aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/util/Meta.h
blob: 71d58710871332f0769fbef711a6300153f583da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_META_H
#define EIGEN_META_H

namespace Eigen {

namespace internal {

/** \internal
  * \file Meta.h
  * This file contains generic metaprogramming classes which are not specifically related to Eigen.
  * \note In case you wonder, yes we're aware that Boost already provides all these features,
  * we however don't want to add a dependency to Boost.
  */

struct true_type {  enum { value = 1 }; };
struct false_type { enum { value = 0 }; };

template<bool Condition, typename Then, typename Else>
struct conditional { typedef Then type; };

template<typename Then, typename Else>
struct conditional <false, Then, Else> { typedef Else type; };

template<typename T, typename U> struct is_same { enum { value = 0 }; };
template<typename T> struct is_same<T,T> { enum { value = 1 }; };

template<typename T> struct remove_reference { typedef T type; };
template<typename T> struct remove_reference<T&> { typedef T type; };

template<typename T> struct remove_pointer { typedef T type; };
template<typename T> struct remove_pointer<T*> { typedef T type; };
template<typename T> struct remove_pointer<T*const> { typedef T type; };

template <class T> struct remove_const { typedef T type; };
template <class T> struct remove_const<const T> { typedef T type; };
template <class T> struct remove_const<const T[]> { typedef T type[]; };
template <class T, unsigned int Size> struct remove_const<const T[Size]> { typedef T type[Size]; };

template<typename T> struct remove_all { typedef T type; };
template<typename T> struct remove_all<const T>   { typedef typename remove_all<T>::type type; };
template<typename T> struct remove_all<T const&>  { typedef typename remove_all<T>::type type; };
template<typename T> struct remove_all<T&>        { typedef typename remove_all<T>::type type; };
template<typename T> struct remove_all<T const*>  { typedef typename remove_all<T>::type type; };
template<typename T> struct remove_all<T*>        { typedef typename remove_all<T>::type type; };

template<typename T> struct is_arithmetic      { enum { value = false }; };
template<> struct is_arithmetic<float>         { enum { value = true }; };
template<> struct is_arithmetic<double>        { enum { value = true }; };
template<> struct is_arithmetic<long double>   { enum { value = true }; };
template<> struct is_arithmetic<bool>          { enum { value = true }; };
template<> struct is_arithmetic<char>          { enum { value = true }; };
template<> struct is_arithmetic<signed char>   { enum { value = true }; };
template<> struct is_arithmetic<unsigned char> { enum { value = true }; };
template<> struct is_arithmetic<signed short>  { enum { value = true }; };
template<> struct is_arithmetic<unsigned short>{ enum { value = true }; };
template<> struct is_arithmetic<signed int>    { enum { value = true }; };
template<> struct is_arithmetic<unsigned int>  { enum { value = true }; };
template<> struct is_arithmetic<signed long>   { enum { value = true }; };
template<> struct is_arithmetic<unsigned long> { enum { value = true }; };

template <typename T> struct add_const { typedef const T type; };
template <typename T> struct add_const<T&> { typedef T& type; };

template <typename T> struct is_const { enum { value = 0 }; };
template <typename T> struct is_const<T const> { enum { value = 1 }; };

template<typename T> struct add_const_on_value_type            { typedef const T type;  };
template<typename T> struct add_const_on_value_type<T&>        { typedef T const& type; };
template<typename T> struct add_const_on_value_type<T*>        { typedef T const* type; };
template<typename T> struct add_const_on_value_type<T* const>  { typedef T const* const type; };
template<typename T> struct add_const_on_value_type<T const* const>  { typedef T const* const type; };

/** \internal Allows to enable/disable an overload
  * according to a compile time condition.
  */
template<bool Condition, typename T> struct enable_if;

template<typename T> struct enable_if<true,T>
{ typedef T type; };



/** \internal
  * A base class do disable default copy ctor and copy assignement operator.
  */
class noncopyable
{
  noncopyable(const noncopyable&);
  const noncopyable& operator=(const noncopyable&);
protected:
  noncopyable() {}
  ~noncopyable() {}
};


