rhs;
    gebp_kernel<LhsScalar, RhsScalar, Index, ResMapper, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
    tribb_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs, UpLo> sybb;

    for(Index k2=0; k2<depth; k2+=kc)
    {
      const Index actual_kc = (std::min)(k2+kc,depth)-k2;

      // note that the actual rhs is the transpose/adjoint of mat
      pack_rhs(blockB, rhs.getSubMapper(k2,0), actual_kc, size);

      for(Index i2=0; i2<size; i2+=mc)
      {
        const Index actual_mc = (std::min)(i2+mc,size)-i2;

        pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc);

        // the selected actual_mc * size panel of res is split into three different part:
        //  1 - before the diagonal => processed with gebp or skipped
        //  2 - the actual_mc x actual_mc symmetric block => processed with a special kernel
        //  3 - after the diagonal => processed with gebp or skipped
        if (UpLo==Lower)
          gebp(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc,
               (std::min)(size,i2), alpha, -1, -1, 0, 0);


        sybb(_res+resStride*i2 + i2, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha);

        if (UpLo==Upper)
        {
          Index j2 = i2+actual_mc;
          gebp(res.getSubMapper(i2, j2), blockA, blockB+actual_kc*j2, actual_mc,
               actual_kc, (std::max)(Index(0), size-j2), alpha, -1, -1, 0, 0);
        }
      }
    }
  }
};

// Optimized packed Block * packed Block product kernel evaluating only one given triangular part
// This kernel is built on top of the gebp kernel:
// - the current destination block is processed per panel of actual_mc x BlockSize
//   where BlockSize is set to the minimal value allowing gebp to be as fast as possible
// - then, as usual, each panel is split into three parts along the diagonal,
//   the sub blocks above and below the diagonal are processed as usual,
//   while the triangular block overlapping the diagonal is evaluated into a
//   small temporary buffer which is then accumulated into the result using a
//   triangular traversal.
template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
struct tribb_kernel
{
  typedef gebp_traits<LhsScalar,RhsScalar,ConjLhs,ConjRhs> Traits;
  typedef typename Traits::ResScalar ResScalar;

  enum {
    BlockSize  = meta_least_common_multiple<EIGEN_PLAIN_ENUM_MAX(mr,nr),EIGEN_PLAIN_ENUM_MIN(mr,nr)>::ret
  };
  void operator()(ResScalar* _res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index size, Index depth, const ResScalar& alpha)
  {
    typedef blas_data_mapper<ResScalar, Index, ColMajor> ResMapper;
    ResMapper res(_res, resStride);
    gebp_kernel<LhsScalar, RhsScalar, Index, ResMapper, mr, nr, ConjLhs, ConjRhs> gebp_kernel;

    Matrix<ResScalar,BlockSize,BlockSize,ColMajor> buffer((internal::constructor_without_unaligned_array_assert()));

    // let's process the block per panel of actual_mc x BlockSize,
    // again, each is split into three parts, etc.
    for (Index j=0; j<size; j+=BlockSize)
    {
      Index actualBlockSize = std::min<Index>(BlockSize,size - j);
      const RhsScalar* actual_b = blockB+j*depth;

      if(UpLo==Upper)
        gebp_kernel(res.getSubMapper(0, j), blockA, actual_b, j, depth, actualBlockSize, alpha,
                    -1, -1, 0, 0);

      // selfadjoint micro block
      {
        Index i = j;
        buffer.setZero();
        // 1 - apply the kernel on the temporary buffer
        gebp_kernel(ResMapper(buffer.data(), BlockSize), blockA+depth*i, actual_b, actualBlockSize, depth, actualBlockSize, alpha,
                    -1, -1, 0, 0);
        // 2 - triangular accumulation
        for(Index j1=0; j1<actualBlockSize; ++j1)
        {
          ResScalar* r = &res(i, j + j1);
          for(Index i1=UpLo==Lower ? j1 : 0;
              UpLo==Lower ? i1<actualBlockSize : i1<=j1; ++i1)
            r[i1] += buffer(i1,j1);
        }
      }

      if(UpLo==Lower)
      {
        Index i = j+actualBlockSize;
        gebp_kernel(res.getSubMapper(i, j), blockA+depth*i, actual_b, size-i, 
                    depth, actualBlockSize, alpha, -1, -1, 0, 0);
      }
    }
  }
};

