aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/products/TriangularSolverMatrix.h
blob: a49ea318345bf690793005ab682573a54eff6172 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_H
#define EIGEN_TRIANGULAR_SOLVER_MATRIX_H

namespace Eigen { 

namespace internal {

// if the rhs is row major, let's transpose the product
template <typename Scalar, typename Index, int Side, int Mode, bool Conjugate, int TriStorageOrder>
struct triangular_solve_matrix<Scalar,Index,Side,Mode,Conjugate,TriStorageOrder,RowMajor>
{
  static EIGEN_DONT_INLINE void run(
    Index size, Index cols,
    const Scalar*  tri, Index triStride,
    Scalar* _other, Index otherStride,
    level3_blocking<Scalar,Scalar>& blocking)
  {
    triangular_solve_matrix<
      Scalar, Index, Side==OnTheLeft?OnTheRight:OnTheLeft,
      (Mode&UnitDiag) | ((Mode&Upper) ? Lower : Upper),
      NumTraits<Scalar>::IsComplex && Conjugate,
      TriStorageOrder==RowMajor ? ColMajor : RowMajor, ColMajor>
      ::run(size, cols, tri, triStride, _other, otherStride, blocking);
  }
};

/* Optimized triangular solver with multiple right hand side and the triangular matrix on the left
 */
template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
struct triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor>
{
  static EIGEN_DONT_INLINE void run(
    Index size, Index otherSize,
    const Scalar* _tri, Index triStride,
    Scalar* _other, Index otherStride,
    level3_blocking<Scalar,Scalar>& blocking)
  {
    Index cols = otherSize;
    const_blas_data_mapper<Scalar, Index, TriStorageOrder> tri(_tri,triStride);
    blas_data_mapper<Scalar, Index, ColMajor> other(_other,otherStride);

    typedef gebp_traits<Scalar,Scalar> Traits;
    enum {
      SmallPanelWidth   = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
      IsLower = (Mode&Lower) == Lower
    };

    Index kc = blocking.kc();                   // cache block size along the K direction
    Index mc = (std::min)(size,blocking.mc());  // cache block size along the M direction

    std::size_t sizeA = kc*mc;
    std::size_t sizeB = kc*cols;
    std::size_t sizeW = kc*Traits::WorkSpaceFactor;

    ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
    ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
    ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());

    conj_if<Conjugate> conj;
    gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, Conjugate, false> gebp_kernel;
    gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, TriStorageOrder> pack_lhs;
    gemm_pack_rhs<Scalar, Index, Traits::nr, ColMajor, false, true> pack_rhs;

    // the goal here is to subdivise the Rhs panels such that we keep some cache
    // coherence when accessing the rhs elements
    std::ptrdiff_t l1, l2;
    manage_caching_sizes(GetAction, &l1, &l2);
    Index subcols = cols>0 ? l2/(4 * sizeof(Scalar) * otherStride) : 0;
    subcols = std::max<Index>((subcols/Traits::nr)*Traits::nr, Traits::nr);

    for(Index k2=IsLower ? 0 : size;
        IsLower ? k2<size : k2>0;
        IsLower ? k2+=kc : k2-=kc)
    {
      const Index actual_kc = (std::min)(IsLower ? size-k2 : k2, kc);

      // We have selected and packed a big horizontal panel R1 of rhs. Let B be the packed copy of this panel,
      // and R2 the remaining part of rhs. The corresponding vertical panel of lhs is split into
      // A11 (the triangular part) and A21 the remaining rectangular part.
      // Then the high level algorithm is:
      //  - B = R1                    => general block copy (done during the next step)
      //  - R1 = A11^-1 B             => tricky part
      //  - update B from the new R1  => actually this has to be performed continuously during the above step
      //  - R2 -= A21 * B             => GEPP

