aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/products/SelfadjointMatrixMatrix.h
blob: da6f82abcd779b2fff1fd1ecf10699f6dc4d07ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SELFADJOINT_MATRIX_MATRIX_H
#define EIGEN_SELFADJOINT_MATRIX_MATRIX_H

namespace Eigen { 

namespace internal {

// pack a selfadjoint block diagonal for use with the gebp_kernel
template<typename Scalar, typename Index, int Pack1, int Pack2_dummy, int StorageOrder>
struct symm_pack_lhs
{
  template<int BlockRows> inline
  void pack(Scalar* blockA, const const_blas_data_mapper<Scalar,Index,StorageOrder>& lhs, Index cols, Index i, Index& count)
  {
    // normal copy
    for(Index k=0; k<i; k++)
      for(Index w=0; w<BlockRows; w++)
        blockA[count++] = lhs(i+w,k);           // normal
    // symmetric copy
    Index h = 0;
    for(Index k=i; k<i+BlockRows; k++)
    {
      for(Index w=0; w<h; w++)
        blockA[count++] = numext::conj(lhs(k, i+w)); // transposed

      blockA[count++] = numext::real(lhs(k,k));   // real (diagonal)

      for(Index w=h+1; w<BlockRows; w++)
        blockA[count++] = lhs(i+w, k);          // normal
      ++h;
    }
    // transposed copy
    for(Index k=i+BlockRows; k<cols; k++)
      for(Index w=0; w<BlockRows; w++)
        blockA[count++] = numext::conj(lhs(k, i+w)); // transposed
  }
  void operator()(Scalar* blockA, const Scalar* _lhs, Index lhsStride, Index cols, Index rows)
  {
    enum { PacketSize = packet_traits<Scalar>::size };
    const_blas_data_mapper<Scalar,Index,StorageOrder> lhs(_lhs,lhsStride);
    Index count = 0;
    //Index peeled_mc3 = (rows/Pack1)*Pack1;
    
    const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0;
    const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0;
    const Index peeled_mc1 = Pack1>=1*PacketSize ? (rows/(1*PacketSize))*(1*PacketSize) : 0;
    
    if(Pack1>=3*PacketSize)
      for(Index i=0; i<peeled_mc3; i+=3*PacketSize)
        pack<3*PacketSize>(blockA, lhs, cols, i, count);
    
    if(Pack1>=2*PacketSize)
      for(Index i=peeled_mc3; i<peeled_mc2; i+=2*PacketSize)
        pack<2*PacketSize>(blockA, lhs, cols, i, count);
    
    if(Pack1>=1*PacketSize)
      for(Index i=peeled_mc2; i<peeled_mc1; i+=1*PacketSize)
        pack<1*PacketSize>(blockA, lhs, cols, i, count);

    // do the same with mr==1
    for(Index i=peeled_mc1; i<rows; i++)
    {
      for(Index k=0; k<i; k++)
        blockA[count++] = lhs(i, k);                   // normal

      blockA[count++] = numext::real(lhs(i, i));       // real (diagonal)

      for(Index k=i+1; k<cols; k++)
        blockA[count++] = numext::conj(lhs(k, i));     // transposed
    }
  }
};

template<typename Scalar, typename Index, int nr, int StorageOrder>
struct symm_pack_rhs
{
  enum { PacketSize = packet_traits<Scalar>::size };
  void operator()(Scalar* blockB, const Scalar* _rhs, Index rhsStride, Index rows, Index cols, Index k2)
  {
    Index end_k = k2 + rows;
    Index count = 0;
    const_blas_data_mapper<Scalar,Index,StorageOrder> rhs(_rhs,rhsStride);
    Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0;
    Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0;

