aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/products/SelfadjointMatrixVector.h
blob: 3fd180e6c0b6735eba9b2d59f41ff33d6466c38c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
#define EIGEN_SELFADJOINT_MATRIX_VECTOR_H

namespace Eigen { 

namespace internal {

/* Optimized selfadjoint matrix * vector product:
 * This algorithm processes 2 columns at onces that allows to both reduce
 * the number of load/stores of the result by a factor 2 and to reduce
 * the instruction dependency.
 */

template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version=Specialized>
struct selfadjoint_matrix_vector_product;

template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
struct selfadjoint_matrix_vector_product

{
static EIGEN_DONT_INLINE void run(
  Index size,
  const Scalar*  lhs, Index lhsStride,
  const Scalar*  rhs,
  Scalar* res,
  Scalar alpha);
};

template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
EIGEN_DONT_INLINE void selfadjoint_matrix_vector_product<Scalar,Index,StorageOrder,UpLo,ConjugateLhs,ConjugateRhs,Version>::run(
  Index size,
  const Scalar*  lhs, Index lhsStride,
  const Scalar*  rhs,
  Scalar* res,
  Scalar alpha)
{
  typedef typename packet_traits<Scalar>::type Packet;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  const Index PacketSize = sizeof(Packet)/sizeof(Scalar);

  enum {
    IsRowMajor = StorageOrder==RowMajor ? 1 : 0,
    IsLower = UpLo == Lower ? 1 : 0,
    FirstTriangular = IsRowMajor == IsLower
  };

  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs,  IsRowMajor), ConjugateRhs> cj0;
  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> cj1;
  conj_helper<RealScalar,Scalar,false, ConjugateRhs> cjd;

  conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs,  IsRowMajor), ConjugateRhs> pcj0;
  conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1;

  Scalar cjAlpha = ConjugateRhs ? numext::conj(alpha) : alpha;


  Index bound = (std::max)(Index(0),size-8) & 0xfffffffe;
  if (FirstTriangular)
    bound = size - bound;

  for (Index j=FirstTriangular ? bound : 0;
       j<(FirstTriangular ? size : bound);j+=2)
  {
    const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
    const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;

    Scalar t0 = cjAlpha * rhs[j];
    Packet ptmp0 = pset1<Packet>(t0);
    Scalar t1 = cjAlpha * rhs[j+1];
    Packet ptmp1 = pset1<Packet>(t1);

    Scalar t2(0);
    Packet ptmp2 = pset1<Packet>(t2);
    Scalar t3(0);
    Packet ptmp3 = pset1<Packet>(t3);

    Index starti = FirstTriangular ? 0 : j+2;
    Index endi   = FirstTriangular ? j : size;
    Index alignedStart = (starti) + internal::first_default_aligned(&res[starti], endi-starti);
    Index alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);

    res[j]   += cjd.pmul(numext::real(A0[j]), t0);
    res[j+1] += cjd.pmul(numext::real(A1[j+1]), t1);
    if(FirstTriangular)
    {
      res[j]   += cj0.pmul(A1[j],   t1);
      t3       += cj1.pmul(A1[j],   rhs[j]);
    }
    else
    {
      res[j+1] += cj0.pmul(A0[j+1],t0);
      t2 += cj1.pmul(A0[j+1], rhs[j+1]);
    }

    for (Index i=starti; i<alignedStart; ++i)
    {
      res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
      t2 += cj1.pmul(A0[i], rhs[i]);
      t3 += cj1.pmul(A1[i], rhs[i]);
    }
    // Yes this an optimization for gcc 4.3 and 4.4 (=> huge speed up)
    // gcc 4.2 does this optimization automatically.
    const Scalar* EIGEN_RESTRICT a0It  = A0  + alignedStart;
    const Scalar* EIGEN_RESTRICT a1It  = A1  + alignedStart;
    const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
          Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
    for (Index i=alignedStart; i<alignedEnd; i+=PacketSize)
    {
      Packet A0i = ploadu<Packet>(a0It);  a0It  += PacketSize;
      Packet A1i = ploadu<Packet>(a1It);  a1It  += PacketSize;
      Packet Bi  = ploadu<Packet>(rhsIt); rhsIt += PacketSize; // FIXME should be aligned in most cases
      Packet Xi  = pload <Packet>(resIt);

