aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/products/SelfadjointMatrixVector.h
blob: f698f67f9b093e6686abbb057543781a19485110 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
#define EIGEN_SELFADJOINT_MATRIX_VECTOR_H

namespace Eigen { 

namespace internal {

/* Optimized selfadjoint matrix * vector product:
 * This algorithm processes 2 columns at onces that allows to both reduce
 * the number of load/stores of the result by a factor 2 and to reduce
 * the instruction dependency.
 */

template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version=Specialized>
struct selfadjoint_matrix_vector_product;

template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
struct selfadjoint_matrix_vector_product

{
static EIGEN_DONT_INLINE void run(
  Index size,
  const Scalar*  lhs, Index lhsStride,
  const Scalar* _rhs, Index rhsIncr,
  Scalar* res,
  Scalar alpha);
};

template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
EIGEN_DONT_INLINE void selfadjoint_matrix_vector_product<Scalar,Index,StorageOrder,UpLo,ConjugateLhs,ConjugateRhs,Version>::run(
  Index size,
  const Scalar*  lhs, Index lhsStride,
  const Scalar* _rhs, Index rhsIncr,
  Scalar* res,
  Scalar alpha)
{
  typedef typename packet_traits<Scalar>::type Packet;
  const Index PacketSize = sizeof(Packet)/sizeof(Scalar);

  enum {
    IsRowMajor = StorageOrder==RowMajor ? 1 : 0,
    IsLower = UpLo == Lower ? 1 : 0,
    FirstTriangular = IsRowMajor == IsLower
  };

  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs,  IsRowMajor), ConjugateRhs> cj0;
  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> cj1;
  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex, ConjugateRhs> cjd;

  conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs,  IsRowMajor), ConjugateRhs> pcj0;
  conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1;

  Scalar cjAlpha = ConjugateRhs ? numext::conj(alpha) : alpha;

  // FIXME this copy is now handled outside product_selfadjoint_vector, so it could probably be removed.
  // if the rhs is not sequentially stored in memory we copy it to a temporary buffer,
  // this is because we need to extract packets
  ei_declare_aligned_stack_constructed_variable(Scalar,rhs,size,rhsIncr==1 ? const_cast<Scalar*>(_rhs) : 0);  
  if (rhsIncr!=1)
  {
    const Scalar* it = _rhs;
    for (Index i=0; i<size; ++i, it+=rhsIncr)
      rhs[i] = *it;
  }

  Index bound = (std::max)(Index(0),size-8) & 0xfffffffe;
  if (FirstTriangular)
    bound = size - bound;

  for (Index j=FirstTriangular ? bound : 0;
       j<(FirstTriangular ? size : bound);j+=2)
  {
    const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
    const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;

    Scalar t0 = cjAlpha * rhs[j];
    Packet ptmp0 = pset1<Packet>(t0);
    Scalar t1 = cjAlpha * rhs[j+1];
    Packet ptmp1 = pset1<Packet>(t1);

    Scalar t2(0);
    Packet ptmp2 = pset1<Packet>(t2);
    Scalar t3(0);
    Packet ptmp3 = pset1<Packet>(t3);

    size_t starti = FirstTriangular ? 0 : j+2;
    size_t endi   = FirstTriangular ? j : size;
    size_t alignedStart = (starti) + internal::first_aligned(&res[starti], endi-starti);
    size_t alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);

    // TODO make sure this product is a real * complex and that the rhs is properly conjugated if needed
    res[j]   += cjd.pmul(numext::real(A0[j]), t0);
    res[j+1] += cjd.pmul(numext::real(A1[j+1]), t1);
    if(FirstTriangular)
    {
      res[j]   += cj0.pmul(A1[j],   t1);
      t3       += cj1.pmul(A1[j],   rhs[j]);
    }
    else
    {
      res[j+1] += cj0.pmul(A0[j+1],t0);
      t2 += cj1.pmul(A0[j+1], rhs[j+1]);
    }

    for (size_t i=starti; i<alignedStart; ++i)
    {
      res[i] += t0 * A0[i] + t1 * A1[i];
      t2 += numext::conj(A0[i]) * rhs[i];
      t3 += numext::conj(A1[i]) * rhs[i];
    }
    // Yes this an optimization for gcc 4.3 and 4.4 (=> huge speed up)
    // gcc 4.2 does this optimization automatically.
    const Scalar* EIGEN_RESTRICT a0It  = A0  + alignedStart;
    const Scalar* EIGEN_RESTRICT a1It  = A1  + alignedStart;
    const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
          Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
    for (size_t i=alignedStart; i<alignedEnd; i+=PacketSize)
    {
      Packet A0i = ploadu<Packet>(a0It);  a0It  += PacketSize;
      Packet A1i = ploadu<Packet>(a1It);  a1It  += PacketSize;
      Packet Bi  = ploadu<Packet>(rhsIt); rhsIt += PacketSize; // FIXME should be aligned in most cases
      Packet Xi  = pload <Packet>(resIt);