} // end namespace internal

// high level API

template<typename MatrixType, typename ProductType, int UpLo, bool IsOuterProduct>
struct general_product_to_triangular_selector;


template<typename MatrixType, typename ProductType, int UpLo>
struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,true>
{
  static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha, bool beta)
  {
    typedef typename MatrixType::Scalar Scalar;
    
    typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs;
    typedef internal::blas_traits<Lhs> LhsBlasTraits;
    typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
    typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
    typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
    
    typedef typename internal::remove_all<typename ProductType::RhsNested>::type Rhs;
    typedef internal::blas_traits<Rhs> RhsBlasTraits;
    typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
    typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
    typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());

    Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());

    if(!beta)
      mat.template triangularView<UpLo>().setZero();

    enum {
      StorageOrder = (internal::traits<MatrixType>::Flags&RowMajorBit) ? RowMajor : ColMajor,
      UseLhsDirectly = _ActualLhs::InnerStrideAtCompileTime==1,
      UseRhsDirectly = _ActualRhs::InnerStrideAtCompileTime==1
    };
    
    internal::gemv_static_vector_if<Scalar,Lhs::SizeAtCompileTime,Lhs::MaxSizeAtCompileTime,!UseLhsDirectly> static_lhs;
    ei_declare_aligned_stack_constructed_variable(Scalar, actualLhsPtr, actualLhs.size(),
      (UseLhsDirectly ? const_cast<Scalar*>(actualLhs.data()) : static_lhs.data()));
    if(!UseLhsDirectly) Map<typename _ActualLhs::PlainObject>(actualLhsPtr, actualLhs.size()) = actualLhs;
    
    internal::gemv_static_vector_if<Scalar,Rhs::SizeAtCompileTime,Rhs::MaxSizeAtCompileTime,!UseRhsDirectly> static_rhs;
    ei_declare_aligned_stack_constructed_variable(Scalar, actualRhsPtr, actualRhs.size(),
      (UseRhsDirectly ? const_cast<Scalar*>(actualRhs.data()) : static_rhs.data()));
    if(!UseRhsDirectly) Map<typename _ActualRhs::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
    
    
    selfadjoint_rank1_update<Scalar,Index,StorageOrder,UpLo,
                              LhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex,
                              RhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex>
          ::run(actualLhs.size(), mat.data(), mat.outerStride(), actualLhsPtr, actualRhsPtr, actualAlpha);
  }
};

template<typename MatrixType, typename ProductType, int UpLo>
struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,false>
{
  static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha, bool beta)
  {
    typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs;
    typedef internal::blas_traits<Lhs> LhsBlasTraits;
    typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
    typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
    typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
    
    typedef typename internal::remove_all<typename ProductType::RhsNested>::type Rhs;
    typedef internal::blas_traits<Rhs> RhsBlasTraits;
    typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
    typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
    typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());

    typename ProductType::Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());

    if(!beta)
      mat.template triangularView<UpLo>().setZero();

    enum {
      IsRowMajor = (internal::traits<MatrixType>::Flags&RowMajorBit) ? 1 : 0,
      LhsIsRowMajor = _ActualLhs::Flags&RowMajorBit ? 1 : 0,
      RhsIsRowMajor = _ActualRhs::Flags&RowMajorBit ? 1 : 0
    };

    Index size = mat.cols();
    Index depth = actualLhs.cols();

    typedef internal::gemm_blocking_space<IsRowMajor ? RowMajor : ColMajor,typename Lhs::Scalar,typename Rhs::Scalar,
          MatrixType::MaxColsAtCompileTime, MatrixType::MaxColsAtCompileTime, _ActualRhs::MaxColsAtCompileTime> BlockingType;

    BlockingType blocking(size, size, depth, 1, false);

    internal::general_matrix_matrix_triangular_product<Index,
      typename Lhs::Scalar, LhsIsRowMajor ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
      typename Rhs::Scalar, RhsIsRowMajor ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
      IsRowMajor ? RowMajor : ColMajor, UpLo>
      ::run(size, depth,
            &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &actualRhs.coeffRef(0,0), actualRhs.outerStride(),
            mat.data(), mat.outerStride(), actualAlpha, blocking);
  }
};

template<typename MatrixType, unsigned int UpLo>
template<typename ProductType>
TriangularView<MatrixType,UpLo>& TriangularViewImpl<MatrixType,UpLo,Dense>::_assignProduct(const ProductType& prod, const Scalar& alpha, bool beta)
{
  eigen_assert(derived().nestedExpression().rows() == prod.rows() && derived().cols() == prod.cols());
  
  general_product_to_triangular_selector<MatrixType, ProductType, UpLo, internal::traits<ProductType>::InnerSize==1>::run(derived().nestedExpression().const_cast_derived(), prod, alpha, beta);
  
  return derived();
}

} // end namespace Eigen

#endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H