      Xi    = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
      ptmp2 = pcj1.pmadd(A0i,  Bi, ptmp2);
      ptmp3 = pcj1.pmadd(A1i,  Bi, ptmp3);
      pstore(resIt,Xi); resIt += PacketSize;
    }
    for (Index i=alignedEnd; i<endi; i++)
    {
      res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
      t2 += cj1.pmul(A0[i], rhs[i]);
      t3 += cj1.pmul(A1[i], rhs[i]);
    }

    res[j]   += alpha * (t2 + predux(ptmp2));
    res[j+1] += alpha * (t3 + predux(ptmp3));
  }
  for (Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
  {
    const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;

    Scalar t1 = cjAlpha * rhs[j];
    Scalar t2(0);
    res[j] += cjd.pmul(numext::real(A0[j]), t1);
    for (Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++)
    {
      res[i] += cj0.pmul(A0[i], t1);
      t2 += cj1.pmul(A0[i], rhs[i]);
    }
    res[j] += alpha * t2;
  }
}

} // end namespace internal 

/***************************************************************************
* Wrapper to product_selfadjoint_vector
***************************************************************************/

namespace internal {

template<typename Lhs, int LhsMode, typename Rhs>
struct selfadjoint_product_impl<Lhs,LhsMode,false,Rhs,0,true>
{
  typedef typename Product<Lhs,Rhs>::Scalar Scalar;
  
  typedef internal::blas_traits<Lhs> LhsBlasTraits;
  typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
  typedef typename internal::remove_all<ActualLhsType>::type ActualLhsTypeCleaned;
  
  typedef internal::blas_traits<Rhs> RhsBlasTraits;
  typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
  typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;

  enum { LhsUpLo = LhsMode&(Upper|Lower) };

  template<typename Dest>
  static void run(Dest& dest, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha)
  {
    typedef typename Dest::Scalar ResScalar;
    typedef typename Rhs::Scalar RhsScalar;
    typedef Map<Matrix<ResScalar,Dynamic,1>, EIGEN_PLAIN_ENUM_MIN(AlignedMax,internal::packet_traits<ResScalar>::size)> MappedDest;
    
    eigen_assert(dest.rows()==a_lhs.rows() && dest.cols()==a_rhs.cols());

    typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
    typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);

    Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
                               * RhsBlasTraits::extractScalarFactor(a_rhs);

    enum {
      EvalToDest = (Dest::InnerStrideAtCompileTime==1),
      UseRhs = (ActualRhsTypeCleaned::InnerStrideAtCompileTime==1)
    };
    
    internal::gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,!EvalToDest> static_dest;
    internal::gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!UseRhs> static_rhs;

    ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
                                                  EvalToDest ? dest.data() : static_dest.data());
                                                  
    ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,rhs.size(),
        UseRhs ? const_cast<RhsScalar*>(rhs.data()) : static_rhs.data());
    
    if(!EvalToDest)
    {
      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      Index size = dest.size();
      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      #endif
      MappedDest(actualDestPtr, dest.size()) = dest;
    }
      
    if(!UseRhs)
    {
      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      Index size = rhs.size();
      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      #endif
      Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
    }
      
      
    internal::selfadjoint_matrix_vector_product<Scalar, Index, (internal::traits<ActualLhsTypeCleaned>::Flags&RowMajorBit) ? RowMajor : ColMajor,
                                                int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
      (
        lhs.rows(),                             // size
        &lhs.coeffRef(0,0),  lhs.outerStride(), // lhs info
        actualRhsPtr,                           // rhs info
        actualDestPtr,                          // result info
        actualAlpha                             // scale factor
      );
    
    if(!EvalToDest)
      dest = MappedDest(actualDestPtr, dest.size());
  }
};

template<typename Lhs, typename Rhs, int RhsMode>
struct selfadjoint_product_impl<Lhs,0,true,Rhs,RhsMode,false>
{
  typedef typename Product<Lhs,Rhs>::Scalar Scalar;
  enum { RhsUpLo = RhsMode&(Upper|Lower)  };

  template<typename Dest>
  static void run(Dest& dest, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha)
  {
    // let's simply transpose the product
    Transpose<Dest> destT(dest);
    selfadjoint_product_impl<Transpose<const Rhs>, int(RhsUpLo)==Upper ? Lower : Upper, false,
                             Transpose<const Lhs>, 0, true>::run(destT, a_rhs.transpose(), a_lhs.transpose(), alpha);
  }
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H