      // The tricky part: compute R1 = A11^-1 B while updating B from R1
      // The idea is to split A11 into multiple small vertical panels.
      // Each panel can be split into a small triangular part T1k which is processed without optimization,
      // and the remaining small part T2k which is processed using gebp with appropriate block strides
      for(Index j2=0; j2<cols; j2+=subcols)
      {
        Index actual_cols = (std::min)(cols-j2,subcols);
        // for each small vertical panels [T1k^T, T2k^T]^T of lhs
        for (Index k1=0; k1<actual_kc; k1+=SmallPanelWidth)
        {
          Index actualPanelWidth = std::min<Index>(actual_kc-k1, SmallPanelWidth);
          // tr solve
          for (Index k=0; k<actualPanelWidth; ++k)
          {
            // TODO write a small kernel handling this (can be shared with trsv)
            Index i  = IsLower ? k2+k1+k : k2-k1-k-1;
            Index s  = IsLower ? k2+k1 : i+1;
            Index rs = actualPanelWidth - k - 1; // remaining size

            Scalar a = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(tri(i,i));
            for (Index j=j2; j<j2+actual_cols; ++j)
            {
              if (TriStorageOrder==RowMajor)
              {
                Scalar b(0);
                const Scalar* l = &tri(i,s);
                Scalar* r = &other(s,j);
                for (Index i3=0; i3<k; ++i3)
                  b += conj(l[i3]) * r[i3];

                other(i,j) = (other(i,j) - b)*a;
              }
              else
              {
                Index s = IsLower ? i+1 : i-rs;
                Scalar b = (other(i,j) *= a);
                Scalar* r = &other(s,j);
                const Scalar* l = &tri(s,i);
                for (Index i3=0;i3<rs;++i3)
                  r[i3] -= b * conj(l[i3]);
              }
            }
          }

          Index lengthTarget = actual_kc-k1-actualPanelWidth;
          Index startBlock   = IsLower ? k2+k1 : k2-k1-actualPanelWidth;
          Index blockBOffset = IsLower ? k1 : lengthTarget;

          // update the respective rows of B from other
          pack_rhs(blockB+actual_kc*j2, &other(startBlock,j2), otherStride, actualPanelWidth, actual_cols, actual_kc, blockBOffset);

          // GEBP
          if (lengthTarget>0)
          {
            Index startTarget  = IsLower ? k2+k1+actualPanelWidth : k2-actual_kc;

            pack_lhs(blockA, &tri(startTarget,startBlock), triStride, actualPanelWidth, lengthTarget);

            gebp_kernel(&other(startTarget,j2), otherStride, blockA, blockB+actual_kc*j2, lengthTarget, actualPanelWidth, actual_cols, Scalar(-1),
                        actualPanelWidth, actual_kc, 0, blockBOffset, blockW);
          }
        }
      }
      
      // R2 -= A21 * B => GEPP
      {
        Index start = IsLower ? k2+kc : 0;
        Index end   = IsLower ? size : k2-kc;
        for(Index i2=start; i2<end; i2+=mc)
        {
          const Index actual_mc = (std::min)(mc,end-i2);
          if (actual_mc>0)
          {
            pack_lhs(blockA, &tri(i2, IsLower ? k2 : k2-kc), triStride, actual_kc, actual_mc);

            gebp_kernel(_other+i2, otherStride, blockA, blockB, actual_mc, actual_kc, cols, Scalar(-1), -1, -1, 0, 0, blockW);
          }
        }
      }
    }
  }
};

/* Optimized triangular solver with multiple left hand sides and the trinagular matrix on the right
 */
template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
struct triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor>
{
  static EIGEN_DONT_INLINE void run(
    Index size, Index otherSize,
    const Scalar* _tri, Index triStride,
    Scalar* _other, Index otherStride,
    level3_blocking<Scalar,Scalar>& blocking)
  {
    Index rows = otherSize;
    const_blas_data_mapper<Scalar, Index, TriStorageOrder> rhs(_tri,triStride);
    blas_data_mapper<Scalar, Index, ColMajor> lhs(_other,otherStride);

    typedef gebp_traits<Scalar,Scalar> Traits;
    enum {
      RhsStorageOrder   = TriStorageOrder,
      SmallPanelWidth   = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
      IsLower = (Mode&Lower) == Lower
    };

