aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
blob: 956e80d9edceb037b269cc21e07bd29f99965298 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
#define EIGEN_GENERALIZEDEIGENSOLVER_H

#include "./RealQZ.h"

namespace Eigen { 

/** \eigenvalues_module \ingroup Eigenvalues_Module
  *
  *
  * \class GeneralizedEigenSolver
  *
  * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
  *
  * \tparam _MatrixType the type of the matrices of which we are computing the
  * eigen-decomposition; this is expected to be an instantiation of the Matrix
  * class template. Currently, only real matrices are supported.
  *
  * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
  * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$.  If
  * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
  * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
  * B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
  * have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
  *
  * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
  * matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
  * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
  * and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
  * then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
  * \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A  = u_i^T B \f$ where \f$ u_i \f$ is
  * called the left eigenvector.
  *
  * Call the function compute() to compute the generalized eigenvalues and eigenvectors of
  * a given matrix pair. Alternatively, you can use the
  * GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
  * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
  * eigenvectors are computed, they can be retrieved with the eigenvalues() and
  * eigenvectors() functions.
  *
  * Here is an usage example of this class:
  * Example: \include GeneralizedEigenSolver.cpp
  * Output: \verbinclude GeneralizedEigenSolver.out
  *
  * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
  */
template<typename _MatrixType> class GeneralizedEigenSolver
{
  public:

    /** \brief Synonym for the template parameter \p _MatrixType. */
    typedef _MatrixType MatrixType;

    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };

    /** \brief Scalar type for matrices of type #MatrixType. */
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef typename MatrixType::Index Index;

    /** \brief Complex scalar type for #MatrixType. 
      *
      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
      * \c float or \c double) and just \c Scalar if #Scalar is
      * complex.
      */
    typedef std::complex<RealScalar> ComplexScalar;

    /** \brief Type for vector of real scalar values eigenvalues as returned by betas().
      *
      * This is a column vector with entries of type #Scalar.
      * The length of the vector is the size of #MatrixType.
      */
    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;

    /** \brief Type for vector of complex scalar values eigenvalues as returned by betas().
      *
      * This is a column vector with entries of type #ComplexScalar.
      * The length of the vector is the size of #MatrixType.
      */
    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;

    /** \brief Expression type for the eigenvalues as returned by eigenvalues().
      */
    typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;

    /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 
      *
      * This is a square matrix with entries of type #ComplexScalar. 
      * The size is the same as the size of #MatrixType.
      */
    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;

    /** \brief Default constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
      *
      * \sa compute() for an example.
      */
    GeneralizedEigenSolver() : m_eivec(), m_alphas(), m_betas(), m_isInitialized(false), m_realQZ(), m_matS(), m_tmp() {}

    /** \brief Default constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa GeneralizedEigenSolver()
      */
    GeneralizedEigenSolver(Index size)
      : m_eivec(size, size),
        m_alphas(size),
        m_betas(size),
        m_isInitialized(false),
        m_eigenvectorsOk(false),
        m_realQZ(size),
        m_matS(size, size),
        m_tmp(size)
    {}

    /** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
      * 
      * \param[in]  A  Square matrix whose eigendecomposition is to be computed.
      * \param[in]  B  Square matrix whose eigendecomposition is to be computed.
      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
      *    eigenvalues are computed; if false, only the eigenvalues are computed.
      *
      * This constructor calls compute() to compute the generalized eigenvalues
      * and eigenvectors.
      *
      * \sa compute()
      */
    GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
      : m_eivec(A.rows(), A.cols()),
        m_alphas(A.cols()),
        m_betas(A.cols()),
        m_isInitialized(false),
        m_eigenvectorsOk(false),
        m_realQZ(A.cols()),
        m_matS(A.rows(), A.cols()),
        m_tmp(A.cols())
    {
      compute(A, B, computeEigenvectors);
    }

    /* \brief Returns the computed generalized eigenvectors.
      *
      * \returns  %Matrix whose columns are the (possibly complex) eigenvectors.
      *
      * \pre Either the constructor 
      * GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
      * compute(const MatrixType&, const MatrixType& bool) has been called before, and
      * \p computeEigenvectors was set to true (the default).
      *
      * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
      * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
      * eigenvectors are normalized to have (Euclidean) norm equal to one. The
      * matrix returned by this function is the matrix \f$ V \f$ in the
      * generalized eigendecomposition \f$ A = B V D V^{-1} \f$, if it exists.
      *
      * \sa eigenvalues()
      */
//    EigenvectorsType eigenvectors() const;