/** \internal
  * Convenient struct to get the result type of a unary or binary functor.
  *
  * It supports both the current STL mechanism (using the result_type member) as well as
  * upcoming next STL generation (using a templated result member).
  * If none of these members is provided, then the type of the first argument is returned. FIXME, that behavior is a pretty bad hack.
  */
template<typename T> struct result_of {};

struct has_none {int a[1];};
struct has_std_result_type {int a[2];};
struct has_tr1_result {int a[3];};

template<typename Func, typename ArgType, int SizeOf=sizeof(has_none)>
struct unary_result_of_select {typedef ArgType type;};

template<typename Func, typename ArgType>
struct unary_result_of_select<Func, ArgType, sizeof(has_std_result_type)> {typedef typename Func::result_type type;};

template<typename Func, typename ArgType>
struct unary_result_of_select<Func, ArgType, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;};

template<typename Func, typename ArgType>
struct result_of<Func(ArgType)> {
    template<typename T>
    static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
    template<typename T>
    static has_tr1_result      testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0);
    static has_none            testFunctor(...);

    // note that the following indirection is needed for gcc-3.3
    enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
    typedef typename unary_result_of_select<Func, ArgType, FunctorType>::type type;
};

template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(has_none)>
struct binary_result_of_select {typedef ArgType0 type;};

template<typename Func, typename ArgType0, typename ArgType1>
struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_std_result_type)>
{typedef typename Func::result_type type;};

template<typename Func, typename ArgType0, typename ArgType1>
struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_tr1_result)>
{typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;};

template<typename Func, typename ArgType0, typename ArgType1>
struct result_of<Func(ArgType0,ArgType1)> {
    template<typename T>
    static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
    template<typename T>
    static has_tr1_result      testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0);
    static has_none            testFunctor(...);

    // note that the following indirection is needed for gcc-3.3
    enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
    typedef typename binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type;
};

/** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer.
  * Usage example: \code meta_sqrt<1023>::ret \endcode
  */
template<int Y,
         int InfX = 0,
         int SupX = ((Y==1) ? 1 : Y/2),
         bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) >
                                // use ?: instead of || just to shut up a stupid gcc 4.3 warning
class meta_sqrt
{
    enum {
      MidX = (InfX+SupX)/2,
      TakeInf = MidX*MidX > Y ? 1 : 0,
      NewInf = int(TakeInf) ? InfX : int(MidX),
      NewSup = int(TakeInf) ? int(MidX) : SupX
    };
  public:
    enum { ret = meta_sqrt<Y,NewInf,NewSup>::ret };
};

template<int Y, int InfX, int SupX>
class meta_sqrt<Y, InfX, SupX, true> { public:  enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; };

/** \internal determines whether the product of two numeric types is allowed and what the return type is */
template<typename T, typename U> struct scalar_product_traits
{
  enum { Defined = 0 };
};

template<typename T> struct scalar_product_traits<T,T>
{
  enum {
    // Cost = NumTraits<T>::MulCost,
    Defined = 1
  };
  typedef T ReturnType;
};

template<typename T> struct scalar_product_traits<T,std::complex<T> >
{
  enum {
    // Cost = 2*NumTraits<T>::MulCost,
    Defined = 1
  };
  typedef std::complex<T> ReturnType;
};

template<typename T> struct scalar_product_traits<std::complex<T>, T>
{
  enum {
    // Cost = 2*NumTraits<T>::MulCost,
    Defined = 1
  };
  typedef std::complex<T> ReturnType;
};

// FIXME quick workaround around current limitation of result_of
// template<typename Scalar, typename ArgType0, typename ArgType1>
// struct result_of<scalar_product_op<Scalar>(ArgType0,ArgType1)> {
// typedef typename scalar_product_traits<typename remove_all<ArgType0>::type, typename remove_all<ArgType1>::type>::ReturnType type;
// };

template<typename T> struct is_diagonal
{ enum { ret = false }; };

template<typename T> struct is_diagonal<DiagonalBase<T> >
{ enum { ret = true }; };

template<typename T> struct is_diagonal<DiagonalWrapper<T> >
{ enum { ret = true }; };

template<typename T, int S> struct is_diagonal<DiagonalMatrix<T,S> >
{ enum { ret = true }; };

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_META_H