    // first part: normal case
    for(Index j2=0; j2<k2; j2+=nr)
    {
      for(Index k=k2; k<end_k; k++)
      {
        blockB[count+0] = rhs(k,j2+0);
        blockB[count+1] = rhs(k,j2+1);
        if (nr>=4)
        {
          blockB[count+2] = rhs(k,j2+2);
          blockB[count+3] = rhs(k,j2+3);
        }
        if (nr>=8)
        {
          blockB[count+4] = rhs(k,j2+4);
          blockB[count+5] = rhs(k,j2+5);
          blockB[count+6] = rhs(k,j2+6);
          blockB[count+7] = rhs(k,j2+7);
        }
        count += nr;
      }
    }

    // second part: diagonal block
    Index end8 = nr>=8 ? (std::min)(k2+rows,packet_cols8) : k2;
    if(nr>=8)
    {
      for(Index j2=k2; j2<end8; j2+=8)
      {
        // again we can split vertically in three different parts (transpose, symmetric, normal)
        // transpose
        for(Index k=k2; k<j2; k++)
        {
          blockB[count+0] = numext::conj(rhs(j2+0,k));
          blockB[count+1] = numext::conj(rhs(j2+1,k));
          blockB[count+2] = numext::conj(rhs(j2+2,k));
          blockB[count+3] = numext::conj(rhs(j2+3,k));
          blockB[count+4] = numext::conj(rhs(j2+4,k));
          blockB[count+5] = numext::conj(rhs(j2+5,k));
          blockB[count+6] = numext::conj(rhs(j2+6,k));
          blockB[count+7] = numext::conj(rhs(j2+7,k));
          count += 8;
        }
        // symmetric
        Index h = 0;
        for(Index k=j2; k<j2+8; k++)
        {
          // normal
          for (Index w=0 ; w<h; ++w)
            blockB[count+w] = rhs(k,j2+w);

          blockB[count+h] = numext::real(rhs(k,k));

          // transpose
          for (Index w=h+1 ; w<8; ++w)
            blockB[count+w] = numext::conj(rhs(j2+w,k));
          count += 8;
          ++h;
        }
        // normal
        for(Index k=j2+8; k<end_k; k++)
        {
          blockB[count+0] = rhs(k,j2+0);
          blockB[count+1] = rhs(k,j2+1);
          blockB[count+2] = rhs(k,j2+2);
          blockB[count+3] = rhs(k,j2+3);
          blockB[count+4] = rhs(k,j2+4);
          blockB[count+5] = rhs(k,j2+5);
          blockB[count+6] = rhs(k,j2+6);
          blockB[count+7] = rhs(k,j2+7);
          count += 8;
        }
      }
    }
    if(nr>=4)
    {
      for(Index j2=end8; j2<(std::min)(k2+rows,packet_cols4); j2+=4)
      {
        // again we can split vertically in three different parts (transpose, symmetric, normal)
        // transpose
        for(Index k=k2; k<j2; k++)
        {
          blockB[count+0] = numext::conj(rhs(j2+0,k));
          blockB[count+1] = numext::conj(rhs(j2+1,k));
          blockB[count+2] = numext::conj(rhs(j2+2,k));
          blockB[count+3] = numext::conj(rhs(j2+3,k));
          count += 4;
        }
        // symmetric
        Index h = 0;
        for(Index k=j2; k<j2+4; k++)
        {
          // normal
          for (Index w=0 ; w<h; ++w)
            blockB[count+w] = rhs(k,j2+w);

          blockB[count+h] = numext::real(rhs(k,k));

          // transpose
          for (Index w=h+1 ; w<4; ++w)
            blockB[count+w] = numext::conj(rhs(j2+w,k));
          count += 4;
          ++h;
        }
        // normal
        for(Index k=j2+4; k<end_k; k++)
        {
          blockB[count+0] = rhs(k,j2+0);
          blockB[count+1] = rhs(k,j2+1);
          blockB[count+2] = rhs(k,j2+2);
          blockB[count+3] = rhs(k,j2+3);
          count += 4;
        }
      }
    }

