aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Eigen2Support/Geometry/Hyperplane.h
blob: b95bf00ecff1f25deb98f994911ce52c41b08f5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway

namespace Eigen { 

/** \geometry_module \ingroup Geometry_Module
  *
  * \class Hyperplane
  *
  * \brief A hyperplane
  *
  * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
  * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
  *
  * \param _Scalar the scalar type, i.e., the type of the coefficients
  * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
  *             Notice that the dimension of the hyperplane is _AmbientDim-1.
  *
  * This class represents an hyperplane as the zero set of the implicit equation
  * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
  * and \f$ d \f$ is the distance (offset) to the origin.
  */
template <typename _Scalar, int _AmbientDim>
class Hyperplane
{
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
  enum { AmbientDimAtCompileTime = _AmbientDim };
  typedef _Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
  typedef Matrix<Scalar,int(AmbientDimAtCompileTime)==Dynamic
                        ? Dynamic
                        : int(AmbientDimAtCompileTime)+1,1> Coefficients;
  typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;

  /** Default constructor without initialization */
  inline Hyperplane() {}

  /** Constructs a dynamic-size hyperplane with \a _dim the dimension
    * of the ambient space */
  inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {}

  /** Construct a plane from its normal \a n and a point \a e onto the plane.
    * \warning the vector normal is assumed to be normalized.
    */
  inline Hyperplane(const VectorType& n, const VectorType& e)
    : m_coeffs(n.size()+1)
  {
    normal() = n;
    offset() = -e.eigen2_dot(n);
  }

  /** Constructs a plane from its normal \a n and distance to the origin \a d
    * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
    * \warning the vector normal is assumed to be normalized.
    */
  inline Hyperplane(const VectorType& n, Scalar d)
    : m_coeffs(n.size()+1)
  {
    normal() = n;
    offset() = d;
  }

  /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
    * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
    */
  static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
  {
    Hyperplane result(p0.size());
    result.normal() = (p1 - p0).unitOrthogonal();
    result.offset() = -result.normal().eigen2_dot(p0);
    return result;
  }

  /** Constructs a hyperplane passing through the three points. The dimension of the ambient space
    * is required to be exactly 3.
    */
  static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
  {
    EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
    Hyperplane result(p0.size());
    result.normal() = (p2 - p0).cross(p1 - p0).normalized();
    result.offset() = -result.normal().eigen2_dot(p0);
    return result;
  }

  /** Constructs a hyperplane passing through the parametrized line \a parametrized.
    * If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
    * so an arbitrary choice is made.
    */
  // FIXME to be consitent with the rest this could be implemented as a static Through function ??
  explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
  {
    normal() = parametrized.direction().unitOrthogonal();
    offset() = -normal().eigen2_dot(parametrized.origin());
  }

  ~Hyperplane() {}

  /** \returns the dimension in which the plane holds */
  inline int dim() const { return int(AmbientDimAtCompileTime)==Dynamic ? m_coeffs.size()-1 : int(AmbientDimAtCompileTime); }

  /** normalizes \c *this */
  void normalize(void)
  {
    m_coeffs /= normal().norm();
  }

  /** \returns the signed distance between the plane \c *this and a point \a p.
    * \sa absDistance()
    */
  inline Scalar signedDistance(const VectorType& p) const { return p.eigen2_dot(normal()) + offset(); }

  /** \returns the absolute distance between the plane \c *this and a point \a p.
    * \sa signedDistance()
    */
  inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); }

  /** \returns the projection of a point \a p onto the plane \c *this.
    */
  inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }

  /** \returns a constant reference to the unit normal vector of the plane, which corresponds
    * to the linear part of the implicit equation.
    */
  inline const NormalReturnType normal() const { return NormalReturnType(*const_cast<Coefficients*>(&m_coeffs),0,0,dim(),1); }

  /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
    * to the linear part of the implicit equation.
    */
  inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }

  /** \returns the distance to the origin, which is also the "constant term" of the implicit equation
    * \warning the vector normal is assumed to be normalized.
    */
  inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }

  /** \returns a non-constant reference to the distance to the origin, which is also the constant part
    * of the implicit equation */
  inline Scalar& offset() { return m_coeffs(dim()); }

  /** \returns a constant reference to the coefficients c_i of the plane equation:
    * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
    */
  inline const Coefficients& coeffs() const { return m_coeffs; }

  /** \returns a non-constant reference to the coefficients c_i of the plane equation:
    * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
    */
  inline Coefficients& coeffs() { return m_coeffs; }

  /** \returns the intersection of *this with \a other.
    *
    * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
    *
    * \note If \a other is approximately parallel to *this, this method will return any point on *this.
    */
  VectorType intersection(const Hyperplane& other)
  {
    EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
    Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
    // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
    // whether the two lines are approximately parallel.
    if(ei_isMuchSmallerThan(det, Scalar(1)))
    {   // special case where the two lines are approximately parallel. Pick any point on the first line.
        if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0)))
            return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
        else
            return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
    }
    else
    {   // general case
        Scalar invdet = Scalar(1) / det;
        return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
                          invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
    }
  }

  /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
    *
    * \param mat the Dim x Dim transformation matrix
    * \param traits specifies whether the matrix \a mat represents an Isometry
    *               or a more generic Affine transformation. The default is Affine.
    */
  template<typename XprType>
  inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
  {
    if (traits==Affine)
      normal() = mat.inverse().transpose() * normal();
    else if (traits==Isometry)
      normal() = mat * normal();
    else
    {
      ei_assert("invalid traits value in Hyperplane::transform()");
    }
    return *this;
  }

  /** Applies the transformation \a t to \c *this and returns a reference to \c *this.
    *
    * \param t the transformation of dimension Dim
    * \param traits specifies whether the transformation \a t represents an Isometry
    *               or a more generic Affine transformation. The default is Affine.
    *               Other kind of transformations are not supported.
    */
  inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t,
                                TransformTraits traits = Affine)
  {
    transform(t.linear(), traits);
    offset() -= t.translation().eigen2_dot(normal());
    return *this;
  }

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline typename internal::cast_return_type<Hyperplane,
           Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
  {
    return typename internal::cast_return_type<Hyperplane,
                    Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
  }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType>
  inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime>& other)
  { m_coeffs = other.coeffs().template cast<Scalar>(); }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
  bool isApprox(const Hyperplane& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
  { return m_coeffs.isApprox(other.m_coeffs, prec); }

protected:

  Coefficients m_coeffs;
};

} // end namespace Eigen