    /** \brief Returns an expression of the computed generalized eigenvalues.
      *
      * \returns An expression of the column vector containing the eigenvalues.
      *
      * It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
      * Not that betas might contain zeros. It is therefore not recommended to use this function,
      * but rather directly deal with the alphas and betas vectors.
      *
      * \pre Either the constructor 
      * GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
      * compute(const MatrixType&,const MatrixType&,bool) has been called before.
      *
      * The eigenvalues are repeated according to their algebraic multiplicity,
      * so there are as many eigenvalues as rows in the matrix. The eigenvalues 
      * are not sorted in any particular order.
      *
      * \sa alphas(), betas(), eigenvectors()
      */
    EigenvalueType eigenvalues() const
    {
      eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
      return EigenvalueType(m_alphas,m_betas);
    }

    /** \returns A const reference to the vectors containing the alpha values
      *
      * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
      *
      * \sa betas(), eigenvalues() */
    ComplexVectorType alphas() const
    {
      eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
      return m_alphas;
    }

    /** \returns A const reference to the vectors containing the beta values
      *
      * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
      *
      * \sa alphas(), eigenvalues() */
    VectorType betas() const
    {
      eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
      return m_betas;
    }

    /** \brief Computes generalized eigendecomposition of given matrix.
      * 
      * \param[in]  A  Square matrix whose eigendecomposition is to be computed.
      * \param[in]  B  Square matrix whose eigendecomposition is to be computed.
      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
      *    eigenvalues are computed; if false, only the eigenvalues are
      *    computed. 
      * \returns    Reference to \c *this
      *
      * This function computes the eigenvalues of the real matrix \p matrix.
      * The eigenvalues() function can be used to retrieve them.  If 
      * \p computeEigenvectors is true, then the eigenvectors are also computed
      * and can be retrieved by calling eigenvectors().
      *
      * The matrix is first reduced to real generalized Schur form using the RealQZ
      * class. The generalized Schur decomposition is then used to compute the eigenvalues
      * and eigenvectors.
      *
      * The cost of the computation is dominated by the cost of the
      * generalized Schur decomposition.
      *
      * This method reuses of the allocated data in the GeneralizedEigenSolver object.
      */
    GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);

    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
      return m_realQZ.info();
    }

    /** Sets the maximal number of iterations allowed.
    */
    GeneralizedEigenSolver& setMaxIterations(Index maxIters)
    {
      m_realQZ.setMaxIterations(maxIters);
      return *this;
    }

  protected:
    
    static void check_template_parameters()
    {
      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
      EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
    }
    
    MatrixType m_eivec;
    ComplexVectorType m_alphas;
    VectorType m_betas;
    bool m_isInitialized;
    bool m_eigenvectorsOk;
    RealQZ<MatrixType> m_realQZ;
    MatrixType m_matS;

    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
    ColumnVectorType m_tmp;
};

//template<typename MatrixType>
//typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType GeneralizedEigenSolver<MatrixType>::eigenvectors() const
//{
//  eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
//  eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
//  Index n = m_eivec.cols();
//  EigenvectorsType matV(n,n);
//  // TODO
//  return matV;
//}

template<typename MatrixType>
GeneralizedEigenSolver<MatrixType>&
GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
{
  check_template_parameters();
  
  using std::sqrt;
  using std::abs;
  eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());

  // Reduce to generalized real Schur form:
  // A = Q S Z and B = Q T Z
  m_realQZ.compute(A, B, computeEigenvectors);

  if (m_realQZ.info() == Success)
  {
    m_matS = m_realQZ.matrixS();
    if (computeEigenvectors)
      m_eivec = m_realQZ.matrixZ().transpose();
  
    // Compute eigenvalues from matS
    m_alphas.resize(A.cols());
    m_betas.resize(A.cols());
    Index i = 0;
    while (i < A.cols())
    {
      if (i == A.cols() - 1 || m_matS.coeff(i+1, i) == Scalar(0))
      {
        m_alphas.coeffRef(i) = m_matS.coeff(i, i);
        m_betas.coeffRef(i)  = m_realQZ.matrixT().coeff(i,i);
        ++i;
      }
      else
      {
        Scalar p = Scalar(0.5) * (m_matS.coeff(i, i) - m_matS.coeff(i+1, i+1));
        Scalar z = sqrt(abs(p * p + m_matS.coeff(i+1, i) * m_matS.coeff(i, i+1)));
        m_alphas.coeffRef(i)   = ComplexScalar(m_matS.coeff(i+1, i+1) + p, z);
        m_alphas.coeffRef(i+1) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, -z);

        m_betas.coeffRef(i)   = m_realQZ.matrixT().coeff(i,i);
        m_betas.coeffRef(i+1) = m_realQZ.matrixT().coeff(i,i);
        i += 2;
      }
    }
  }

  m_isInitialized = true;
  m_eigenvectorsOk = false;//computeEigenvectors;

  return *this;
}

} // end namespace Eigen

#endif // EIGEN_GENERALIZEDEIGENSOLVER_H