    // third part: transposed
    if(nr>=8)
    {
      for(Index j2=k2+rows; j2<packet_cols8; j2+=8)
      {
        for(Index k=k2; k<end_k; k++)
        {
          blockB[count+0] = numext::conj(rhs(j2+0,k));
          blockB[count+1] = numext::conj(rhs(j2+1,k));
          blockB[count+2] = numext::conj(rhs(j2+2,k));
          blockB[count+3] = numext::conj(rhs(j2+3,k));
          blockB[count+4] = numext::conj(rhs(j2+4,k));
          blockB[count+5] = numext::conj(rhs(j2+5,k));
          blockB[count+6] = numext::conj(rhs(j2+6,k));
          blockB[count+7] = numext::conj(rhs(j2+7,k));
          count += 8;
        }
      }
    }
    if(nr>=4)
    {
      for(Index j2=(std::max)(packet_cols8,k2+rows); j2<packet_cols4; j2+=4)
      {
        for(Index k=k2; k<end_k; k++)
        {
          blockB[count+0] = numext::conj(rhs(j2+0,k));
          blockB[count+1] = numext::conj(rhs(j2+1,k));
          blockB[count+2] = numext::conj(rhs(j2+2,k));
          blockB[count+3] = numext::conj(rhs(j2+3,k));
          count += 4;
        }
      }
    }

    // copy the remaining columns one at a time (=> the same with nr==1)
    for(Index j2=packet_cols4; j2<cols; ++j2)
    {
      // transpose
      Index half = (std::min)(end_k,j2);
      for(Index k=k2; k<half; k++)
      {
        blockB[count] = numext::conj(rhs(j2,k));
        count += 1;
      }

      if(half==j2 && half<k2+rows)
      {
        blockB[count] = numext::real(rhs(j2,j2));
        count += 1;
      }
      else
        half--;

      // normal
      for(Index k=half+1; k<k2+rows; k++)
      {
        blockB[count] = rhs(k,j2);
        count += 1;
      }
    }
  }
};

/* Optimized selfadjoint matrix * matrix (_SYMM) product built on top of
 * the general matrix matrix product.
 */
template <typename Scalar, typename Index,
          int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs,
          int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs,
          int ResStorageOrder>
struct product_selfadjoint_matrix;

template <typename Scalar, typename Index,
          int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs,
          int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs>
struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,LhsSelfAdjoint,ConjugateLhs, RhsStorageOrder,RhsSelfAdjoint,ConjugateRhs,RowMajor>
{

  static EIGEN_STRONG_INLINE void run(
    Index rows, Index cols,
    const Scalar* lhs, Index lhsStride,
    const Scalar* rhs, Index rhsStride,
    Scalar* res,       Index resStride,
    const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking)
  {
    product_selfadjoint_matrix<Scalar, Index,
      EIGEN_LOGICAL_XOR(RhsSelfAdjoint,RhsStorageOrder==RowMajor) ? ColMajor : RowMajor,
      RhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsSelfAdjoint,ConjugateRhs),
      EIGEN_LOGICAL_XOR(LhsSelfAdjoint,LhsStorageOrder==RowMajor) ? ColMajor : RowMajor,
      LhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsSelfAdjoint,ConjugateLhs),
      ColMajor>
      ::run(cols, rows,  rhs, rhsStride,  lhs, lhsStride,  res, resStride,  alpha, blocking);
  }
};

template <typename Scalar, typename Index,
          int LhsStorageOrder, bool ConjugateLhs,
          int RhsStorageOrder, bool ConjugateRhs>
struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,true,ConjugateLhs, RhsStorageOrder,false,ConjugateRhs,ColMajor>
{

  static EIGEN_DONT_INLINE void run(
    Index rows, Index cols,
    const Scalar* _lhs, Index lhsStride,
    const Scalar* _rhs, Index rhsStride,
    Scalar* res,        Index resStride,
    const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking);
};

template <typename Scalar, typename Index,
          int LhsStorageOrder, bool ConjugateLhs,
          int RhsStorageOrder, bool ConjugateRhs>
EIGEN_DONT_INLINE void product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,true,ConjugateLhs, RhsStorageOrder,false,ConjugateRhs,ColMajor>::run(
    Index rows, Index cols,
    const Scalar* _lhs, Index lhsStride,
    const Scalar* _rhs, Index rhsStride,
    Scalar* _res,        Index resStride,
    const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking)
  {
    Index size = rows;