    Index kc = blocking.kc();                   // cache block size along the K direction
    Index mc = (std::min)(rows,blocking.mc());  // cache block size along the M direction

    std::size_t sizeA = kc*mc;
    std::size_t sizeB = kc*size;
    std::size_t sizeW = kc*Traits::WorkSpaceFactor;

    ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
    ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
    ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());

    conj_if<Conjugate> conj;
    gebp_kernel<Scalar,Scalar, Index, Traits::mr, Traits::nr, false, Conjugate> gebp_kernel;
    gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
    gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder,false,true> pack_rhs_panel;
    gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, ColMajor, false, true> pack_lhs_panel;

    for(Index k2=IsLower ? size : 0;
        IsLower ? k2>0 : k2<size;
        IsLower ? k2-=kc : k2+=kc)
    {
      const Index actual_kc = (std::min)(IsLower ? k2 : size-k2, kc);
      Index actual_k2 = IsLower ? k2-actual_kc : k2 ;

      Index startPanel = IsLower ? 0 : k2+actual_kc;
      Index rs = IsLower ? actual_k2 : size - actual_k2 - actual_kc;
      Scalar* geb = blockB+actual_kc*actual_kc;

      if (rs>0) pack_rhs(geb, &rhs(actual_k2,startPanel), triStride, actual_kc, rs);

      // triangular packing (we only pack the panels off the diagonal,
      // neglecting the blocks overlapping the diagonal
      {
        for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
        {
          Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
          Index actual_j2 = actual_k2 + j2;
          Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
          Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2;

          if (panelLength>0)
          pack_rhs_panel(blockB+j2*actual_kc,
                         &rhs(actual_k2+panelOffset, actual_j2), triStride,
                         panelLength, actualPanelWidth,
                         actual_kc, panelOffset);
        }
      }

      for(Index i2=0; i2<rows; i2+=mc)
      {
        const Index actual_mc = (std::min)(mc,rows-i2);

        // triangular solver kernel
        {
          // for each small block of the diagonal (=> vertical panels of rhs)
          for (Index j2 = IsLower
                      ? (actual_kc - ((actual_kc%SmallPanelWidth) ? Index(actual_kc%SmallPanelWidth)
                                                                  : Index(SmallPanelWidth)))
                      : 0;
               IsLower ? j2>=0 : j2<actual_kc;
               IsLower ? j2-=SmallPanelWidth : j2+=SmallPanelWidth)
          {
            Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
            Index absolute_j2 = actual_k2 + j2;
            Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
            Index panelLength = IsLower ? actual_kc - j2 - actualPanelWidth : j2;

            // GEBP
            if(panelLength>0)
            {
              gebp_kernel(&lhs(i2,absolute_j2), otherStride,
                          blockA, blockB+j2*actual_kc,
                          actual_mc, panelLength, actualPanelWidth,
                          Scalar(-1),
                          actual_kc, actual_kc, // strides
                          panelOffset, panelOffset, // offsets
                          blockW);  // workspace
            }

            // unblocked triangular solve
            for (Index k=0; k<actualPanelWidth; ++k)
            {
              Index j = IsLower ? absolute_j2+actualPanelWidth-k-1 : absolute_j2+k;

              Scalar* r = &lhs(i2,j);
              for (Index k3=0; k3<k; ++k3)
              {
                Scalar b = conj(rhs(IsLower ? j+1+k3 : absolute_j2+k3,j));
                Scalar* a = &lhs(i2,IsLower ? j+1+k3 : absolute_j2+k3);
                for (Index i=0; i<actual_mc; ++i)
                  r[i] -= a[i] * b;
              }
              Scalar b = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(rhs(j,j));
              for (Index i=0; i<actual_mc; ++i)
                r[i] *= b;
            }

            // pack the just computed part of lhs to A
            pack_lhs_panel(blockA, _other+absolute_j2*otherStride+i2, otherStride,
                           actualPanelWidth, actual_mc,
                           actual_kc, j2);
          }
        }

        if (rs>0)
          gebp_kernel(_other+i2+startPanel*otherStride, otherStride, blockA, geb,
                      actual_mc, actual_kc, rs, Scalar(-1),
                      -1, -1, 0, 0, blockW);
      }
    }
  }
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_H