      Xi    = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
      ptmp2 = pcj1.pmadd(A0i,  Bi, ptmp2);
      ptmp3 = pcj1.pmadd(A1i,  Bi, ptmp3);
      pstore(resIt,Xi); resIt += PacketSize;
    }
    for (size_t i=alignedEnd; i<endi; i++)
    {
      res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
      t2 += cj1.pmul(A0[i], rhs[i]);
      t3 += cj1.pmul(A1[i], rhs[i]);
    }

    res[j]   += alpha * (t2 + predux(ptmp2));
    res[j+1] += alpha * (t3 + predux(ptmp3));
  }
  for (Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
  {
    const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;

    Scalar t1 = cjAlpha * rhs[j];
    Scalar t2(0);
    // TODO make sure this product is a real * complex and that the rhs is properly conjugated if needed
    res[j] += cjd.pmul(numext::real(A0[j]), t1);
    for (Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++)
    {
      res[i] += cj0.pmul(A0[i], t1);
      t2 += cj1.pmul(A0[i], rhs[i]);
    }
    res[j] += alpha * t2;
  }
}

} // end namespace internal 

/***************************************************************************
* Wrapper to product_selfadjoint_vector
***************************************************************************/

namespace internal {
template<typename Lhs, int LhsMode, typename Rhs>
struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true> >
  : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs> >
{};
}

template<typename Lhs, int LhsMode, typename Rhs>
struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
  : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs >
{
  EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)

  enum {
    LhsUpLo = LhsMode&(Upper|Lower)
  };

  SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}

  template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
  {
    typedef typename Dest::Scalar ResScalar;
    typedef typename Base::RhsScalar RhsScalar;
    typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
    
    eigen_assert(dest.rows()==m_lhs.rows() && dest.cols()==m_rhs.cols());

    typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
    typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);

    Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
                               * RhsBlasTraits::extractScalarFactor(m_rhs);

    enum {
      EvalToDest = (Dest::InnerStrideAtCompileTime==1),
      UseRhs = (_ActualRhsType::InnerStrideAtCompileTime==1)
    };
    
    internal::gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,!EvalToDest> static_dest;
    internal::gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!UseRhs> static_rhs;

    ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
                                                  EvalToDest ? dest.data() : static_dest.data());
                                                  
    ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,rhs.size(),
        UseRhs ? const_cast<RhsScalar*>(rhs.data()) : static_rhs.data());
    
    if(!EvalToDest)
    {
      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      int size = dest.size();
      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      #endif
      MappedDest(actualDestPtr, dest.size()) = dest;
    }
      
    if(!UseRhs)
    {
      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      int size = rhs.size();
      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      #endif
      Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
    }
      
      
    internal::selfadjoint_matrix_vector_product<Scalar, Index, (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
      (
        lhs.rows(),                             // size
        &lhs.coeffRef(0,0),  lhs.outerStride(), // lhs info
        actualRhsPtr, 1,                        // rhs info
        actualDestPtr,                          // result info
        actualAlpha                             // scale factor
      );
    
    if(!EvalToDest)
      dest = MappedDest(actualDestPtr, dest.size());
  }
};

namespace internal {
template<typename Lhs, typename Rhs, int RhsMode>
struct traits<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false> >
  : traits<ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs> >
{};
}

template<typename Lhs, typename Rhs, int RhsMode>
struct SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>
  : public ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs >
{
  EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)

  enum {
    RhsUpLo = RhsMode&(Upper|Lower)
  };

  SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}

  template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
  {
    // let's simply transpose the product
    Transpose<Dest> destT(dest);
    SelfadjointProductMatrix<Transpose<const Rhs>, int(RhsUpLo)==Upper ? Lower : Upper, false,
                             Transpose<const Lhs>, 0, true>(m_rhs.transpose(), m_lhs.transpose()).scaleAndAddTo(destT, alpha);
  }
};

} // end namespace Eigen

#endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H