    typedef gebp_traits<Scalar,Scalar> Traits;

    typedef const_blas_data_mapper<Scalar, Index, LhsStorageOrder> LhsMapper;
    typedef const_blas_data_mapper<Scalar, Index, (LhsStorageOrder == RowMajor) ? ColMajor : RowMajor> LhsTransposeMapper;
    typedef const_blas_data_mapper<Scalar, Index, RhsStorageOrder> RhsMapper;
    typedef blas_data_mapper<typename Traits::ResScalar, Index, ColMajor> ResMapper;
    LhsMapper lhs(_lhs,lhsStride);
    LhsTransposeMapper lhs_transpose(_lhs,lhsStride);
    RhsMapper rhs(_rhs,rhsStride);
    ResMapper res(_res, resStride);

    Index kc = blocking.kc();                   // cache block size along the K direction
    Index mc = (std::min)(rows,blocking.mc());  // cache block size along the M direction
    // kc must be smaller than mc
    kc = (std::min)(kc,mc);
    std::size_t sizeA = kc*mc;
    std::size_t sizeB = kc*cols;
    ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
    ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());

    gebp_kernel<Scalar, Scalar, Index, ResMapper, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
    symm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
    gemm_pack_rhs<Scalar, Index, RhsMapper, Traits::nr,RhsStorageOrder> pack_rhs;
    gemm_pack_lhs<Scalar, Index, LhsTransposeMapper, Traits::mr, Traits::LhsProgress, LhsStorageOrder==RowMajor?ColMajor:RowMajor, true> pack_lhs_transposed;

    for(Index k2=0; k2<size; k2+=kc)
    {
      const Index actual_kc = (std::min)(k2+kc,size)-k2;

      // we have selected one row panel of rhs and one column panel of lhs
      // pack rhs's panel into a sequential chunk of memory
      // and expand each coeff to a constant packet for further reuse
      pack_rhs(blockB, rhs.getSubMapper(k2,0), actual_kc, cols);

      // the select lhs's panel has to be split in three different parts:
      //  1 - the transposed panel above the diagonal block => transposed packed copy
      //  2 - the diagonal block => special packed copy
      //  3 - the panel below the diagonal block => generic packed copy
      for(Index i2=0; i2<k2; i2+=mc)
      {
        const Index actual_mc = (std::min)(i2+mc,k2)-i2;
        // transposed packed copy
        pack_lhs_transposed(blockA, lhs_transpose.getSubMapper(i2, k2), actual_kc, actual_mc);

        gebp_kernel(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, alpha);
      }
      // the block diagonal
      {
        const Index actual_mc = (std::min)(k2+kc,size)-k2;
        // symmetric packed copy
        pack_lhs(blockA, &lhs(k2,k2), lhsStride, actual_kc, actual_mc);

        gebp_kernel(res.getSubMapper(k2, 0), blockA, blockB, actual_mc, actual_kc, cols, alpha);
      }

      for(Index i2=k2+kc; i2<size; i2+=mc)
      {
        const Index actual_mc = (std::min)(i2+mc,size)-i2;
        gemm_pack_lhs<Scalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, LhsStorageOrder,false>()
          (blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc);

        gebp_kernel(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, alpha);
      }
    }
  }

// matrix * selfadjoint product
template <typename Scalar, typename Index,
          int LhsStorageOrder, bool ConjugateLhs,
          int RhsStorageOrder, bool ConjugateRhs>
struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,false,ConjugateLhs, RhsStorageOrder,true,ConjugateRhs,ColMajor>
{

  static EIGEN_DONT_INLINE void run(
    Index rows, Index cols,
    const Scalar* _lhs, Index lhsStride,
    const Scalar* _rhs, Index rhsStride,
    Scalar* res,        Index resStride,
    const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking);
};

template <typename Scalar, typename Index,
          int LhsStorageOrder, bool ConjugateLhs,
          int RhsStorageOrder, bool ConjugateRhs>
EIGEN_DONT_INLINE void product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,false,ConjugateLhs, RhsStorageOrder,true,ConjugateRhs,ColMajor>::run(
    Index rows, Index cols,
    const Scalar* _lhs, Index lhsStride,
    const Scalar* _rhs, Index rhsStride,
    Scalar* _res,        Index resStride,
    const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking)
  {
    Index size = cols;

    typedef gebp_traits<Scalar,Scalar> Traits;

    typedef const_blas_data_mapper<Scalar, Index, LhsStorageOrder> LhsMapper;
    typedef blas_data_mapper<typename Traits::ResScalar, Index, ColMajor> ResMapper;
    LhsMapper lhs(_lhs,lhsStride);
    ResMapper res(_res,resStride);

    Index kc = blocking.kc();                   // cache block size along the K direction
    Index mc = (std::min)(rows,blocking.mc());  // cache block size along the M direction
    std::size_t sizeA = kc*mc;
    std::size_t sizeB = kc*cols;
    ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
    ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());

    gebp_kernel<Scalar, Scalar, Index, ResMapper, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
    gemm_pack_lhs<Scalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
    symm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;

    for(Index k2=0; k2<size; k2+=kc)
    {
      const Index actual_kc = (std::min)(k2+kc,size)-k2;

      pack_rhs(blockB, _rhs, rhsStride, actual_kc, cols, k2);

      // => GEPP
      for(Index i2=0; i2<rows; i2+=mc)
      {
        const Index actual_mc = (std::min)(i2+mc,rows)-i2;
        pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc);

        gebp_kernel(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, alpha);
      }
    }
  }

} // end namespace internal

/***************************************************************************
* Wrapper to product_selfadjoint_matrix
***************************************************************************/

namespace internal {
  
template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
struct selfadjoint_product_impl<Lhs,LhsMode,false,Rhs,RhsMode,false>
{
  typedef typename Product<Lhs,Rhs>::Scalar Scalar;
  
  typedef internal::blas_traits<Lhs> LhsBlasTraits;
  typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
  typedef internal::blas_traits<Rhs> RhsBlasTraits;
  typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
  
  enum {
    LhsIsUpper = (LhsMode&(Upper|Lower))==Upper,
    LhsIsSelfAdjoint = (LhsMode&SelfAdjoint)==SelfAdjoint,
    RhsIsUpper = (RhsMode&(Upper|Lower))==Upper,
    RhsIsSelfAdjoint = (RhsMode&SelfAdjoint)==SelfAdjoint
  };
  
  template<typename Dest>
  static void run(Dest &dst, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha)
  {
    eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols());

    typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
    typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);

    Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
                               * RhsBlasTraits::extractScalarFactor(a_rhs);

    typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar,
              Lhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxColsAtCompileTime,1> BlockingType;

    BlockingType blocking(lhs.rows(), rhs.cols(), lhs.cols(), 1, false);

    internal::product_selfadjoint_matrix<Scalar, Index,
      EIGEN_LOGICAL_XOR(LhsIsUpper,internal::traits<Lhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, LhsIsSelfAdjoint,
      NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsIsUpper,bool(LhsBlasTraits::NeedToConjugate)),
      EIGEN_LOGICAL_XOR(RhsIsUpper,internal::traits<Rhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, RhsIsSelfAdjoint,
      NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsIsUpper,bool(RhsBlasTraits::NeedToConjugate)),
      internal::traits<Dest>::Flags&RowMajorBit  ? RowMajor : ColMajor>
      ::run(
        lhs.rows(), rhs.cols(),                 // sizes
        &lhs.coeffRef(0,0), lhs.outerStride(),  // lhs info
        &rhs.coeffRef(0,0), rhs.outerStride(),  // rhs info
        &dst.coeffRef(0,0), dst.outerStride(),  // result info
        actualAlpha, blocking                   // alpha
      );
  }
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_H